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Abstract
The identification of genotoxic agents and their potential for genotoxic alterations in an organism is crucial for risk assessment and 
approval procedures of the chemical and pharmaceutical industry. Classically, testing strategies for DNA or chromosomal damage 
focus on in vitro and in vivo (mainly rodent) investigations. In cell culture systems, the alkaline unwinding (AU) assay is one of the 
well-established methods for detecting the percentage of double-stranded DNA (dsDNA). By establishing a reliable lysis protocol, 
and further optimization of the AU assay for the model organism Caenorhabditis elegans (C. elegans), we provided a new tool for 
genotoxicity testing in the niche between in vitro and rodent experiments. The method is intended to complement existing testing 
strategies by a multicellular organism, which allows higher predictability of genotoxic potential compared to in vitro cell line or 
bacterial investigations, before utilizing in vivo (rodent) investigations. This also allows working within the 3R concept (reduction, 
refinement, and replacement of animal experiments), by reducing and possibly replacing animal testing. Validation with known 
genotoxic agents (bleomycin (BLM) and tert-butyl hydroperoxide (tBOOH)) proved the method to be meaningful, reproducible, 
and feasible for high-throughput genotoxicity testing, and especially preliminary screening.
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Introduction

Maintenance of genome integrity is an organism’s top pri-
ority to ensure a healthy life and successful reproduction of 
the species (Jackson and Bartek 2009). The genomic DNA 
is under constant attack of extrinsic and intrinsic genotoxic 
agents which may result in genetic alterations in somatic 
and/ or germ cells, which in turn might manifest target 

place-dependent negative outcomes, such as impaired tran-
scription or replication, apoptosis, or necrosis, or fixation to 
mutation. This potentially will lead to cancer and non-cancer 
genetic diseases for somatic cells and infertility, heritable 
damage and intergenerational genetic diseases for germ cells 
(Erickson 2010; Kawanishi et al. 2006; Lindahl and Barnes 
2000; Valko et al. 2006). The purpose of genotoxicity testing 
is to identify such genotoxic agents and their potential for 
genotoxic alterations. The testing is part of approval proce-
dures and testing strategies of the chemical and pharmaceuti-
cal industry, as well as risk assessment of food ingredients. 
Due to the wide potential spectrum of DNA damages, it is 
imperative to consider multiple endpoints to systematically 
assess genotoxicity. As defined in the OECD guidelines, 
genotoxicity testing includes assays that measure direct, irre-
versible damage to the DNA that is transmissible to the next 
generation (i. e. mutagenicity), as well as tests that evaluate 
directly the induced DNA damage that may or may not result 
in permanent alterations (and is therefore no direct evidence 
of mutagenicity) (OECD 2016). In both cases, in vitro and 
in vivo models (mostly rodents) are used and guidelines rec-
ommend a test battery starting with testing for gene mutation 
in bacteria, followed by in vitro assays using mammalian cell 
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lines, before recommending an in vivo test system (Com-
mittee 2011; EMA/CHMP/ICH 2011; Phillips and Arlt 
2009). Although these tests are routinely used, they present 
crucial limitations (i. e. lack of xenobiotic metabolism and 
bacteria-specific reactions (Yasui et al. 2021), use of tumor 
cells), which affect the usefulness of the assays to predict the 
genotoxic potential of a substance in vivo. With the emer-
gence of a stronger awareness of animal welfare in scientific 
experiments, classic and well-established in vivo studies are 
increasingly attempted to be replaced by equally meaningful 
tests, which follow the 3R (refine, reduce, replace) princi-
ple (Doke and Dhawale 2015; Freires et al. 2017). For this 
purpose, as well as to overcome present limitations, cur-
rent efforts include the usage of 3-D cell culture models or 
alternative in vivo model organisms. Within this study, the 
model organism C. elegans was applied for genotoxicity test-
ing. The well-established in vitro method of DNA alkaline 
unwinding (Doke and Dhawale 2015; Elsakrmy et al. 2020) 
was optimized for detecting the proportion of dsDNA in C. 
elegans and was verified using validated genotoxins to pro-
vide a rapid genotoxicity evaluation in a metazoan organism.

Materials and methods

Worm cultivation and exposure to positive controls

For assay development, the wild type (WT) N2 Bristol C. 
elegans strain was used, which was provided by the Caeno-
rhabditis Genetic Center (CGC; University of Minnesota).

Worms were cultivated on agar plates at 20  °C as 
described by Brenner (1974). After synchronization and 
hatching, L1 (larval stage 1) worms were seeded on OP50 
E. coli covered NGM plates until the population reached 
L4 without further interference. For treatment, tBOOH and 
BLM were used as positive controls in ranges of 0–5 mM 
tBOOH and 0–80 µM BLM for 1 h. BLM sulfate was pur-
chased from Selleckem (NSC125066) and tBOOH from 
Merck (CAS 75-91-2). Both chemicals were used as received 
and diluted in 85 mM NaCl to the desired concentration. 
3000 L4 larvae were incubated in liquid (85 mM NaCl) in 
the absence of E. coli while rotating slowly to ensure equal 
substance uptake. Afterward, samples were washed at least 
three times with 85 mM NaCl + 0.01% Tween before con-
tinuing with the survival or alkaline unwinding assay.

Survival

The toxicity of the substances was determined using the 
survival assay as described previously (Helmer et al. 2021). 
After treatment, a specific number of worms were trans-
ferred to OP50-seeded NGM plates. Alive and dead worms 
were manually counted 24 h post-treatment. The vitality 

of the animals was checked via the mechanical stimulus of 
touch using a platinum/zirconium wire, which stimulates 
the worms to move. Any worms that did not respond to the 
stimulus were considered dead.

Adapted alkaline unwinding for use in C. elegans

After treatment, worms were placed in 1 mL alkaline unwind-
ing buffer (AU buffer; 0.5 M  NaH2PO4, 0.5 M  Na2HPO4, 0.1 M 
EDTA, pH 7.5). To reduce possible additional strand breaks 
during sample preparation, samples were kept on ice at all times 
and all experimental steps were performed in the dark. Worms 
were made assailable for the alkaline solution using slight soni-
fication and a large liquid volume (UP100H ultrasonic proces-
sor (Hielscher), 1 mL AU buffer, 2 × 20 s on lowest setting, 
100% amplitude). After centrifugation (1400 rpm, 2 min, 4 °C) 
and removal of the supernatant, 1.5 mL alkaline solution (0.9 M 
NaCl, 10 mM  Na2HPO4, 0.03 N NaOH in  dH2O) was added 
to all samples. The DNA was allowed to unwind at RT in the 
dark for exactly 15 min, before neutralizing the solution with 
0.1 N HCl (exact volume was adapted to reach pH 6.8 ± 0.02), 
sonification on ice (15 s, highest setting), and adding SDS to a 
final concentration of 0.05%. The single- and double-stranded 
DNA were separated by successional elution of 0.15 M and 
0.35 M potassium phosphate buffer over 1 mL hydroxyapa-
tite columns at 60 °C. The amounts of DNA for the single-
stranded DNA (ssDNA) and dsDNA fraction were determined 
using Hoechst stain (Hoechst 33258 nucleic acid stain) at a 
final concentration of 7.5 ×  10–7 M and the fluorescence was 
measured using a microtiter fluorescence reader (Infinite Pro, 
Tecan, Switzerland; 360 nm excitation wavelength and 455 nm 
emission wavelength). As described by Hartwig et al. 1993, 
staining availability of Hoechst was tested, which allowed cal-
culations for dsDNA fraction (Hartwig et al. 1993). For this, 
the fluorescent signals of ssDNA and dsDNA were compared, 
which yield 0.4 × lower values for dsDNA compared to ssDNA, 
resulting in the following calculation (formula 1). Statistical 
evaluation was performed using Graph Pad Prism 9.

Results and discussion

Method development

Alkaline unwinding was initially developed for cell culture 
systems (Daniel et al. 1985; Hartwig et al. 1993) and is a 
frequently utilized genotoxicity test, even though it does not 
belong to the primal OECD genotoxicity tests. Nevertheless, 
alkaline unwinding is a well-established and rapid assay, 

(1)

dsDNA =
fluorescence dsDNA

fluorescence dsDNA + (fluorescence ssDNA*0.4)
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which can be categorized as an indicator genotoxicity test 
(OECD 2015). Similar to the alkaline COMET assay (which 
is (in vitro) also not part of the primal OECD genotoxic-
ity tests), using alkaline unwinding one can quantify DNA 
strand breaks caused by genotoxins via direct interactions 
with the DNA; alkali labile sites; or as a consequence of 
transient strand discontinuities resulting from nucleotide and 
base excision repair (Garberg et al. 1988; OECD 2016). In 
principle, the percentage of dsDNA is detected, which serves 
as a marker for genomic stability. A highly alkaline solu-
tion is used to enable the unwinding of the DNA and form 
ssDNA at sites of single-strand breaks. The quantification 
of dsDNA and ssDNA allows to draw conclusions regarding 
the amount of initial DNA single-strand breaks. Compared 
to the COMET assay, the procedure for alkaline unwinding 
does not call for isolation of intact cells, which can be com-
plex in C. elegans. Despite being published (Imanikia et al. 
2016), the COMET assay is experimentally demanding, as 
various cell types are present in worm extracts, background 
noise/matrix is high, few comparable data are present and 
results are challenging to reproduce. For alkaline unwind-
ing, the DNA within the worms needs to be accessible 
to the alkaline solution, but it is not necessary to isolate 
intact cells. Lysing the worms is the critical step during this 
method since it is of crucial importance that DNA damages 
are not caused by the lysing process itself. We found that 
gentle sonification (Ultrasonic Processor, UP 100H, 2 × 20 s, 
in 1 mL liquid) works better for that purpose than using 

chemical dissipation of the cuticle (e. g. protein kinase K, 
pronase E, papain, Triton X-100), breaking of the cuticle 
with high pressure (French pressure cell press, as used for 
yeast cell lysis (Moore et al. 2016)) or slicing worms using 
syringes as described for germ cell isolation (Vagasi et al. 
2017). Except for the gentle sonification, the other meth-
ods resulted in additional DNA damage as we detected only 
very low amounts of dsDNA (data not shown). Making use 
of transgenic worm strains did not facilitate the workflow 
in this particular case. The tested bus-5 deletion mutant 
(DC19, bus-5(br19) X), which presents higher porosity, and 
therefore higher cuticle permeability for various substances 
compared to the wild type (N2) strain (Xiong et al. 2017), 
showed high levels of damage even in non-exposed controls. 
Mutant strains were therefore discarded as an alternative 
method for the lysing process and did not facilitate the acces-
sibility of the alkaline solution. Experiments regarding the 
optimal incubation time with the alkaline solution can be 
seen in Fig. 1. The unwinding time was reduced from 30 min 
(used in cell samples) to 15 min as data indicate increased 
sensitivity of the worm DNA compared to DNA retrieved 
from cell culture (HepG2, BeWo b30) to the alkaline solu-
tion. This finding corresponds to earlier observations in a 
worm study pointing out that the C. elegans genomic DNA 
was detected to be degraded under alkaline electrophoresis 
condition used in a classical comet assay (Park et al. 2016). 
All following steps are identical to the in vitro setup (see 
Fig. 2), which was adapted from Hartwig et al. (1993). To 
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Fig. 1  A Comparison of percentage of dsDNA to total DNA con-
centration of C. elegans with different incubation times of alkaline 
solution in control worms. Highest basal levels of dsDNA can be 
reached when incubating the alkaline solution for 15 min or 30 min. 
B Percentage of dsDNA to total DNA concentration when expos-
ing worms to 5 mM tBOOH for 1 h. Significant differences between 

negative (0 mM tBOOH) and positive (5 mM tBOOH) controls can 
only be detected when using the alkaline solution for 15  min. Data 
are expressed as means ± SEM of at least 6 independent experiments. 
For statistical analysis, the unpaired t test was performed. **p < 0.01, 
***p < 0.001
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keep DNA damage caused by the experimental setup to a 
minimum, worm samples were prepared in the dark and on 
ice after the compound treatment process was finished. For 
calculation of the percentage of dsDNA, the affinity of the 
Hoechst 33258 dye to dsDNA and ssDNA was tested. In 
contrast to cell samples, where a factor of 2.1 is present, 
in dsDNA of worms, the binding affinity is reduced by a 
factor of 0.4 of dsDNA compared to ssDNA. This, and the 
higher sensitivity of C. elegans DNA to the alkaline solu-
tion may indicate a slightly different coiling and stability 
of the DNA, which can also be a reason for the difficulties 
in the COMET assay, that has also been described by Park 
et al. (2016) as they found increased DNA damage in worms 
incubated with alkaline solutions at pH 12.3 for 30 min com-
pared to controls. Additionally, both effects collectively may 
explain the high fluorescence following 30 min unwinding 
time (Fig. 1A). Nevertheless, when adapting the alkaline 
unwinding to worm DNA, this genotoxicity test proves to 
be meaningful, reliable, and practicable for high throughput.

Positive controls

For assay evaluation and verification, the positive controls 
tBOOH and BLM were used, as those chemicals are known 
to induce DNA strand breaks by different modes of action. 
TBOOH is a recognized inducer of oxidative stress and DNA 
damage in various in vitro and in vivo models, which is also 
effective and often applied in C. elegans (Helmer et al. 2021; 

Mersch-Sundermann et al. 2004; Xie et al. 2013). It is pro-
posed that the oxidant causes the iron-dependent formation of 
tert-butoxyl (tBO·) and tert-butyl peroxyl (tBOO·) radicals, 
resulting in cellular redox imbalance associated with lipid per-
oxidation,  Ca2+-dependent DNA cleavage, and apoptosis (Bar-
ton et al. 1998; Kruszewski et al. 2008; Martı́n et al. 2001). 
BLM is applied as an anti-cancer antibiotic. In comparison to 
tBOOH, BLM directly affects the DNA by causing athymic 
sites leading to single-strand splitting (Müller and Zahn 1976). 
Worms were incubated with both substances at sub-toxic con-
centrations for 1 h, which were determined in earlier studies 
(Neumann et al. 2020) or survival assays (Fig. 3). As expected, 
a highly significant and dose-dependent reduction of dsDNA 
is caused by exposing worms to tBOOH. Incubation of the 
substance of concentrations higher than the  LD25 (2.5 mM 
tBOOH for 1 h (Neumann et al. 2020)), does not show any 
stronger effects, as the results show a maximum decrease 
of ~ 50% at this point (see Fig. 4A). Exposure of C. elegans to 
BLM does also lead to a dose-dependent significant induction 
of strand breaks and resulting decrease of dsDNA at 20 µM 
and 40 µM BLM (≤  LD25) compared to non-incubated control 
samples (Fig. 4B).

Advantages of the model organism and alkaline 
unwinding compared to other genotoxicity tests

Factors that contribute to the genotoxicity potential of a com-
pound on an organism are complex and often intertwined. 

Fig. 2  Schematic overview of the experimental setup for alkaline 
unwinding in A cell culture systems (Hartwig et. al (1993)) and B C. 
elegans samples. While the alkaline solution can be directly added 
to exposed cell samples, worms need to be made accessible using an 

ultrasonic disruptor before adding the alkaline solution. After DNA 
unwinding, both samples are then sonicated to shred the DNA. Using 
hydroxyapatite, dsDNA and ssDNA can be separated and finally 
quantified using fluorescence staining
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Polymorphisms, age, gender, metabolic-enzyme expression, 
and lifestyle are a few examples that contribute to the vul-
nerability of an organism (Hsieh et al. 2019). While most of 
these attributes can be modeled in rodent experiments, they 
are not preferentially used for first screenings and indicator 
tests due to high time and cost intensity. Bacteria assays and 
cell culture systems are often used for initial investigations 
as they are less expensive and ethically acceptable for broad-
spectrum screening. Prokaryotes and eukaryotes have devel-
oped complex biochemical responses to DNA damage that 
activate numerous processes like activation of repair mecha-
nisms, transient cell cycle arrests, transcriptional upregula-
tion of response proteins, and in metazoans apoptosis as the 
last resort. Considering that the DNA damage response and 

DNA damage checkpoints in higher eukaryotes are more 
complicated than those found in prokaryotes or unicellular 
eukaryotes, an easily accessible metazoan model organism is 
required to study the more complex aspects of genotoxicity 
(Stergiou and Hengartner 2004). The use of C. elegans is a 
valuable addition to genotoxicity assessment, as the nema-
tode can be used as model organism for follow-up studies of 
in vitro testing and thus can improve the predictability for 
a possible genotoxic potential of a substance or treatment. 
With better predictability of genotoxicity, it would be pos-
sible to avoid unnecessary in vivo follow-up testing (and 
therefore replacement and reduction of animal testing). Gen-
otoxicity testing in C. elegans is slowly getting more recog-
nized, but validated methods are scarce. Besides the comet 
assay and rad-51 immunohistochemistry staining, very little 
is published for direct measurements of DNA damage in this 
model, and therefore a great need for additional, valid meth-
ods persists (Imanikia et al. 2016; Park et al. 2016; Toraason 
et  al. 2021). Detecting the compound-induced genomic 
instability by the alkaline unwinding method in worms can 
be useful for (a) preliminary screening (high throughput), (b) 
as follow-up test of an in vitro positive result, (c) for mecha-
nistic studies (the xenobiotic metabolism is highly conserved 
in C. elegans) and (d) exposure marker demonstrating that 
a substance is affecting the genomic stability. We are fully 
aware that the worm is a model organism with limitations, 
but it might provide a valuable addition to already existing 
strategies. The nematode is a multicellular and metabolizing 
organism, which is not given in cell lines or bacteria cultures 
(as used for the Ames test), where a metabolic activation 
system in form of liver-derived enzymes has to be addition-
ally added via S9 fraction (OECD 2020). Additionally, the 
worm has a rapid life cycle and short generation time which 
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will allow high throughput testing (Corsi et al. 2015; Nigon 
and Félix 2017). Most of the pathways involved in genomic 
integrity that are known through studies of bacteria, yeast, 
mammals, and human cell lines are also highly conserved in 
C. elegans, which makes the worm an experimental model 
greatly suited for research on processes involved in genomic 
stability (Elsakrmy et al. 2020; Gupta et al. 2021).

Limitations, opportunities, and future directions

For method development, L4 larvae were chosen since 
they bear a fully developed DNA repair system but are 
not yet reproducing. Additionally, incubation of the posi-
tive controls was conducted in the absence of E. coli to 
avoid bacterial interferences. The two positive controls 
tBOOH and BLM were used as proof of principle for the 
AU assay in C. elegans. Both substances are validated DNA 
damage inducers (directly and indirectly) and no bioacti-
vation is required for either of the substances. However, 
many other xenobiotics show only a genotoxic potential 
after being metabolized. Common examples are benzo[a]
pyrene (BaP) and nitrosamines (Anttila et al. 2011; Arlt 
et al. 2012; Bodhicharla et al. 2014). The great advantage 
of the nematode compared to in vitro models is that the 
toxicokinetic pathways (phase I + II metabolism) needed 
for bioactivation are relatively similar to higher eukaryotes 
(Hunt 2017). Phase I metabolizing enzymes are necessary 
for the oxidation, reduction, and hydrolysis of xenobiotics 
and are broadly expressed in somatic cells of C. elegans. 
Over 85 cytochrome P450 isoforms have been identified in 
the nematode (compared to ~ 60 in humans) and many have 
been associated with xenobiotic metabolism (Menzel et al. 
2001). Investigating substances that might only show their 
genotoxic potential after bioactivation is therefore very well 
possible in the nematode, but one must be aware of the dif-
ferences that do exist between worms and mammals. For 
example, cytochrome P450 requires a heme cofactor and 
the coenzyme cytochrome P450 reductase. While emb-8 is 
the worm´s homolog to the human P450 reductase, worms 
are not able to synthesize heme and need to scavenge this 
component from their diet (Hartman et al. 2021). Another 
metabolic difference can be found in the bioactivation of 
BaP, which causes the production of ROS and DNA adducts. 
In rodents and humans, BaP is predominantly metabolized 
by CYP1A1 leading ultimately to BaP-7,8-dihydrodiol-
9,10-epoxide. While CYP1 enzymes do not exist in nema-
todes, studies still show the existence of DNA strand breaks 
in worms after BaP exposure, indicating a genotoxic poten-
tial of BaP caused by an alternative pathway of bioactivation 
(Abbass et al. 2021; Imanikia et al. 2016). An additional 
challenge of utilizing C. elegans for investigations regard-
ing genomic stability is the current lack of data regarding 
enzyme activity, not only from metabolizing enzymes but 

also enzymes that are involved in DNA repair—making 
research in this area even more important.

The optimized and with acute genotoxins validated 
method provides a rapid genotoxicity evaluation in the 
model C. elegans. In future studies, the scope of the appli-
cation will be extended to the investigations of known sub-
stances which are genotoxic upon metabolic activation, as 
well as being applied to more chronic exposure scenarios.
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