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Summary The service sire has been recognized as an important factor affecting herd fertility in dairy

cattle. Recent studies suggest that genetic factors explain part of the difference in fertility

among Holstein sires. The main objective of this study was to dissect the genetic

architecture of sire fertility in US Jersey cattle. The dataset included 1.5 K Jersey bulls with

sire conception rate (SCR) records and 96 K single nucleotide polymorphism (SNP) markers

spanning the whole genome. The analysis included whole-genome scans for both additive

and non-additive effects and subsequent functional enrichment analyses using KEGG

Pathway, Gene Ontology (GO) and Medical Subject Headings (MeSH) databases. Ten

genomic regions located on eight different chromosomes explained more than 0.5% of the

additive genetic variance for SCR. These regions harbor genes, such as PKDREJ, EPB41L2,

PDGFD, STX2, SLC25A20 and IP6K1, that are directly implicated in testis development and

spermatogenesis, sperm motility and the acrosome reaction. In addition, the genomic scan

for non-additive effects identified two regions on BTA11 and BTA25 with marked recessive

effects. These regions harbor three genes—FER1L5, CNNM4 and DNAH3—with known

roles in sperm biology. Moreover, the gene-set analysis revealed terms associated with

calcium regulation and signaling, membrane fusion, sperm cell energy metabolism, GTPase

activity and MAPK signaling. These gene sets are directly implicated in sperm physiology

and male fertility. Overall, this integrative genomic study unravels genetic variants and

pathways affecting Jersey bull fertility. These findings may contribute to the development of

novel genomic strategies for improving sire fertility in Jersey cattle.

Keywords genomic scan, non-additive effects, pathway analysis, sire conception rate

Introduction

Reproductive management of dairy cows has advanced

significantly in the past 20 years with the advent of

ovulation synchronization protocols, improvements in

nutrition and cow comfort and, more recently, the incor-

poration of fertility and longevity traits into genetic

selection programs. However, despite these advances,

reproductive efficiency of dairy cattle remains suboptimal,

resulting in significant economic losses for the dairy

industry (Inchaisri et al. 2010). Bull infertility is often

overlooked as a potential cause of reproductive inefficiency.

Nonetheless, some studies have revealed that a significant

percentage of reproductive failure in dairy cattle is

attributable to service sire subfertility (DeJarnette et al.

2004; Amann & DeJarnette 2012). Indeed, the fertility of

the bull is critical in determining herd reproductive perfor-

mance, and hence, it should not be ignored in dairy cattle

breeding schemes aimed at improving reproductive effi-

ciency (Amann et al. 2018; Taylor et al. 2018).

Dairy bull fertility has been traditionally evaluated in the

laboratory using different semen production and quality

attributes such as sperm morphology, sperm concentration

and sperm motility (DeJarnette et al. 2004). Unfortunately,

these sperm quality traits explain only part of the differences

observed in fertility among dairy sires (Parkinson 2004).

Alternatively, bull fertility can be evaluated directly using

conception rate records. In this sense, since 2008, the US

dairy industry has had access to a phenotypic evaluation of

male fertility called sire conception rate (SCR) (Kuhn &

Hutchison 2008). This bull fertility evaluation is based on a

large, nationwide database of confirmed pregnancy records.

Interestingly, there is a remarkable variation in SCR among

dairy sires—more than a 10% conception rate difference

between high-fertility and low-fertility bulls (Pe~nagaricano

et al. 2012).
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Our group has been investigating potential genetic factors

underlying the observed variation in SCR in dairy cattle. We

have identified regions on BTA21 and BTA25 that explain a

significant amount of additive genetic variance (Han &

Pe~nagaricano 2016). In addition, we recently reported

significant non-additive effects on BTA8, BTA9, BTA13 and

BTA17 (Nicolini et al. 2018). Notably, all these genomic

regions harbor genes with known roles in sperm physiology

and male biology. It should be noted that all these studies

were performed on Holstein cattle. Little is known, however,

about the genomic architecture underlying SCR in Jersey

cattle. The Jersey breed is the second most important breed

in the US, representing at least 12% of the national cow

population. The proportion of Jersey semen sold domesti-

cally by National Association of Animal Breeders’ members

increased from 6% in 2000 to 13% in 2016 (Dechow et al.

2018). Although the Jersey breed in general has a greater

conception rate than does the Holstein breed, its reproduc-

tive performance remains subpar (Norman et al. 2009).

Female fertility traits are routinely evaluated and included

in US Jersey selection programs, while bull fertility has

received scarce attention.

The objective of this study was to dissect the genomic

architecture underlying SCR in US Jersey dairy cattle.

Alternative genome-wide mapping approaches and gene-set

analyses were performed to identify genomic regions,

individual genes and genetic mechanisms affecting Jersey

sire fertility. The identification of fertility genes and path-

ways would provide better understanding of this complex

trait and may point out new strategies for improving Jersey

bull fertility via marker-assisted selection.

Materials and methods

Phenotypic and genotypic data

Sire conception rate, a phenotypic evaluation of service sire

fertility, has been provided to the US dairy industry since

August 2008, initially by the Animal Improvement Pro-

grams Laboratory of the US Department of Agriculture and

now by the Council of Dairy Cattle Breeding (CDCB). This

bull fertility evaluation is based on cow field data, consid-

ering both factors related to the sire under evaluation (e.g.

age and AI stud) and factors associated with the cow that

receives the unit of semen (e.g. herd-year-season, age,

parity and milk yield) (Kuhn & Hutchison 2008; Kuhn et al.

2008). The SCR trait is defined as the expected difference in

conception rate of a given bull compared to the mean of all

other evaluated bulls. The SCR evaluation is intended as

phenotypic rather than a genetic evaluation because the

estimates include both genetic and non-genetic effects.

The entire evaluation of US Jersey bull fertility was used

in this study. Specifically, a total of 6353 SCR records were

available from 1557 Jersey bulls. These records were

obtained from 27 consecutive SCR evaluations between

August 2008 and August 2017. The SCR records and their

reliabilities, calculated as function of the number of breed-

ings, are freely available at the CDCB website (https://querie

s.uscdcb.com/eval/summary/scr_menu.cfm).

Genotype data for 107 371 single nucleotide polymor-

phism (SNP) markers were available for 1487 Jersey bulls

with SCR evaluation. Genotype data were kindly provided

by the Cooperative Dairy DNA Repository. The SNP markers

that mapped to the sex chromosomes, were monomorphic

or had minor allelic frequency less than 1% or calling rate

less than 90% were removed from the dataset. After quality

control, a total of 95 705 SNP markers were retained for

subsequent genomic analysis.

Genome-wide mapping: additive effects

The relevance of additive effects was investigated using the

single-step genomic best linear unbiased prediction (ssGBLUP)

method (Aguilar et al. 2010; Wang et al. 2012). The

ssGBLUP combines all the available phenotypic, pedigree

and genotypic information. This analysis was implemented

within the framework of the classical repeatability animal

model:

y ¼ Xbþ ZuþWpeþ e;

where y is the vector of SCR records, b is the vector of fixed

effects included in the model, u is the vector of the random

animal effects, pe is the vector of random permanent

environmental and non-additive effects and e is the vector

of random residual effects. The matrices X, Z and W are the

incidence matrices relating phenotypic records to fixed,

animal and permanent environment effects respectively.

The random effects are assumed to follow a multivariate

normal distribution,
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where r2u, r2pe and r2e are the animal additive genetic,

permanent environmental and residual variances respec-

tively. The classical pedigree relationship matrix A is

replaced by H, which combines pedigree and genotypic

information (Aguilar et al. 2010). The combined pedigree–
genomic relationship matrix H�1 was calculated as follows:

H�1 ¼ A�1 þ 0 0
0 G�1

1 þ A�1
22

� �
;

where G�1
1 is the inverse of the genomic relationship matrix

and A�1
22 is the inverse of the pedigree-based relationship

matrix of genotyped animals. In our case, G1 has the

dimensions 1741 9 1741, and it was created using 1487

sires with both SCR records and genotype data plus 254

genotyped sires with no SCR records. The A matrix

(5207 9 5207) was calculated based on a five-generation

pedigree downloaded from the CDCB website. The residual
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matrix R is a diagonal matrix with its elements representing

the reliabilities of the SCR values.

Given the vector of genomic estimated breeding values

(GEBV, û), the SNP effects can be estimated as

ŝ ¼ DM0½MDM0��1û, where M is a matrix relating geno-

types of each locus and D is a diagonal matrix of weights of

SNPs (Wang et al. 2012). Candidate regions associated with

SCR were identified based on the amount of additive genetic

variance explained by 1.5-Mb windows of adjacent SNPs

evaluated across the entire bovine genome. The percentage

of additive genetic variance explained by a given SNP

window was calculated as

VarðwiÞ
ru2

� 100 ¼ VarðPB
j¼1 MjŝjÞ
r2u

� 100;

where wi is the genetic value of the ith genomic window

under consideration, B is the total number of adjacent SNPs

within the 1.5-Mb window and ŝj is the marker effect of the

jth SNP within the ith window. All the ssGBLUP compu-

tations were performed using the BLUPF90 family of

programs from Ignacy Misztal and collaborators, University

of Georgia.

Genome-wide mapping: non-additive effects

The relevance of non-additive effects, namely dominance,

recessive and overdominance effects, on SCR was evaluated

on a genome-wide scale using a two-step mixed-model-

based approach (Aulchenko et al. 2007a, 2010).

In the first step, the following mixed model was fitted:

y = Xb + Zu + e. Note that only one record per animal was

considered, and hence, for bulls with multiple evaluations,

the most reliable SCR record was used. The random effects

were assumed multivariate normal with u�Nð0;G2r2uÞ
and e�Nð0; Ir2e Þ. The matrices G2 and I have dimensions

1487 9 1487, i.e. the total number of Jersey bulls with

both phenotypic and genotypic data. The variance–
covariance matrix of this model was estimated as

V0 ¼ ZG2Z
0r2u þ Ir2e .

In the second step, the following model was fitted for

every SNP: y = Xb + XSNPbSNP + �, assuming e�N

ð0;V0r2e Þ. Every SNP genotype XSNP (0, 1, 2) was recoded

using single numeric variables as (0, 1, 1), (0, 0, 1) and (0,

1, 0) for testing potential dominance, recessive and over-

dominance effects respectively. The significance of each

non-additive effect was tested using the following test

statistic:

z ¼ X0
SNPV

�1
0 ðy� Xb̂Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X0
SNPV

�1
0 XSNP

q ;

which approximates the Wald test and is asymptotically

standard normal. These analyses were performed using the

R package MIXABEL (Aulchenko et al. 2007b). Genome-wide

results were corrected for possible inflation of the test

statistics using the function VIFGC implemented in the R

package GENABEL (Tsepilov et al. 2013).

Gene-set analysis

Following Pe~nagaricano et al. (2013), a three-step gene-set

analysis was implemented.

Assignment of SNPs to genes

A given SNP marker was assigned to a particular gene if

it was located within or at most 15-kb either upstream or

downstream of the gene. This was implemented using the

Bioconductor R package BIOMART (Durinck et al. 2005)

based on the information provided by the UMD3.1 bovine

genome assembly (Zimin et al. 2009). The distance of

15 kb was used to capture proximal regulatory regions

that may lie outside, but close to, the gene. Based on the

results of the ssGBLUP, an arbitrary threshold of 1% of

the SNP effects was used to define significant SNP

markers; in this context, significant genes were defined

as those genes that were flagged by at least one

significant SNP.

Assignment of genes to gene sets

The KEGG Pathway (Ogata et al. 1999), Gene Ontology

(GO) (Ashburner et al. 2000) and Medical Subject Headings

(MeSH) (Nelson et al. 2004) databases were used to define

gene sets. Genes assigned to the same functional term can

be considered as members of a group of genes (aka gene set)

that share some particular properties, typically their

involvement in the same biological process or molecular

function.

Pathway-based association analysis

The association of a given gene set with SCR was assessed

using a hypergeometric test, also known as Fisher’s exact

test. The P-value of observing g significant genes in the term

was calculated by

P value ¼ 1�
Xg�1

i¼0

S
i

� �
N � S
k� i

� �

N
k

� � ;

where S is the total number of genes associated with SCR, N

is the total number of genes analyzed in the study and k is

the total number of genes in the gene set under consider-

ation (Gambra et al. 2013; Abdalla et al. 2016). The KEGG

and GO gene-set enrichment analyses were performed using

the R package GOSEQ (using method hypergeometric) (Young

et al. 2010), and the MeSH enrichment analysis was carried

out using the R package MESHR (Morota et al. 2015;

Tsuyuzaki et al. 2015).
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Results

Whole-genome scan for additive effects

The importance of additive effects on SCR was evaluated

using ssGBLUP. This method was originally developed for

genomic prediction and later was extended for performing

gene mapping. The proportion of the additive genetic

variance explained by 1.5-Mb SNP windows across the

entire bovine genome is shown in Fig. 1. Ten different

genomic regions, located on chromosomes BTA1, BTA5,

BTA9, BTA11, BTA13, BTA15, BTA17 and BTA22, explain

more than 0.5% of the additive genetic variance for SCR.

The genomic region that explains the highest percentage of

additive genetic variance (0.90%) was located on BTA11

(23.4–24.9 Mb). This region harbors COX7A2L, encoding

one subunit of the cytochrome c oxidase that promotes

respiratory supercomplex assembly and regulates energy

generation, possibly involved in sperm motility. Two

genomic regions on BTA22 (42.3–43.8 and 50.3–
51.8 Mb) jointly explained 1.4% of the additive genetic

variance. Remarkably, these two regions harbor several

candidate genes for bull fertility, including ZMYND10 and

SLC25A20, which are directly involved in sperm motility;

IP6K1 and RBM5, which play critical roles in male germ

cell maintenance and differentiation; and PDHB, which is

implicated in sperm capacitation. Moreover, two 1.5-Mb

SNP windows located on BTA1 (14.1–15.6 and 90.1–
91.6 Mb) explained a substantial amount of the genetic

variance (1.3%); these regions harbor genes NCAM2 and

TBL1XR1, which are involved in testis development and

spermatogenesis. In addition, three regions distributed on

BTA5 (117.6–119.1 Mb), BTA9 (69.9–71.4 Mb) and

BTA15 (3.7–5.2 Mb) explained roughly 0.65% of the

additive genetic variance. At least three genes directly

implicated in sperm physiology and male fertility, namely

PKDREJ, EPB41L2 and PDGFD, are located in these three

regions respectively. Finally, the region identified on BTA17

(45.9–47.4 Mb) harbors two candidate genes: DDX51,

which is involved in spermatogenesis and testis develop-

ment, and STX2, which plays an active role in the acrosome

reaction.

Whole-genome scan for non-additive effects

The potential role of dominance, recessive and overdomi-

nance effects on Jersey sire fertility was evaluated using an

efficient two-step mixed-model-based approach. Three

Figure 1 Whole-genome scan for sire conception rate: percentage of additive genetic variance explained by 1.5 Mb SNP-windows across the entire

genome. The exact position of each SNP-window (Mb) is highlighted in black, and putative genes affecting bull fertility are highlighted in green.
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genomic regions, located on BTA11, BTA25 and BTA27,

showed either marked recessive or dominance effects on

SCR after Bonferroni correction (adjusted P-value < 0.01)

(Fig. 2). Full descriptions of the most significant SNP

markers, including position, allele and genotypic frequen-

cies and genetic effects, are displayed in Table 1. Note that

the SNP markers on BTA11, namely rs42754787,

rs137826439 and rs110490285, were highly correlated

(high linkage disequilibrium), and hence, it is very likely

that they represent the same genetic signal. Interestingly,

the three regions on BTA11, BTA25 and BTA27 showed

negligible additive effects, and hence, we can conclude that

the mode of gene action of these loci is purely non-additive.

No region showed pure overdominance effects.

The significant region detected on BTA11 harbors at least

two putative candidate genes for service sire fertility,

namely FER1L5 and CNNM4. FER1L5 is directly involved

in spermatogenesis, and CNNM4 is implicated in sperm

capacitation and sperm motility. Moreover, the significant

region on BTA25 harbors the gene DNAH3, which also

affects sperm motility.

The distribution of SCR values for two SNP loci with

marked recessive effects, rs137826439 and rs109525554,

is shown in Fig. 3. Notably, these box plots demonstrate

that the BB genotypes have much lower SCR values than do

genotypes AA and AB. Each of these loci explain differences

in conception rates of almost 6%. Unsurprisingly, the BB

genotypes are in very low frequency in the population

(Table 1), although the B alleles have frequencies between

9% and 14%.

Gene-set analysis

A total of 54 763 of the 95 705 examined SNP markers

were located within or surrounding 19 792 annotated

genes in the UMD 3.1 bovine genome sequence assembly. A

subset of 502 of these 19 792 genes was defined as

associated with bull fertility.

A panel of KEGG pathways, GO categories and MeSH

terms significantly enriched with genes associated with SCR

is described in Table 2. Noticeably, some of the KEGG

pathways are closely related with sperm physiology,

including gap junction (KEGG:04540), calcium signaling

pathway (KEGG:04020), MAPK signaling pathway

(KEGG:04010) and fatty acid degradation (KEGG:00071).

Moreover, several of the significant GO categories are

Figure 2 Whole-genome scan for sire conception rate: significance of dominance (top), recessive (middle) and overdominance (bottom) effects

across the entire genome. The SNP names are highlighted in black, and putative genes affecting bull fertility are highlighted in green.
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directly involved in sperm biology and fertilization process.

For instance, fucosylation (GO:0036065), regulation of

cation channel activity (GO:2001257), cilium assembly

(GO:0060271), pyrophosphatase activity (GO:0016462),

calcium ion binding (GO:0005509) and retinoid binding

(GO:0005501) are terms highly associated with spermato-

genesis and sperm motility. On the other hand, membrane

fusion (GO:0061025), vesicle organization (GO:0061025)

and GTPase activity (GO:0003924) are implicated in the

acrosome reaction, a crucial process during sperm–oocyte
fusion. Finally, a set of MeSH terms were also enriched

with genes associated with bull fertility, such as alpha-

mannosidase (D043323), calcium channels (D015220),

calcium-transporting ATPases (D000252) and GTP-binding

protein alpha subunits (D043802), all processes implicated

in sperm biology.

Discussion

Bull fertility has been recognized as an important factor

affecting herd fertility in dairy cattle. Previous studies have

successfully identified potential genes and pathways affect-

ing service sire fertility in Holstein breed (e.g., Blaschek et al.

2011; Han & Pe~nagaricano 2016; Whiston et al. 2017;

Nicolini et al. 2018). This knowledge, however, cannot be

transferred directly to Jerseys because this breed may exhibit

differences in the pool of causative mutations, the extent of

linkage disequilibrium, the phase between markers and

causative mutations and the effects of the causative

mutations. As such, the present study was conducted

specifically to unravel the genomic architecture underlying

SCR, an accurate phenotypic measure of bull fertility, in the

US Jersey breed.

The ssGBLUP method revealed 10 genomic regions on

seven different chromosomes that explain significant

amounts of additive genetic variance. Interestingly, most

of these regions harbor genes with functions associated with

male fertility. For instance, three putative genes related to

Jersey sire fertility, namely EPB41L2 (BTA9; 69.9–
71.4 Mb), PDGFD (BTA15; 3.7–5.2 Mb) and IP6K1

(BTA22; 50.3–51.8 Mb), are directly implicated in testis

development and spermatogenesis. EPB41L2 encodes a

membrane protein expressed in Sertoli cells that mediates

cell–cell contact between Sertoli cells and germ cells during

spermatogenesis (Yang et al. 2011). PDGFD is a member of

the platelet-derived growth factor family, which plays

important roles in the regulation of prenatal and postnatal

development of the male gonad (Basciani et al. 2010).

IP6K1, a member of the inositol phosphokinase family, is

highly expressed in round spermatids and is essential for

histone removal and sperm head elongation during sper-

matid differentiation (Malla & Bhandari 2017). Moreover,

two candidate genes—PKDREJ (BTA5; 117.6–119.1 Mb)

and STX2 (BTA17; 45.9–47.4 Mb)—are directly involved in

the acrosome reaction, a crucial step during the fertilization.

PKDREJ encodes a sperm surface receptor that modulates G

protein signaling and mediates sperm–egg interaction

(Hamm et al. 2007). STX2 encodes a member of the SNARE

Table 1 Most significant non-additive SNP loci associated with sire conception rate in US Jersey cattle.

Marker Chromosome Position MAF Frequency b̂� SE PNonAdd PAdd

Dominance

rs110490285 11 4 009 903 0.13 25 (AA) 2.57 � 0.45 1.68 9 10�8 5.97 9 10�3

338 (AB)

1124 (BB)

rs110667311 15 17 426 575 0.11 1150 (AA) �0.88 � 0.16 5.34 9 10�8 1.71 9 10�8

333 (AB)

4 (BB)

Recessive

rs42754787 11 977 617 0.07 1292 (AA) �4.55 � 0.83 4.79 9 10�8 2.72 9 10�4

180 (AB)

7 (BB)

rs137826439 11 2 643 308 0.09 1211 (AA) �6.34 � 0.69 4.80 9 10�20 1.73 9 10�4

240 (AB)

10 (BB)

rs109525554 25 19 173 921 0.14 1082 (AA) �5.57 � 0.89 6.05 9 10�10 4.86 9 10�3

399 (AB)

6 (BB)

rs41649133 27 42 442 485 0.05 1327 (AA) �8.29 � 1.55 1.01 9 10�7 9.68 9 10�1

158 (AB)

2 (BB)

Overdominance

rs109254581 15 21 106 423 0.11 5 (AA) �0.93 � 0.16 7.75 9 10�8 5.35 9 10�8

331 (AB)

1151 (BB)

MAF, minor allele frequency; PAdd, P-value additive model; PNonAdd, P-value non-additive model.
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Figure 3 Box plot showing the distribution of

sire conception rate phenotypes for two SNP

loci with marked recessive effects.

Table 2 Functional terms significantly enriched with genes associated with sire conception rate is US Jersey Cattle.

Term ID Term

No.

genes

Significant

genes (n)

P-

value Significant genes

KEGG pathways

04540 Gap junction 73 8 <0.001 ADRB1, MAP3K2, DRD2, GNA11, PDGFA, TUBB4A, PDGFD,

GUCY1A2

00230 Purine metabolism 137 8 0.024 PRIM2, PDE4C, ADK, PDE7B, PDE11A, AK7, ENPP3, GUCY1A2

04020 Calcium signaling

pathway

142 8 0.028 ADRB1, ATP2B, GNA11, SLC8A1, CACNA1A, GNA15, BDKRB2,

TNNC1

04010 MAPK signaling

pathway

208 10 0.040 CACNB4, MAP3K2, MAP3K5, CACNA2D2, PLA2G2F, PDGFA,

CACNA1A, MKNK2, FLNB, RASGRF2

00071 Fatty acid degradation 32 3 0.047 ACSBG2, ACSL6, CPT1A

GO: biological processes

0036065 Fucosylation 6 2 0.009 FUT8, FUT4

2001257 Regulation of cation

channel activity

20 3 0.013 EPO, GAL, DRD2

0006101 Citrate metabolic

process

21 3 0.013 DLAT, SDHAF2, PDHB

0061025 Membrane fusion 60 5 0.018 RAB3A, DYSF, DNM2, SNAP29, RAB8A

0060271 Cilium assembly 64 5 0.023 POC1A, SNAP29, TMEM216, TMEM138, RAB8A

0061025 Vesicle organization 72 5 0.036 INSIG1, RAB3A, DYSF, SNAP29, RAB8A

GO: molecular function

0003924 GTPase activity 87 7 0.006 RAB6B, ARL2, RAB3A, GNA11, DNM2, TUBB4A, RAB8A

0016462 Pyrophosphatase

activity

235 13 0.007 RAB6B, ARL2, DDX19A, DDX52, RAB3A, ASNA1, GNA11, DNM2,

ENPP3, G3BP1, ERCC3, TUBB4A, RAB8A

0005509 Calcium ion binding 180 10 0.017 PROC, CAPS, DAG1, DYSF, SLC8A1, SPARC, CALR, ANXA8L1,

TUBB4A, TNNC1

0008083 Growth factor activity 50 4 0.038 GDF10, IL34, PDGFA, MANF

0005501 Retinoid binding 13 2 0.042 RBP3, RBP1

MeSH: chemicals and drugs

D043323 Alpha-mannosidase 4 3 <0.001 MAN2B1, RAB3A, CALR

D018832 Molecular chaperones 37 4 0.019 CRYAB, ARL2, TBCA, CALR

D015220 Calcium channels 39 4 0.022 CACNB4, RAB3A, CACNA1A, TRPC3

D000252 Calcium-transporting

ATPases

11 2 0.035 SLC8A1, TRPC3

D043802 GTP-binding protein

alpha subunits

12 2 0.041 GNA11, GNA15
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protein family that controls the membrane fusion during

the sperm acrosome reaction (Hutt et al. 2005). Finally, two

candidate genes—ZMYND10 and SLC25A20—located on

BTA22 at 50.3–51.8 Mb, are directly implicated in sperm

motility. ZMYND10 is almost exclusively expressed in the

testis, plays a key role in cilia integrity and has been

implicated in sperm dysmotility and male infertility (Moore

et al. 2013). SLC25A20 encodes a carnitine carrier in the

mitochondrial membrane that is involved in ATP produc-

tion and cell energy metabolism and has been associated

with human asthenozoospermia, aka low sperm motility

(Asghari et al. 2017). Overall, our findings provide the

foundation for future fine mapping and functional studies

that seek to reveal the specific roles of this set of candidate

genes in Jersey bull fertility.

It is believed that non-additive effects are relevant for

fitness-related traits such as reproduction. Indeed, our

recent study revealed significant dominance effects for

SCR on Holsteins (Nicolini et al. 2018). Here, using an

efficient two-step mixed-model-based approach, we identi-

fied two genomic regions on BTA11 (2.6 Mb) and BTA25

(19.2 Mb) with significant recessive effects. Notably, these

regions harbor genes FER1L5, CNNM4 and DNAH3, which

have direct roles in male fertility. FER1L5 encodes a

member of the ferlin family that regulates calcium-mediated

membrane fusion events during spermatogenesis (Wash-

ington & Ward 2006). CNNM4 encodes a magnesium

transporter that regulates calcium homeostasis during the

sperm capacitation and is essential for ensuring sperm

fertilizing ability (Yamazaki et al. 2016). Mutations in the

DNAH1 gene, which encodes a member of the dynein

family, cause multiple abnormalities of the sperm flagella,

resulting in impaired sperm motility and, hence, male

infertility (Ben Khelifa et al. 2014). These findings provide

further evidence for the importance of non-additive effects

in fertility traits.

Genomic scans typically detect only major regions, while

the vast majority of the genetic variants remain hidden.

Therefore, complementary approaches are needed to fully

reveal the genetic architecture underlying a complex

phenotype. Here, alternative gene-set analyses were per-

formed to identify biological processes and molecular

mechanisms responsible for the SCR variation in US Jersey

bulls. Interestingly, gene sets directly related to calcium

regulation and calcium signaling were among the most

significant functional terms. Calcium is implicated in

different sperm physiological responses including sperm

maturation, sperm motility and sperm capacitation (Dars-

zon et al. 2011). Functional categories closely related to the

acrosome reaction, such as membrane fusion and vesicle

organization, showed a significant enrichment of genes

associated with SCR. The acrosome reaction allows the

sperm to penetrate the zona pellucida and fuse with the

oocyte membrane (Brucker & Lipford 1995). Many terms

related to sperm cell energy metabolism, including fatty acid

degradation and pyrophosphatase activity, were also

enriched with genes related to SCR. In this sense, recent

studies have suggested that lipid metabolism, especially

mitochondria fatty acid beta-oxidation, contributes to ATP

production for sperm motility (Amaral et al. 2013). Like-

wise, it is now known that the inorganic pyrophosphate

pathway is an important component of sperm physiology,

including as alternative energy source (Yi et al. 2012).

Finally, the MAPK signaling pathway was significantly

associated with Jersey bull fertility. Interestingly, it is well-

documented that the MAPK cascades are involved in

several male reproductive processes, such as spermatogen-

esis, sperm maturation, sperm capacitation and the acro-

some reaction (Li et al. 2009). Overall, our findings provide

further evidence that gene-set analyses can greatly com-

plement whole-genome scans in understanding biological

processes and genetic mechanisms affecting complex traits.

As proposed by Abdollahi-Arpanahi et al. (2017), these

significant gene-set terms could be incorporated into

genomic prediction models to facilitate the identification of

high-fertility bulls.

It should be noted that none of the ten 1.5-Mb SNP

windows nor the two recessive SNP loci were previously

reported as significantly associated with bull fertility in

Holstein cattle. This may be due to multiple causes: the

major mutations affecting bull fertility in Jersey are not

segregating in Holstein, these causative mutations are

indeed segregrating in Holstein but are not in high linkage

disequilibrium with the SNP markers or simply false-

positive/false-negative results. However, most of the gene

sets significantly associated with SCR in Jersey were also

identified as relevant functional terms affecting Holstein bull

fertility (Pe~nagaricano et al. 2013; Han & Pe~nagaricano

2016). Indeed, terms such as calcium ion binding, calcium

channels, pyrophosphatase activity and GTPase activity,

among others, were significantly enriched with genes

associated with SCR in both breeds. These results provide

further evidence that biological processes and molecular

pathways, rather than single genes, are the primary targets

of selection.

Conclusions

We performed an integrative genomic analysis to dissect the

genetic basis of SCR in US Jersey dairy cattle. Ten different

regions distributed on BTA1, BTA5, BTA9, BTA11, BTA13,

BTA15, BTA17 and BTA22 explained significant amounts

of additive genetic variance. In addition, two regions on

BTA11 and BTA25 showed marked recessive effects.

Interestingly, most of these genomic regions harbor genes

that play key roles in male reproduction, including testis

development, spermatogenesis, sperm motility and fertiliza-

tion process. Moreover, the gene-set analysis revealed

functional gene sets, such as calcium signaling, calcium

channels, membrane fusion, pyrophosphatase activity,
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GTPase activity and MAPK signaling, that are directly

related to spermatogenesis, sperm cell energy metabolism

and acrosome reaction. Overall, this comprehensive study

unraveled genetic variants and biological pathways respon-

sible for the variation in Jersey bull fertility. Our findings

can provide opportunities for improving service sire fertility

in Jersey cattle via marker-assisted selection.
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