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Abstract: In the medical device sector, bloom index and residual endotoxins should be controlled,
as they are crucial regulators of the device’s physicochemical and biological properties. It is also
imperative to identify a suitable crosslinking method to increase mechanical integrity, without
jeopardising cellular functions of gelatin-based devices. Herein, gelatin preparations with variable
bloom index and endotoxin levels were used to fabricate non-crosslinked and polyethylene glycol
succinimidyl glutarate crosslinked gelatin scaffolds, the physicochemical and biological properties of
which were subsequently assessed. Gelatin preparations with low bloom index resulted in hydrogels
with significantly (p < 0.05) lower compression stress, elastic modulus and resistance to enzymatic
degradation, and significantly higher (p < 0.05) free amine content than gelatin preparations with
high bloom index. Gelatin preparations with high endotoxin levels resulted in films that induced
significantly (p < 0.05) higher macrophage clusters than gelatin preparations with low endotoxin
level. Our data suggest that the bloom index modulates the physicochemical properties, and the
endotoxin content regulates the biological response of gelatin biomaterials. Although polyethylene
glycol succinimidyl glutarate crosslinking significantly (p < 0.05) increased compression stress, elastic
modulus and resistance to enzymatic degradation, and significantly (p < 0.05) decreased free amine
content, at the concentration used, it did not provide sufficient structural integrity to support cell
culture. Therefore, the quest for the optimal gelatin crosslinker continues.

Keywords: gelatin biomaterials; bloom index; endotoxin levels; macrophage response

1. Introduction

Gelatin is attracting growing attention in the fields of tissue engineering and drug
delivery due to its low antigenicity, high cell affinity, relatively easy processability and
high availability at low cost [1–4]. Gelatin is a mixture of peptides produced by partially
acid (gelatin type A, isoelectric point of ~8) or alkaline (gelatin type B, isoelectric point of
~5) collagen hydrolysis [5,6]. Subject to the stage of the extraction, gelatin preparations
are classified as low (initial stage of extraction/incomplete hydrolysis) or high (late stage
of extraction/complete hydrolysis) bloom index (ranging from 50 to 300) [7]. High bloom
numbers are associated with high molecular weight gelatin preparations, increased dy-
namic moduli and increased gelation and melting temperatures [8]. The bloom index and
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the concentration of the solution affect the gelling capacity and the gel strength of gelatin
preparations [9,10], which in turn affect their drug release capacity [11]. Cell response
has also been shown to be bloom index-dependent. Indeed, high bloom index gelatin
preparations, possibly due to their high viscosity that affects nutrient transport, have been
shown to reduce cytocompatibility and to increase inflammatory reaction [12,13].

The use of gelatin in biomedicine is somehow restricted due to its high affinity to
endotoxin contamination. Endotoxins are large and complex lipopolysaccharides that are
localised at the outer membrane of Gram-negative bacteria [14,15] and are often associated
with contamination of medical devices. Specifically, as endotoxins possess a high thermal
stability [16] and are hard to destroy with conventional sterilisation conditions [17], resid-
ual endotoxins constitute the most significant pyrogen in parenteral drugs and medical
devices [18,19] and frequently lead to post-operative complications, such as delayed tissue
regeneration and homeostasis, implant failure and septic shock [20–23]. It is therefore
imperative to assess residual endotoxins in medical devices, and especially in natural
biomaterials that are prone to endotoxin contamination [24,25].

As gelatin is the product of collagen hydrolysis, exogenous crosslinks should be
used to stabilise the produced materials. Unfortunately, inappropriate crosslinking may
reduce cytocompatibility and increase inflammation response [26]. To this end, several
crosslinking methods have been assessed over the years with contradictive outcomes.
For example, although the use of genipin has been advocated as a means to increase
mechanical stability and denaturation temperature [27], genipin, similarly to glutaralde-
hyde, has been shown to induce strong in vivo rejection [28]. Although carbodiimide
has been proposed as a gelatin crosslinker as effective as glutaraldehyde [29], the fast
degradation rate of the resultant scaffold prohibits its further use [28]. Although transg-
lutaminase has shown promise as a gelatin crosslinker [28,30], its limited crosslinking
capacity [31,32] has also restricted its use. Evidently, the quest for the optimal gelatin
crosslinking method continues.

Considering the above, herein, we ventured to assess the influence of bloom index,
endotoxin levels and 4-arm polyethylene glycol succinimidyl glutarate crosslinking on
the physicochemical and biological properties of gelatin-based biomaterials. Specifically,
the biophysical, biochemical and biological properties of gelatin (porcine type A and
bovine type B, from two different suppliers) and gelatin-based biomaterials (hydrogels
for physicochemical analysis and films for biological analysis) were assessed as a function
of different levels of endotoxin content (from <1 up to 10,370 endotoxin units per gram),
bloom index (from 220 to 355) and crosslinking (non-crosslinked and crosslinked). The 4-
arm polyethylene glycol succinimidyl glutarate was selected for crosslinking the gelatin-
based biomaterials, as its stabilisation and cytocompatibility efficiency have been repeatedly
demonstrated in the literature [33–35].

2. Materials and Methods
2.1. Materials

Gelatin products (Table 1) were provided by Rousselot R&D Center (Ghent, Belgium)
or purchased from Sigma-Aldrich (Arklow, Co., Wicklow, Ireland). 4-arm polyethylene
glycol (PEG) succinimidyl glutarate (4SG, Mw 10,000) was purchased from JenKem Technol-
ogy (Plano, TX, USA). All other materials and reagents were purchased from Sigma-Aldrich
(Arklow, Co., Wicklow, Ireland) unless otherwise stated.
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Table 1. Properties of gelatin samples used in this study. * The endotoxin units per gram values were
provided by the supplier and were measured using the ENDONEXT™ EndoZyme® II–Recombinant
Factor C (rFC) Endotoxin Detection Assay (Bernried am Starnberger See, Hyglos GmbH).

Material Abbreviation Bloom Endotoxin Units per gram *

Rousselot, type A porcine RAP1 355 <1

Rousselot, type A porcine RAP80 220 80

Rousselot, type A porcine RAP780 285 780

Rousselot, type A porcine RAP4K 300 4000

Sigma G2500, type A porcine SAP10.5K 300 10,370

Rousselot, type B bovine RBB9 247 9

Sigma G9382, type B bovine SBB1.5K 225 1360

2.2. Electrophoretic Mobility Assessment

To assess the electrophoretic mobility of the gelatin samples, sodium dodecyl sulphate-
polyacrylamide gel electrophoresis (SDS-PAGE) under non-reducing conditions was con-
ducted [36] using a Mini-Protean 3 electrophoresis system (Watford, Bio-Rad Laboratories,
UK). A 3% running gel and a 5% separation gel were used. Briefly, 10% gelatin solutions
were dissolved in 0.5 M acetic acid and neutralised with 1 N NaOH, followed by the
addition of 5× sample buffer (bromophenol blue/SDS). The sample-buffer mixtures were
heated at 95 ◦C for 5 min and a 10 µL aliquot of each mixture was loaded into each well of
the running gel. High-purity soluble collagen type I (Chaponost, Symatese, France) was
used as a control. Electrophoresis was carried out by first applying 50 V constant voltage
until the samples reached the end of the running gel (~30 min) and then 120 V constant
voltage was applied until the samples reached the end of the separation gel (~60 min).
The gels were stained with a silver staining kit (SilverQuest™, Invitrogen, Thermo Fisher
Scientific, Waltham, MA, USA) according to the manufacturer’s protocol.

2.3. Fabrication and Crosslinking of Gelatin Hydrogels and Films

Gelatin hydrogels (250 µL final volume was used) were prepared by dissolving gelatin
products in 1× phosphate buffered saline (PBS) at 50 ◦C to form solutions of 100 mg/mL,
mixing them with 1 mM PEG-4SG and letting them assemble at 25 ◦C for 1 h in Ace
silicone O-rings (Z504165). Gelatin films (250 µL final volume was used) were prepared by
dissolving gelatin products in 1× PBS at 50 ◦C to form a solution of 100 mg/mL, mixing
them with 1 mM PEG-4SG at 25 ◦C in 48-well plates (Sarstedt, Nümbrecht, Germany) and
allowing the liquid to evaporate overnight in a fume hood.

2.4. Biomechanical Assessment

The mechanical properties of gelatin hydrogels were assessed via uniaxial compression
using a universal tensile testing machine (Z2.5, Zwick/Roell, Ulm, Germany), loaded with
a 100 N static load cell. Uniaxial constant loading was performed on gelatin hydrogels
with approximately 3 mm height and 10 mm diameter. The gelatin hydrogels were placed
between two loading cells and compressed until 70% deformation, with a compression
rate of 10 mm/min. Force, strain and elastic modulus were determined by plotting stress
versus strain curves. Both compression strength and elastic modulus were determined
on the linear area of the curves at the position of 30% deformation, and elastic modu-
lus was calculated using the linear equation of trend-lines at the position of 30% of the
deformation [37].

Note: The gelatin films (both non-crosslinked and crosslinked) were too fragile in wet
state to be mechanically assessed.
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2.5. Free Amines Assessment

Crosslinking efficiency was quantified using the 2,4,6-trinitrobenzene sulfonic acid
(TNBSA) assay (Thermo Fisher Scientific, Dublin, Ireland) [36]. Briefly, gelatin hydrogels
(~500 mg) were incubated with TNBSA at 37 ◦C for 2 h. The reaction was stopped by
adding 10% SDS and 1 M hydrochloric acid. The mixtures were subsequently heated at
95 ◦C for 15 min in order to hydrolyse the gelatin hydrogel samples. The absorbance
was read at 335 nm (Varioskan Flash Multimode Reader, Thermo Fisher Scientific, Dublin,
Ireland) and values were normalised to the standard curve, which has been generated with
a series of known glycine concentrations (0.005, 0.01, 0.02, 0.03, 0.04 and 0.05 mg/mL).

2.6. Resistance to Enzymatic Degradation Assessment

Enzymatic stability of the gelatin hydrogels was quantified with the collagenase
assay [38]. Briefly, gelatin hydrogels were weighed and then incubated for 2 h in 0.1 M
Tris-HCl and 500 mM CaCl2 at pH 7.4. Subsequently, the hydrogels were digested with
50 U/mL bacterial collagenase type II (MMP-8; 17101-015, Gibco, Thermo Fisher Scientific,
Dublin, Ireland). After 3, 6, 9, 12 and 24 h of digestion at 37 ◦C, centrifugation was
carried out at 10,000× g for 5 min, the supernatant was removed and the remaining gelatin
hydrogels were weighed. The degree of enzymatic degradation was quantified using the
following equation: [(Wo − Wt)/Wo] × 100, where Wo is the original weight and Wt is the
remaining weight.

2.7. Cell Culture

In vitro inflammatory response was assessed using human-derived leukemic mono-
cyte cells (THP-1, ATCC, Manassas, VA, USA) [39]. Cells were grown in RPMI-1640
medium supplemented with 10% foetal bovine serum and 1% penicillin-streptomycin at
37 ◦C in a 95% humidified atmosphere of 5% CO2. Cells were seeded on gelatin films
and tissue culture plastic (TCP) at an initial density of 26,000 cells/cm2 and cultured in
RPMI-1640 medium for 6 h to enable cell attachment. A mature macrophage-like state was
induced through treatment with phorbol 12-myristate 13-acetate (PMA) at 100 ng/mL for
6 h, as has been described previously. Subsequently, human macrophages were washed
with Hank’s Balanced Salt Solution (HBSS) and incubated with RPMI-1640 medium at
37 ◦C in a 95% humidified atmosphere of 5% CO2 for 1 and 2 days.

Note: First, we tried to assess the cytocompatibility of the crosslinked gelatin hydro-
gels using human adipose-derived stem cells. Unfortunately, the 1 mM 4-arm polyethylene
glycol succinimidyl glutarate resulted in rapid hydrogel degradation in culture (Supple-
mentary Figure S1), prohibiting further assessment. For this reason, gelatin films were
fabricated and THP-1 response was assessed, as they require only 2 days in culture.

2.8. Cell Viability Assessment

Cell (THP-1) viability was analysed using the Live/Dead® assay (Life Technologies,
Thermo Fisher Scientific, Dublin, Ireland) as per the manufacturer’s protocol. Briefly,
at the end of each timepoint, the gelatin films were washed three times with HBSS and
incubated with calcein AM and ethidium homodimer-1 solution (2 µM calcein AM and
4 µM ethdium homodimer-1) in HBSS at 37 ◦C and a 5% CO2 humidified atmosphere for
30 min. The gelatin films were washed with fresh HBSS to remove excess dye. Images were
then acquired using an inverted fluorescence microscope (IX 51, Olympus Corporation,
Tokyo, Japan). Live (green: FITC, ~495 nm) and dead (red: TexasRed, ~589 nm) cells were
analysed using ImageJ software (NIH, Bethesda, MD, USA).
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2.9. Cell Proliferation Assessment

Cell (THP-1) proliferation was assessed using the Quant-iTTM PicoGreen® dsDNA kit
(Invitrogen, Thermo Fisher Scientific, Dublin, Ireland), according to the manufacturer’s
guidelines. Gelatin films were washed three times with HBSS at each timepoint, and 200 µL
DNase free water was added and frozen at −80 ◦C until analysis. Gelatin films were
freeze-thawed at least three times in order to lyse the cells. Subsequently, PicoGreen®

working solution was added to the gelatin films and incubated at room temperature for
5–10 min, protected from light. Fluorescence was measured at excitation and emission
wavelengths of 480 and 520 nm respectively, using a VarioskanTM Flash Multimode Reader
(Thermo Fisher Scientific, Dublin, Ireland). The obtained values were normalised to the
standard curve, which was generated with a series of known DNA stock solutions at
different concentrations (0, 5, 10, 25, 50, 100, 500 and 1000 ng/mL).

2.10. Cell Metabolic Activity Assessment

Cell (THP-1) metabolic activity was analysed using the alamarBlue® assay (Invitrogen,
Thermo Fisher Scientific, Dublin, Ireland), as per the manufacturer’s protocol. Briefly,
gelatin films were washed three times with HBSS at the end of each timepoint, and 10%
alamarBlue® was added to each gelatin film and incubated at 37 ◦C in a 5% CO2 humidified
atmosphere for 3 h. Absorbance was measured at excitation and emission wavelengths
of 570 and 600 nm respectively, using a VarioskanTM Flash Multimode Reader (Thermo
Fisher Scientific, Dublin, Ireland).

2.11. Cell Morphology Assessment

At the end of each timepoint, gelatin films were washed three times with HBSS
and cell (THP-1) morphology was analysed using a brightfield microscope (Olympus
Corporation, Tokyo, Japan). The levels of macrophage clusters on gelatin films were
analysed by measuring cell numbers on different gelatin films using ImageJ software (NIH,
Bethesda, MD, USA).

2.12. Statistical Analysis

Numerical data are expressed as mean ± standard deviation. Statistical analysis was
performed using SPSS (IBM Corporation, Armonk, NY, USA). Analysis was performed
using one-way analysis of variance (ANOVA) for multiple comparisons, and two-sample
t-tests for pairwise comparisons were employed after confirming the following assump-
tions: the distribution from which each of the samples was derived was normal (Shapiro–
Wilk normality test) and the variances of the population of the samples were equal to one
another (Levene’s test for equal variances). Nonparametric statistics were used when either
or both of the above assumptions were violated, and consequently, Kruskal–Wallis test for
multiple comparisons and Mann–Whitney test for two samples were carried out. Statistical
significance was accepted at p < 0.05.

3. Results
3.1. Electrophoretic Mobility Assessment

SDS-PAGE (Figure 1) revealed typical electrophoretic mobility of gelatin for all sam-
ples, characterised by the presence of α-, β- and γ- bands, as well as other bands of variable
molecular weight.
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Figure 1. SDS-PAGE analysis of gelatin samples used in this study.

3.2. Biomechanical and Free Amine Assessment

Among the different gelatin preparations, the RAP80 and SBB1.5K resulted in hydro-
gels with the lowest (p < 0.05) stress and modulus values in both non-crosslinked and
crosslinked state, the SBB1.5K resulted in hydrogels with the highest % free amines in both
non-crosslinked (p < 0.05) and crosslinked state (p < 0.05), and for all gelatin preparations,
crosslinking significantly (p < 0.05) increased stress and modulus values and decreased %
free amines (Table 2).

3.3. Resistance to Enzymatic Degradation Assessment

Collagenase digestion analysis (Figure 2) revealed that all non-crosslinked samples
were completely degraded within 6 h of exposure to collagenase. Crosslinking significantly
(p < 0.05) increased resistance to collagenase digestion, as crosslinked samples had at least
>35% remaining mass after 6 h and were completely digested after 12 h of exposure to
collagenase. Among the non-crosslinked groups, the SBB1.5K group exhibited the lowest
(p < 0.05) resistance to collagenase digestion and no significant (p > 0.05) differences were
observed between the other groups at 3 h of collagenase digestion. Among the crosslinked
groups, the SBB1.5K group followed by the RAP80 group exhibited significantly (p < 0.05)
lower resistance to collagenase digestion than the other groups, and no significant (p > 0.05)
differences were observed between the other groups at 9 h of collagenase digestion.
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Table 2. Mechanical properties and free amine content of non-crosslinked (-PEG-4SG) and crosslinked (+PEG-4SG) gelatin samples used in this study. *: Indicates lowest (p < 0.05)
mechanical properties and highest (p < 0.05) free amine content among non-crosslinked and crosslinked gelatin samples used in this study. #: Indicates higher (p < 0.05) mechanical
properties and lower (p < 0.05) free amine content between non-crosslinked and crosslinked gelatin samples used in this study.

RAP1 RAP80 RAP780 RAP4K SAP10.5K RBB9 SBB1.5K

-PEG-4SG +PEG-4SG -PEG-4SG +PEG-4SG -PEG-4SG +PEG-4SG -PEG-4SG +PEG-4SG -PEG-4SG +PEG-4SG -PEG-4SG +PEG-4SG -PEG-4SG +PEG-4SG

Stress
(kPa) 21.7 ± 1.2 28.8 ± 1.6 # 12.5 ± 0.6 * 15.4 ± 0.2 *# 21.0 ± 2.9 28.8 ± 3.2 # 22.1 ± 1.9 27.5 ± 1.8 # 22.8 ± 2.5 29.5 ± 3.0 # 21.8 ± 1.3 30.2 ± 3.1 # 10.2 ± 2.0 * 16.0 ± 2.8 *#

Modulus
(kPa) 72.4 ± 4.1 95.5 ± 5.0 # 41.8 ± 1.9 * 51.3 ± 0.4 *# 70.0 ± 9.4 95.2 ± 10.6 # 73.8 ± 6.3 91.6 ± 6.0 # 75.8 ± 8.1 97.8 ± 10.4 # 72.8 ± 4.3 100.6 ± 10.1 # 34.0 ± 6.5 * 53.3 ± 9.2 *#

Free
Amines (%) 1.6 ± 0.2 0.6 ± 0.2 # 1.9 ± 0.1 0.8 ± 0.1 # 1.7 ± 0.3 0.6 ± 0.1 # 1.7 ± 0.1 0.7 ± 0.3 # 1.6 ± 0.1 0.8 ± 0.1 # 1.8 ± 0.1 0.8 ± 0.1 # 2.4 ± 0.1 * 1.8 ± 0.1 *#
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Figure 2. Resistance to enzymatic degradation analysis of non-crosslinked (-PEG-4SG) and crosslinked (+PEG-4SG) gelatin
samples used in this study.

3.4. Macrophage Viability, Proliferation and Metabolic Activity Assessment

Qualitative (Figure 3A) and quantitative (Figure 3B) cell viability and quantitative
DNA concentration (Figure 3C) and metabolic activity (Figure 3D) analyses revealed no
significant (p > 0.05) differences between the groups at any timepoint, apart from the
SBB1.5K group, which exhibited the lowest (p < 0.05) cell viability at day 2 and the lowest
(p < 0.05) metabolic activity at days 1 and 2.
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3.5. Macrophage Morphology Assessment

Macrophage morphology (Figure 4A) and clusters (Figure 4B) assessment revealed
that macrophages were of round morphology in all groups and formed the least (p < 0.05)
number of clusters on TCP, RAP1, RAP80, RAP780 and RBB9 at both timepoints, respectively.
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4. Discussion

Gelatin, the hydrolysed derivative of collagen, is extensively used in food, pharma and
medical device sectors [40–43]. In medical device development, bloom index, a unit that
measures the extent of hydrolysis, is an important parameter that should be assessed as it
affects the gelling capacity, gel strength and cell response of gelatin preparations. Another
crucial factor in medical device development is residual endotoxin levels, as endotoxins are
considered to be the most significant pyrogens and are associated with post-operative com-
plications, including implant failure. One should also not forget that as gelatin is produced
via collagen hydrolysis, exogenous crosslinks should be introduced to enhance mechanical
strength, but without compromising cellular functions of gelatin biomaterials. Herein,
we assessed the physiochemical and biological properties of gelatin-based biomaterials
and we correlated them to their bloom index, amounts of endotoxins present in the original
raw materials and polyethylene glycol succinimidyl glutarate crosslinking.

Starting with SDS-PAGE assessment, all gelatin preparations were comprised of
α-, β- and γ- bands, as well as other bands of variable molecular weight. This is in
agreement with previous publications, considering that gelatin is a mixture of water-
soluble protein fragments, obtained by the destruction of collagen, with a molecular weight
distribution ranging from 10 to 400 kDa [44]. Variable number and intensity of bands was
observed between the different gelatin preparations, which we attribute to the origin and
the manufacturing process of the respective gelatin preparations [45–49], as has also been
observed previously for collagen preparations [36,39,50,51].

With respect to mechanical properties, resistance to enzymatic degradation and free
amine content, crosslinking increased mechanical properties and resistance to enzymatic
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degradation and decreased free amine content. Within the different gelatin preparations,
the RAP80 and SBB1.5K groups exhibited the lowest compression stress and elastic modu-
lus values, the highest free amine content (only the SBB1.5K was statistically significant) and
the lowest resistance to enzymatic degradation (i.e., the crosslinked groups at 9 h of degra-
dation). We attribute this low mechanical strength/high free amine content/low resistance
to enzymatic degradation to the low bloom strength of these gelatin preparations. In agree-
ment with our observations, previous studies have shown that high bloom rate results in
gelatin scaffolds with high ultimate strength, rigidity and Young’s modulus [8,12,52,53].
With respect to free amines and resistance to enzymatic degradation, high % of free amines
and low resistance to enzymatic degradation are related to less crosslinked materials, as has
been shown repeatedly for gelatin [54–56] and collagen [34,36,51] scaffolds.

With respect to cell shape, on all substrates, the cells exhibited a round morphology,
whilst cells have been reported to be of round morphology on low bloom index hydro-
gels and of elongated morphology on high bloom index hydrogels [57–59]. We attribute
this indifference in cell shape between the different gelatin preparations to residual endo-
toxins. Indeed, biological analysis with macrophages made it apparent that high levels
of residual endotoxins (>1.5 K units/g) were responsible for cell clusters. It has been
well-established in the literature that endotoxins are associated with macrophage activa-
tion [60,61] and macrophage aggregation is indicative of foreign body response [62–64].
Further, high endotoxin levels in gelatin preparations have been shown to significantly
increase synthesis of TNF-a and CCL2 [65], notorious pro-inflammatory cytokines [66–68].
To reduce the burden of endotoxin-activated immune response, functionalisation strategies
have been recommended (e.g., gelatin preparations functionalised with desaminotyrosine
or desaminotyrosyl tyrosine resulted in reduced expression of IL6 and TNF-a [69]).

It is interesting to note that gelatin crosslinking has been the subject of many investi-
gations [70–73], however, similarly to collagen, the ideal crosslinking method still remains
elusive. It is also worth noting that several contradictions about a given crosslinking
method can be found in the literature (e.g., both positive [27,29] and negative [28] results
have been reported for genipin [27] and carbodiimide [29] crosslinking), compromising the
utilisation of gelatin in the applied field of medical devices. Considering that polyethylene
glycol succinimidyl glutarate has been used extensively as a collagen crosslinker [33–35],
we hypothesised that it would also effectively crosslink gelatin preparations. Indeed,
although the mechanical properties and the resistance to enzymatic degradation were
increased and the free amine content was decreased, the produced gelatin hydrogels were
substantially degraded after only 7 days in culture with adipose-derived stem cells. A plau-
sible reason could be that we used a very low polyethylene glycol succinimidyl glutarate
concentration for gelatin and therefore a dose response should be conducted to conclusively
find out the potential of this crosslinking agent in gelatin research.

5. Conclusions

In this study, we evaluated the influence of bloom index, endotoxin level and polyethy-
lene glycol succinimidyl glutarate crosslinking on the physicochemical and biological prop-
erties of gelatin biomaterials. Our data suggest that low endotoxin and high bloom index
gelatin preparations should be used in the medical device sector, unless fast degradation is
required, in which case, low endotoxin and low bloom index gelatin preparations should
be used. Polyethylene glycol succinimidyl glutarate crosslinking (at 1 mM) was not able to
induce notable cell culture stability, imposing the need for the development of alternative
crosslinking methods.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biom11071003/s1, Figure S1: 200,000 human adipose derived stem cells were seeded per
1 mM polyethylene glycol succinimidyl glutarate crosslinked gelatin hydrogel. Live cells: Green.
Dead cells: Red. Scale bar: 100 µm.
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