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Abstract

Due to their remarkable parasitocidal activity, artemisinins represent the key components of

first-line therapies against Plasmodium falciparum malaria. However, the decline in efficacy

of artemisinin-based drugs jeopardizes global efforts to control and ultimately eradicate the

disease. To better understand the resistance phenotype, artemisinin-resistant parasite lines

were derived from two clones of the 3D7 strain of P. falciparum using a selection regimen

that mimics how parasites interact with the drug within patients. This long term in vitro selec-

tion induced profound stage-specific resistance to artemisinin and its relative compounds.

Chemosensitivity and transcriptional profiling of artemisinin-resistant parasites indicate that

enhanced adaptive responses against oxidative stress and protein damage are associated

with decreased artemisinin susceptibility. This corroborates our previous findings implicating

these cellular functions in artemisinin resistance in natural infections. Genomic characteriza-

tion of the two derived parasite lines revealed a spectrum of sequence and copy number

polymorphisms that could play a role in regulating artemisinin response, but did not include

mutations in pfk13, the main marker of artemisinin resistance in Southeast Asia. Taken

together, here we present a functional in vitro model of artemisinin resistance that is under-

lined by a new set of genetic polymorphisms as potential genetic markers.

Author summary

The emergence of artemisinin resistance within and beyond Southeast Asia is a looming

threat that needs to be promptly addressed. With this in mind, we derived several artemi-

sinin-resistant parasite lines in vitro in order to fully characterize the resistance phenotype

at the cellular and molecular levels. In addition to reinforcing the role of stress responses

in mediating artemisinin resistance, we also identified novel genetic alterations that could

also be responsible for causing artemisinin resistance. Collectively, this work provides

additional insight in relation to, and beyond the paradigm of pfk13-driven artemisinin
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resistance and artemisinin response in P. falciparum. Understanding the processes that

govern the acquisition of artemisinin resistance could aid in the development of strategies

to prevent and contain it.

Introduction

Malaria remains the most prevalent and deadly vector-borne disease in the world, with an esti-

mated two hundred million cases and over four hundred thousand deaths recorded in 2015

[1]. Currently, the cornerstone of global malaria control programs is artemisinin combination

therapy (ACT). ACT combines the highly potent, rapidly acting artemisinin-based compounds

with long-lasting partner drugs[2]. Artemisinin-based compounds have an excellent safety

profile, exert a very rapid parasitocidal effect, and are active against gametocytes and all stages

of the intraerythrocytic developmental cycle (IDC), from the early rings to the mature schiz-

onts[3,4]. In particular, artemisinin compounds are typified by their short plasma elimination

half-life, ranging from <1 to 3 hours for the water-soluble artesunate (ATS) and dihydroarte-

misinin (DHA), and from 3 to 11 hours for the oil-soluble artemether[3]. This is in sharp con-

trast to other antimalarial drugs that have considerably slower elimination times, persisting

over several days to several weeks[5]. Hence, artemisinin-based drugs are the frontline thera-

pies used by most, if not all, malaria control programs around the world.

In spite of its wide use, understanding of the artemisinin mode of action remains limited.

Artemisinin belongs to the class of sesquiterpene lactones with an endoperoxide bridge that is

essential for its antimalarial activity[6,7]. It is widely accepted that artemisinin-mediated para-

site killing requires bioactivation of the peroxide structure that leads to generation of reactive

oxygen species (ROS) and subsequent damage of biomolecules such as proteins, lipids and

nucleic acids[6,7,8]. Some notable protein targets of artemisinin include: PfTCTP, a transla-

tionally controlled tumor protein homolog[9] which is located in both the cytoplasm and the

food vacuole[10]; Pfatp6[11], an ER-resident, parasite ortholog of sarco/endoplasmic reticu-

lum membrane calcium ATPase; and Pfpi3k[12], which is thought to be an early ring stage tar-

get of dihydroartemisinin. Artemisinin-derived radicals have been also shown to alkylate

heme[13], which could lead to the disruption of hemozoin synthesis[14] which is essential to

parasite survival. Additionally, this class of drugs have also been found to induce the ROS-

mediated depolarization of both the mitochondrial[15,16] and plasma membranes[16], repre-

senting a different mechanism of parasite killing. It could very well be that the potency of

endoperoxide-based drugs against the asexual blood stage is due to their ability to interact with

a wide range of targets, across multiple cellular compartments[17,18]. However, the true

impact of these interactions on parasite killing remains to be fully understood and requires fur-

ther investigation.

Indeed, the use of artemisinin combination therapy has led to major progress in malaria

control throughout the world in the last two decades, paving the way for better cure rates and

reduced transmissibility in the field. From the late 2000s, however, pockets of decreased drug

sensitivity to artemisinin-based drugs have been found in Southeast Asia. First detected in

western Cambodia[19,20,21], resistance has been now reported from multiple locations across

Asia including Thailand[22,23], Myanmar[23,24], Vietnam[23,25], and even Southern China

[26]. It is believed that artemisinin resistance is continuously emerging de novo[27,28,29], but

a few fit lineages are now spreading regionally[30]. What was originally characterized by

delayed parasite clearance among patients treated with ACTs has now escalated to an alarming

surge in treatment failures[31]. Interestingly, standard ex vivo 72-hour drug assays that are
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typically used to measure drug sensitivity are not able to differentiate between the slow-clear-

ing (artemisinin-resistant) and fast-clearing (artemisinin-sensitive) parasites[32]. Instead, the

Southeast Asian field isolates exhibit decreased susceptibility to artemisinins only in the very

early ring stage of the IDC[32]. Transcriptional and cellular characterization of the resistant

isolates demonstrated a delayed progression of the first half of the IDC, particularly the ring

stage that is also the least susceptible to artemisinin[33,34,35]. These parasites are also charac-

terized by upregulation of several cellular stress response pathways related to antioxidant

defense and the unfolded protein response (UPR)[34]. Crucially, Ariey et a.l 2014 identified a

biomarker of clinical artemisinin resistance that can be found in both in vitro and in vivo P. fal-
ciparum isolates[36]. After sequencing over 150 Cambodian isolates, they found several nonsy-

nonymous single nucleotide polymorphisms (SNPs) in pfk13 located at chromosome 13 that

was similarly mutated in an artemisinin-resistant parasite derived in vitro by artemisinin expo-

sure for over five years[36,37]. Interestingly, the chromosome 13 region around pfk13 was

identified independently as one of the genetic regions with a strong signature of selection

among Thai and Cambodian parasites with slow clearance rates[38,39]. Subsequent surveil-

lance of Southeast Asian isolates with different genetic backgrounds further corroborated

pfk13 as a strong genetic correlate of delayed parasite clearance[23,27,28]. Finally, functional

studies validated that specific amino acid changes within the Pfk13 propeller domain signifi-

cantly increases the rate of parasite survival after early ring-stage treatment with DHA[40].

Although pfk13 is currently the best-characterized molecular marker, many questions remain

about the mechanistic links between the amino acid changes in Pfk13 (a putative factor of

intracellular protein-protein interactions) and the parasite’s resilience to artemisinin. It is par-

ticularly important to uncover all molecular components of the artemisinin resistance mecha-

nism that can act in either a pfk13-dependent or -independent manner. Here we identified

several putative factors that can facilitate artemisinin resistance by deriving and characterizing

two artemisinin-resistant parasite lines from the P. falciparum 3D7 strain. Through the geno-

mic, transcriptional and chemosensitivity profiling of these in vitro artemisinin-resistant para-

sites, our findings corroborate the central role of the parasite’s stress responses in mediating

artemisinin resistance in Plasmodium, as well as demonstrate the possibility of a robust resis-

tance phenotype that is potentially clinically relevant and is driven by different genomic alter-

ations beyond pfk13.

Results

Selection of artemisinin resistant P. falciparum cell lines

The overall goal of this research was to identify and characterize molecular factors that con-

tribute to resistance of the malaria parasite P. falciparum, to artemisinin. For this purpose, we

derived two parasite lines from two isogenic clones of the 3D7 strain termed 6A and 11C[41].

This was done by repeated exposures of synchronized parasite cultures to 900 nM of artemisi-

nin for 4 hours at the ring stage (10–14 hours post invasion, HPI) (Fig 1A). At the initial earlier

stages of the selection process, these pulse treatments were applied every other round of the

IDC (see materials and methods). The main rationale of this selection regimen was to approxi-

mate clinical conditions in the peripheral blood of infected patients where artemisinin peaks at

~900nM[42] and decays below clinical levels within 2 to 5 hours[3], and where the P. falcipa-
rum populations consists predominantly of ring-stage parasites (~10 HPI)[33,43]. The ring

stage that is otherwise the least sensitive to artemisinin[44], is believed to be driving the cur-

rently occurring artemisinin resistance phenotypes observed in natural infections[32,45]. Ini-

tially, during the first 13 treatment cycles, the rate of parasite survival after each artemisinin

exposure fluctuated between 30–90% (Fig 1C). These surviving parasites were typically
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arrested in the ring/trophozoite stages for up to 24 hours post treatment instead of progressing

to the expected schizont stages (Fig 1A and 1C, S1 Fig). However, from 18 cycles onwards,

70–100% of parasites were consistently surviving the treatment, progressing normally through

the IDC (Fig 1C). We observed a marked decrease in artemisinin susceptibility in both clones

as early as 6 rounds of treatment (26 days) for 6A-R, and 8 rounds of treatment for 11C-R (33

days). At that stage the 6A-R and 11C-R exhibited a 3- and 17-fold increase of artemisinin

resistance, respectively, as measured by a survival assay establishing the 50% inhibition con-

centration for parasites exposed to the drug for 4 hours at 10 HPI (IC5010hpi/4hr) (Fig 1B, S1

Table). This drug pulse assay was designed to match the window of the drug selection, resem-

bling the previously utilized shorter exposure drug assays that were shown to capture the

stage-dependent artemisinin activities[44,46]. Using this assay, we were observed marked dif-

ferences in the dynamics of the progression of artemisinin resistance between the two clones

throughout the drug selection regimen (Fig 1B, S1 Table). 6A-R showed a gradual increase of

IC5010hpi/4hr, starting at 55.49 nM at 6 cycles of artemisinin exposures, progressing to 3,880

nM after 11 months and peaking at 33,726 nM after approximately 1.5 years of continuous

treatments. On the other hand, 11C-R exhibited a rapid increase of resistance between 6 and

37 cycles (first 5 months of drug selection) to IC5010hpi/4hr = 3,052 nM. Subsequently, this level

of resistance plateaued for the next 19 months of continuous cultivation under drug selection

(Fig 1B). Hence, compared to their corresponding parental lines, the resulting artemisinin

resistant lines 6A-R and 11C-R exhibited up to a 398- and 69-fold increase in IC5010hpi/4hr,

respectively. The drug resistance phenotypes of both lines remained fully intact in parasites

that were cryopreserved and reintroduced to culture. Moreover, a significantly elevated

IC5010hpi/4hr was maintained after three months of cultivation in the complete absence of drug

pressure. In summary, here we derived two artemisinin resistant lines of P. falciparum that

could be actively maintained in an in vitro culture and thus serve as a tool for mechanistic

studies of artemisinin resistance. The differences in the resistance levels and selection dynam-

ics suggest that the two resistant parasite lines employ (to at least some degree) distinct molec-

ular factors to withstand artemisinin.

Drug resistance phenotypes

Interestingly, the derived resistance phenotype(s) of both 6A-R and 11C-R are predominant in

the rings (10 HPI) and do not affect the later stages of IDC development (Fig 2A, S2A Fig, S2

Table). However, for 11C-R, the window of resistance extends until the early trophozoite stage

(~20 HPI), where a moderate level of resistance can still be observed. The robustness of the

ring-specific artemisinin resistance is likely the main reason for the observed resistance dem-

onstrated by both parasite lines in the standard 72-hour drug assay that measures parasite sur-

vival after artemisinin exposure across all stages of the IDC (Fig 2B, S2B Fig, S2 Table).

Crucially, both parasite lines also showed decreased drug susceptibility in the ring survival

Fig 1. In vitro selection of artemisinin resistance in two P. falciparum clones 6A and 11C. Artemisinin resistance was induced in two subclones (6A and 11C) of the

3D7 strain of P. falciparum through periodic exposure of the parasite to short pulses of a clinically relevant dose of artemisinin. (A)The in vitro artemisinin selection

protocol involved repeated 4-hour pulse treatments of synchronized mid-ring stage parasites (6A and 11C) to 900 nM artemisinin. DMSO-treated parasites were grown

alongside the artemisinin-treated parasites (renamed as 6A-R and 11C-R) to serve as controls. Both sets of parasites were subjected to the same number of artemisinin

and DMSO treatments throughout drug selection, and at the same generations. Stage-specific artemisinin sensitivity was monitored throughout the course of selection

using a 4-hour drug pulse assay at the ring (IC5010hpi/4hr), trophozoite (IC5020hpi/4hr), and schizont (IC5030hpi/4hr) stages of the IDC. (B)In order to monitor incremental

changes in ring stage artemisinin sensitivity over time, artemisinin IC5010hpi/4hr was measured throughout increasing cycles of drug selection between artemisinin-

treated parasites and their controls. Additional data can be found in S1 Table. (C)At the start of artemisinin selection, parasite viability and morphology after 4-hour

treatment was monitored using microscopic evaluation of Giemsa-stained blood smears. The solid gray line depicts the proportion of surviving parasites 24 hours post

treatment normalized to the starting parasitemia, while stacked bars depict proportions of ring, trophozoite and schizont stage morphologies observed among the

remaining parasites that appeared to be viable. Examples of parasite morphologies after pulse artemisinin treatment are depicted in S1 Fig.

https://doi.org/10.1371/journal.ppat.1006930.g001
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Fig 2. Chemosensitivity profiling of in vitro-selected P. falciparum. Chemosensitivity phenotypes of our artemisinin-resistant parasites were evaluated. (A)Apart from

their ring-stage sensitivity, the artemisinin IC504hr for the trophozoite (IC5020hpi/4hr) and schizont (IC5030hpi/4hr) stages was also measured in all parasite lines.

Differential susceptibility to artemisinin between selected and control parasites, was subsequently validated using a standard in vitro (72-hour) drug assay (IC50) (B),

and the Ring stage Survival Assay (RSA) (C). Additional data can be found in Figs 2A and S2B and S2 Table. (D) Ring-stage susceptibility (IC5010hpi/4hr) against a pulse

exposure to artemisinin derivatives Dihydroartemisinin (DHA) and Artesunate (ATS) were also monitored, while chemosensitivity against non-artemisinin

antimalarials, quinine (QN), chloroquine (CQ), mefloquine (MEF) and pyrimethamine (PYR), were evaluated using a standard drug assay (IC50). Additional data can

be found in S3A and S3B Fig and S3 Table. (E)Apart from antimalarial drugs, the ring-stage sensitivity of all parasite lines was also measured for compounds that are

related to the mechanism of action of artemisinin: hydrogen peroxide (H2O2), dithiothreitol (DTT), and epoxomicin (EPX). Additional data can be found in S3C Fig

and S3 Table. All drug assays were performed in biological triplicates; error bars represent the standard deviation. Pairwise comparison of percent survival (RSA),

IC5010hpi/4hr and IC50 values between resistant and sensitive parasites was performed using student’s t-test.

https://doi.org/10.1371/journal.ppat.1006930.g002
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assay (RSA)[32,45] carried out with parasites at 0–3 HPI (Fig 2C). Both 6A-R and 11C-R

passed the 1% RSA survival cutoff employed in the field to denote resistance[45,47,48]. This

contrasts the current phenotype observed in natural infections that exhibit high levels of ring-

stage specific resistance (in the RSA), but show no changes in the standard 72-hour drug assay

[32]. Both 6A-R and 11C-R also have significantly elevated IC5010hpi/4hr to other semisynthetic

artemisinin derivatives. 6A-R exhibited 5- and 8-fold higher IC5010hpi/4hr to dihydroartemisi-

nin (DHA) and artesunate (ATS), and 11C-R showed 2- and 3-fold higher IC5010hpi/4hr to

DHA and ATS, respectively. Both, 6A-R and 11C-R, however, showed no changes in sensitivi-

ties to other antimalarial drugs including two quinolines (quinine and chloroquine) and pyri-

methamine (Fig 2D, S3A and S3B Fig, S3 Table). Taken together these results suggest that the

derived resistance phenotypes are specific to artemisinin and its endoperoxide-carrying deriv-

atives, and can give rise to full resistance phenotypes of the P. falciparum parasites. Given its

relevance in the RSA, these mechanisms may correspond to the current artemisinin resistance

in natural infections albeit being independent from pfK13 polymorphisms[32,36] (see below).

Interestingly, both parasite lines exhibited increased susceptibility to mefloquine, whose mode

of action is presumably related to other quinolines[49]. In future studies, it will be interesting

to investigate the relationship between the altered sensitivities of P. falciparum to artemisinins

and mefloquine. However, here it is important to note that the connection between these two

chemosensitivity phenotypes is not absolute as observed in another artemisinin-resistant line

derived from a polyclonal population of the T996 P. falciparum strain (S3D Fig).

Stress responses to an oxidative damage and the unfolded protein response (UPR) have

been implicated in the mechanisms of artemisinin resistance of P. falciparum in in vitro cul-

tures [50,51] and natural infections[34]. To investigate the role of these two biological pro-

cesses in the derived resistant parasite lines, we challenged our in vitro-derived resistant

parasites with H2O2, dithiothreitol (DTT) and epoxomicin (EPX). While H2O2 causes oxida-

tive damage, DTT and EPX are inducers of ER stress, causing an accumulation of damaged/

misfolded proteins inside the cell. Intriguingly, 6A-R, but not 11C-R, exhibited a significant

resistance to all three inhibitors (Fig 2E, S3C Fig, S3 Table). This is consistent with our previ-

ous suggestion of inherent mechanistic differences in the artemisinin resistance mechanisms

between 6A-R and 11C-R and shows that oxidative damage repair and unfolded protein

responses play a central role in artemisinin resistance as observed in vivo [33,34,51].

Transcriptomic profiling of artemisinin-resistant lines

To assess whether the in vitro-derived artemisinin resistant phenotypes reflect the similar

physiological state observed in vivo, we characterized the transcriptomes of 6A-R and 11C-R.

First we reconstruct the IDC transcriptomes of both resistant clones grown under normal con-

ditions (S4A Fig). The “best fit” parasite aging analysis[33] showed that starting from the mid

ring stage (time point 2), both lines progressed identically and completed their IDC in approx-

imately 48 hours. However, both resistant parasite lines appeared to accelerate their early ring

stage progression being older (10 HPI) than their sensitive counterparts (4 HPI) at the first

sampling interval (S4A Fig). This observation is consistent with the ring-specific resistance in

both clones and their resistance in the RSA that appear to be involved in the pfk13-dependent

artemisinin resistance observed in vivo. Examining the transcriptomes of 6A-R and 11C-R

between 10–20 HPI, we detected broad alterations in mRNA levels of>300 P. falciparum
genes (corrected p-value < 0.05, FDR< 0.25), as well as changes in key processes that might

be linked to modulating artemisinin response in the parasite (Fig 3A). In 6A-R, pathways

related to the redox stress responses and protein turnover were predominant amongst the

upregulated genes. Notably, we observed an upregulation of genes that may be related to the
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Fig 3. Transcriptional profiling of in vitro-selected P. falciparum. Comparative transcriptomic analysis was also done on resistant vs

sensitive parasites across the mid to late ring stage (10–20 HPI), which matches the window of drug treatment. (A)Heatmaps depict

significantly up- and downregulated genes (corrected p-value< 0.05, FDR< 0.25) in artemisinin-resistant parasites relative to their

artemisinin-sensitive controls. Noted are the differentially expressed pathways between artemisinin-resistant and artemisinin-sensitive
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parasite’s thioredoxin-based redox system such PF3D7_1457200 (thioredoxin 1), PF3D7_

1438900 (thioredoxin peroxidase 1), and PF3D7_1352500 (thioredoxin-related protein). We

also observed an enrichment of targets of glutathionylation, as well as targets of the thiore-

doxin enzyme superfamily. The upregulated protein turnover-associated genes included heat

shock and chaperone proteins, and a number of enzymes involved in proteolysis. We also

observed an upregulation of genes involved in translational elongation, electron transport, and

protein transport, particularly vesicular trafficking between the ER and Golgi complex. On the

other hand, the significantly downregulated genes were enriched for pathways related to host-

parasite interactions, control of gene expression, and translational initiation (Fig 3A, Table A

in S4 Table and S1A File). Interestingly, gene sets involved in cell cycle regulation were also

found to be differentially expressed between 6A-R and 6A—which could be related to the

slight shift in temporal progression during the early stages of parasite development. In the case

of 11C-R, we likewise observed a significant upregulation of genes involved in oxidative stress

defense, although to a lesser extent compared to 6A-R. These include genes that encode S-glu-

tathionylated proteins, PF3D7_0306300 (glutaredoxin 1) and PF3D7_0709200 (glutaredoxin-

like protein). Pathways involved in protein damage repair, including chaperones and compo-

nents of proteasome-mediated degradation are also overexpressed. In addition, 11C-R exhib-

ited an upregulation of processes related to early translation events, and transcriptional and

post-transcriptional mechanisms of gene regulation such as chromatin modification, stress

helicase activity, and the formation of P-bodies. Induction of P-bodies has been observed

under stress or conditions that repress translation initiation[52,53,54], and their role in drug

resistance may not be ruled out. As for the significantly downregulated functionalities in

11C-R, we identified factors of host-parasite interactions, components of the transcriptional

machinery, cellular transport, hemoglobin digestion, several translational elongation factors

and ATP synthesis (Fig 3A, Table B in S4 Table and S1B File). Evaluating the transcriptional

correspondence of 6A-R and 11C-R with slow clearing isolates in Southeast Asia from the

TRAC I[34], we found a great degree of overlap between significantly upregulated pathways in

the in vitro and in vivo datasets (Fig 3B). Strikingly, several of these pathways have also been

associated with longer parasite clearance half-lives in the field such as coping mechanisms

against ER stress (ER trafficking, proteasome-mediated degradation, translation) and oxidative

stress (targets of glutathionylation), as well as mRNA processing[34]. Not only does this obser-

vation reinforce the involvement of these cellular processes in modulating artemisinin resis-

tance in Plasmodium, it also demonstrates that 6A-R and 11C-R are each able to recapitulate

key aspects of in vivo artemisinin resistance at the transcriptional level.

Next we analyzed global transcriptional responses of 6A-R and 11C-R to artemisinin drug

exposure that is identical to the selection conditions (synchronized parasites were treated with

900nM artemisinin from 10 to 14 HPI) (S4B Fig). Here we observed many similarities between

how 6A-R and 11C-R respond to a ring-stage artemisinin challenge in relation to their sensi-

tive counterparts. Notably, both lines exhibit a downregulation of processes pertaining to path-

ogenesis, transcriptional control, translation, cellular transport and cell cycle regulation (S4B

parasites identified using Gene Set Enrichment Analysis (GSEA) (p< 0.05, FDR< 0.25). All genes from the total transcriptomic datasets

were ranked by their z-score based on the difference in expression between resistant and sensitive lines, and subsequently subjected to

GSEA. A more comprehensive list of differentially expressed pathways and genes between resistant and sensitive parasite lines can be

found in Table A in S4 Table and S1A File (6A-R vs 6A), and Table B in S4 Table and S1B File (11C-R vs 11C). Data shown represents

time-course transcriptomes over a single IDC. (B)The graph depicts the overlap between significantly upregulated functionalities (GSEA

p-value< 0.05, FDR< 0.25) in ring-stage artemisinin-resistant clinical isolates (from TRACI) and our in vitro-selected artemisinin

resistant parasites. All 5,061 genes from the previously published TRAC I dataset[34], were ranked by their strength of association with

parasite clearance half-life (correlation coefficient) and used for GSEA.

https://doi.org/10.1371/journal.ppat.1006930.g003
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Fig, Tables A and B in S5 Table). That both in vitro-derived lines demonstrate a marked dys-

regulation of genes involved in cell cycle regulation could be related to their ability to over-

come the drug induced quiescence caused by artemisinin. Interestingly, GSEA identified

transport across the ER-Golgi and digestive vacuole (DV) membranes as significantly upregu-

lated in 11C-R (S4B Fig, Table B in S5 Table and S2B File). Likewise, 6A-R also displayed an

upregulation in transmembrane transport components—a number of which have been linked

to drug resistance in Plasmodium. A notable example is the DV-resident chloroquine resis-

tance transporter, pfcrt, which is significantly upregulated in both resistant lines and has been

associated with chloroquine resistance [55,56,57,58]. Pfcrt also plays a role in glutathione

transport and antioxidant defense within the DV[59]. Pfexp1, a glutathione transferase located

on the parasitophorous vacuole and is associated with artesunate sensitivity and metabolism

[60] is also found to be upregulated in 6A-R (S2A File). On the other hand, we also observed

transcriptional features that are distinct to only one parasite line, such as the downregulation

of autophagy-related pathways in 6A-R vs. 6A, and the observed downregulation of heat shock

proteins in 11C-R compared the 11C. It is probable that the differences we observed in global

transcriptional profiles between 6A-R and 11C-R could account for some of the phenotypic

variations between these two parasite lines such as resistance to H2O2/DTT/EPX. In the future

it will be interesting to study these variations as they could represent genuine differences in

drug resistance phenotypes in vivo.

Genomic characterizations of artemisinin-resistant lines

The whole genome sequencing of the two resistant parasite lines identified several intragenic

SNPs compared to their parental lines. These included 3 and 5 missense mutations in 6A-R

and 11C-R, respectively; one nonsense mutation in each parasite line and an additional intro-

nic SNP in 6A-R (Table 1). As a result, there are mutation alleles for five genes in 6A-R and

six genes in 11C-R. Cross-referencing our SNP data with the Pf3k[61] and MalariaGEN[62]

databases, the nonsynonymous mutations detected in PF3D7_1427100, PF3D7_0810600 and

PF3D7_1115700 were found to also occur in natural infections of African origin. Crucially,

there was no overlap between the mutated genes in the two parasite lines, both of which also

carried the wild-type allele of the K13 gene (validated by PCR-based genotyping of pfk13
[36,63]). No polymorphisms were also detected in previously identified drug resistance

markers, such as pfcrt[56,64], pfmrp1[65,66], pfmdr1[67], pfnhe-1[68], pfdhps[69], pfdhfr
[70,71], pfatp6[72], pfubp1[73], pfap2mu[74] PF3D7_101700[39], and PF3D7_1343400[39].

Moreover, none of the SNP-containing genes in 6A-R and 11C-R match the previously

reported putative targets and interacting partners of artemisinin, such as pfatp6[11], pfpi3k
[12], pftctcp[9] and other proteins [17,18]. The only exception is the nonsense mutation in

pffp2a (PF3D7_1115700) that encodes falcipain 2a, the main factor of hemoglobin digestion,

whose nonsense polymorphism was previously linked with artemisinin resistance in vitro
[36,37]. On the other hand, both 6A-R and 11C-R harbor mutations in genes that might play a

role in gene expression regulation such as AP2-like transcription factors, a PHD finger protein

and an RNA helicase. Such genes could be implicated in the regulation of the Plasmodium IDC

transcriptional cascade and subsequently contribute to the resistance phenotypes of both para-

site lines.

Next, we characterized the genome-wide patterns of copy number variations (CNVs) using

microarray-based comparative genomic hybridization (CGH) as previously described[41]. In

both 6A-R and 11C-R, we detected two gDNA segments whose amplifications could be

directly related to their artemisinin resistance status (Fig 4, S6 Table). Namely, there is a seg-

ment on chromosome 14 spanning 40 genes (PF3D7_1454000-PF3D7_1458000) amplified in
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6A-R, and a segment on chromosome 12 spanning 9 genes (PF3D7_1228000—PF3D7_

1228800) amplified in 11C-R. Moreover, both 6A-R and 11C-R also carry a common amplifi-

cation on chromosome 10 spanning 17 genes (PF3D7_1028700—PF3D7_1030300). This self-

same amplification has also been identified previously in an artemisinin sensitive P. falciparum
3D7[75] strain. The three CNVs on chromosomes 10, 12 and 14 were detected during the later

stages of drug selection and subsequent culturing, and were consistently detected over a period

of five months (89 generations) (S5 Fig). Comparing our CNVs with a dataset collated from

122 clinical isolates from Africa, South East Asia and South America[76], we found that none

of the isolates contained the chromosome 10, chromosome 12 and chromosome 14

Table 1. Single nucleotide polymorphisms (SNPs) identified in 6A-R and 11C-R.

GENE ID DESCRIPTION SNP EFFECT

6A-R PF3D7_0704800 conserved Plasmodium protein, unknown T241086C T322V

PF3D7_0730300 transcription factor with AP2 domain(s) T1301352G H1298Q

PF3D7_1115700 cysteine proteinase falcipain 2a G593481T S35stop

PF3D7_1141800 phd finger protein, putative A1673564G intron

PF3D7_1427100 lipase, putative G1059278T W1039C

11C-R PF3D7_0420300 transcription factor with AP2 domain(s) A923966G T1993A

PF3D7_0528300 conserved Plasmodium protein, unknown G1167265T P249H

PF3D7_0617100 alpha adaptin-like protein, putative A712508C H817P

PF3D7_0810600 RNA helicase, putative G543210T A414S

PF3D7_1230000 conserved Plasmodium protein, unknown C1237510A V815stop

PF3D7_1368400 conserved Plasmodium protein, unknown A2720248T F202Y

All artemisinin-resistant and artemisinin-sensitive lines were subjected to high throughput sequencing using the Illumina MiSeq platform, and nonsynonymous

intragenic single nucleotide polymorphisms (SNPs) were called using SAMtools. Only high quality SNPs with at least 75% position coverage, and not present in control

parasite lines are presented in this table. Mutations in the hypervariable multigene families were excluded from the analysis.

https://doi.org/10.1371/journal.ppat.1006930.t001

Fig 4. CNV profiling of in vitro-selected P. falciparum. Copy number variations in 6A-R and 11C-R were identified using microarray-based comparative

genomic hybridization (CGH). Chromosome plots reflect the subtracted log2ratio of the artemisinin-resistant parasite lines relative to their control

counterparts. Copy number variable genes in 6A-R vs. 6A, and 11C-R vs 11C are indicated in the red and green boxes, respectively. Additional data can be

found in S5 Fig and S6 Table.

https://doi.org/10.1371/journal.ppat.1006930.g004
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amplification clusters in their entirety. However, one isolate collected from Peru harbored a

copy gain for the putative gamma-adaptin encoding PF3D7_1455500.

Impact of overexpression of stress response genes on artemisinin resistance

Given the scope of the detected transcriptional changes in 6A-R and 11C-R, we wished to

investigate the possibility that CNV-driven variations in expression can mediate artemisinin

resistance. Evaluating the individual expression levels of each gene in the three CNV clusters

identified, we found that not all transcripts appear to be significantly overexpressed across the

IDC between resistant parasites and their sensitive counterparts (Fig 5A and S6 Table). How-

ever, comparing the collective expression among the amplified genes on chromosomes 10, 12

and 14, we were able to detect a significant enrichment of upregulation in the genes located in

these regions (Fig 5A). This observation is particularly striking in the case of the chromosome

14 amplification in 6A-R, where 30 out of the 40 genes were significantly overexpressed across

the IDC (S6 Table). Here we focused on three genes on the 6A-R chromosome 14 amplifica-

tion that are likely to be involved in adaptive responses against cellular damage within the par-

asite. These include 6-phosphogluconate dehydrogenase (PF3D7_1454700, pf6pgd) and

thioredoxin 1 (PF3D7_1457200, pftrx1)—both of which are involved in antioxidant defense

[77,78,79], and an ER-resident signal peptide peptidase (PF3D7_1457000, pfspp)[80] that is a

component of ER associated degradation (ERAD)[81]. All three candidate genes were found

to be significantly overexpressed in 6A-R compared throughout the IDC (Fig 5A and S6

Table). In order to assess their potential to confer artemisinin resistance, we generated trans-

genic P. falciparum lines in which each candidate gene was overexpressed episomally. Briefly,

each gene was fused with the HA-antibody epitope at the C-terminus and cloned into the

pBcamR_3xHA transfection vector (see materials and methods) that allows adjustable expres-

sion via increased copy number driven by blasticidin (BSD). Quantitative RT-PCR demon-

strated increased transcription of the transgenic contracts by 7-fold for pf6pgd and 2-3-fold for

pftrx1 and pfspp (Fig 5B). Western blot analysis confirmed the production of the HA-tagged

transgene protein products at their expected molecular weights in the transgenic cell lines

grown in the presence of 2.5 ug/mL BSD (Fig 5C). Crucially, overexpression of pftrx1, and

pfspp resulted in a subtle but significant decrease in artemisinin sensitivity, with IC5010hpi/4hr

1.7-fold, and 2.9-fold higher than the “empty vector” control, respectively (Fig 5D, S6 Fig and

S7 Table). On the other hand, no significant difference in artemisinin sensitivity could be

observed in the parasites overexpressing pf6pgd. These results indicate that the specific upregu-

lation, possibly as a result of gene amplification, of pftrx1 and pfspp contributed to the

decreased sensitivity of 6A-R to artemisinin.

Discussion

It has been previously shown that resistance can be induced in culture-adapted P. falciparum
parasites through long-term exposures to artemisinin and/or its derivatives[37,50,82,83]. That

includes the studies that discovered the current principal marker of artemisinin resistance in

Southeast Asia, pfk13 [36,37]. The identification of the pfk13 gene highlights the value of such

in vitro models to systematically investigate the mechanisms that drive artemisinin response

and resistance in the clinical setting. Here, we developed two artemisinin resistant cell lines

from isogenic clones of the 3D7 P. falciparum strain. For this study, we chose two isogenic

clones of the 3D7 reference strain that has been previously extensively characterized, and thus

will lead to efficient identification of all derived genetic variation. The 3D7 strains also repre-

sent a fully artemisin-susceptible background which provides a “naïve” baseline genome that

potentially allows for the identification of causative factors of artemisinin resistance that are
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Fig 5. Effect of overexpression of pftrx1, pf6Pgd and pfspp on artemisinin sensitivity. To validate the role of stress response gene overexpression on artemisinin

resistance, transfectant lines overexpressing select candidate genes were generated, and subsequently assayed for artemisinin sensitivity. (A)Differential mRNA

expression in the copy number-amplified genes identified in chromosomes in 10, 12, and 14 was evaluated between artemisinin-resistant parasite lines and their
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independent of any potential genetic background with a propensity for drug resistance[27,84].

This yielded a resistance phenotype(s) that is (are) distinct from the previous reports. Essen-

tially all previously derived P. falciparum parasites involved an artemisinin-induced growth

arrest and recovery as a major component of the resistance phenotype[37],[50],[85],[83]. In

contrast, 6A-R and 11C-R are both characterized by an increased survival in the presence of

artemisinin with no detectable levels of growth retardation or arrest. This marked difference is

likely due to the pulse-based regimen that contrasts the previous studies in which the parasite

lines were treated for considerably longer time periods, ranging from 24–48 hour drug expo-

sure intervals[36,37] to continuous drug pressure[50,82,83]. Moreover, 6A-R and 11C-R dis-

played significant decreases of artemisinin sensitivity (IC5010hpi/4hr) within as early as 1.5

months of selection. This is also in stark contrast with previous reports by Witkowski et al.
that showed that the chemosensitivity of the P. falciparum F32 strain remained unaltered

for up to 3 years and/or 100 cycles of drug pressure when the parasites were treated with arte-

misinin for 24 hours at a time[37]. Similarly, Cui et al. were unable to raise drug resistance

in the 3D7 strain at all and could only generate resistant parasites using other culture adapted

P. falciparum strains including 7G8, Dd2, HB3 and D10 after at least one to two months of

continuous exposure to DHA[50]. This collectively indicates that artemisinin resistance

of P. falciparum could be derived by multiple ways, each of which may induce a distinct

mechanism.

Unsurprisingly, the artemisinin resistance in both parasite lines extends to its cognate

drugs ATS and DHA. But while 6A-R and 11C-R showed up to almost 400- and 70-fold

increases in IC5010hpi/4hr values for artemisinin (Fig 1B, S1 Table), respectively, both lines

exhibited increases in IC5010hpi/4hr for ATS and DHA by less than 10-fold (Fig 2D, S3 Table).

This is likely a reflection of key differences in pharmacodynamic profiles between artemisinin

and its two synthetic derivatives. Compared to the plant-derived artemisinin, both ATS and

DHA are more potent antimalarials with DHA being the primary cytopathic metabolite

responsible for the parasite killing[6,86]. In contrast, artemisinin is not metabolized to DHA

but instead acts as the primary antimalarial agent itself and is subsequently transformed into

inactive deoxyartemisinin and dihydrodeoxyartemisinin[4,87,88]. The variance in the resis-

tance level of the two derived clones could be attributed to differences in the overall levels of

the cytopathic activities, the mode of activation, and/or the protein targets that each com-

pound is specifically engaging. Moreover, while 6A-R and 11C-R did not exhibit cross-resis-

tance to other types of antimalarials, both clones are more susceptible to mefloquine (Fig 2D).

Interestingly, DHA-resistant parasites previously derived by Cui et al. from a Dd2 parent, dis-

played decreased sensitivity to other artemisinin-based drugs albeit to a lesser extent compared

to DHA, but also to quinine, chloroquine and mefloquine[50]. Furthermore, parasites derived

using long term exposure to artelinic acid from the D6 and W2 backgrounds showed cross-

corresponding controls. S6 Table lists down corrected p- and FDR values for each gene in the Chr 10, Chr 12 and Chr 14 CNV clusters identified. Chromosome plots

depict the z-score calculated for each gene based on differences in expression levels between resistant and sensitive parasites across the IDC, while the heatmaps

represent the fold-difference between resistant and sensitive parasites for each gene at 6 timepoints taken at 8-hour intervals across a single IDC. Also indicated are the

Normalized Enrichment Score (NES) values for transcriptional upregulation in each cluster, obtained by GSEA (p-value< 0.05, FDR< 0.25). Marked in red boxes are

candidate stress response genes that were found to be significantly upregulated across the IDC (corrected p-value< 0.05, FDR< 0.25) and amplified in 6A-R. These

three genes (PF3D7_1454700 (pf6pgd), PF3D7_1457000 (pfspp), and PF3D7_1457200 (pftrx1)) were subsequently episomally overexpressed and investigated for their

capacity to modulate artemisinin sensitivity. Prior to phenotyping, (B)Real-time qPCR was used to determine the relative overexpression of pftrx1, pf6pgd and pfspp
from their respective overexpression parasite lines. Mean fold-change values are derived from three biological replicates; error bars represent the standard deviation. (C)

Western blot analysis was also carried out on all overexpression and control parasite lines using a monoclonal mouse anti-HA antibody to validate tagged-protein

production. Bands denoted by red arrows indicate the tagged proteins at their expected molecular weights. (D)Ring-stage artemisinin sensitivity (IC5010hpi/4hr) was then

measured for all overexpression parasite lines and compared against the vector control. Drug assays were performed in biological triplicates; error bars represent the

standard deviation. Pairwise comparison of IC5010hpi/4hr between each overexpression line and the vector control was performed using student’s t-test. Additional data

can be found in S6 Fig and S7 Table.

https://doi.org/10.1371/journal.ppat.1006930.g005
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resistance to mefloquine but increased susceptibility to chloroquine[82,83]. These findings

allude to the possibility that resistance to artemisinin-based drugs could also affect the clinical

efficacy of its partner drugs used in the currently deployed ACTs. These results highlight the

importance of testing for cross-resistance as an integral part of drug development, and also

demonstrate a key use for in vitro drug resistance models that can be utilized as a platform

with which to perform such extensive and rigorous studies.

The P. falciparum parasites causing the current state of slow clearing infections in the

Southeast Asian patients show are marked by higher RSA values[45] but show no differential

sensitivities in standard in vitro drug assays[20,32,89]. These in vivo parasites are characterized

by transcriptional induction of oxidative and (other types of) protein damage responses, and

at the same time, a deceleration of the early stages the IDC [33,34]. Both of these transcrip-

tional phenotypes are strongly linked with mutations in the pfk13 gene as the main marker of

artemisinin resistance [27,28,36]. Here we observed several main similarities between in vivo
artemisinin resistance and the in vitro-derived phenotypes of 6A-R and 11C-R. First, like the

slow-clearing isolates in Southeast Asia, the resistance of 6A-R and 11C-R is tied to the earlier

stages of the IDC, and fades as the parasites progress into the later stages. This is reflected by

an elevation in the RSA index (>1%) for both 6A-R and 11C-R that is comparable to the in
vivo isolates (Fig 2C). Second, both resistant lines demonstrated a steady state upregulation of

genes and pathways that are involved in antioxidant defense, as well as the UPR (Fig 3A and

3B)[34]. Crucially, the induced artemisinin resistance in the 6A-R clone also gave rise to cross-

resistance against oxidative agents (e.g. H2O2), protein-folding disruptors (e.g. DTT), and

stressors of protein processing in the ER (EPX) (Fig 2E). This indicates that that its derived

resilience to artemisinin is tied to an increased capacity to mediate oxidative stress and protein

damage. These findings suggest that one possible mechanism for artemisinin resistance is an

enhanced ability of the P. falciparum parasites to cope with the oxidative stress and protein

damage presumably caused by artemisinin directly. On the other hand, the in vitro-derived

lines were unable to recapitulate certain features of the resistant isolates. Neither 6A-R nor

11C-R experienced a dramatic shift in the temporal progression of the IDC, nor did they

develop artemisinin-resistance associated genotypes that have been previously observed in
vivo—most notably, mutations in pfk13. In spite of these genotypic and phenotypic discrepan-

cies, these derived parasite lines nonetheless provide a unique opportunity for future analyses

of artemisinin resistance in the context of multiple genetic backgrounds[27,28]. The apparent

lack of pfk13 polymorphisms in 6A-R and 11C-R suggests that these parasites may serve as a

model to study the relevant mechanisms driving the PfK13-independent artemisinin resistance

phenotype newly emerging in Southeast Asia[48] and Africa[90].

The prerequisite of a genetic background and the possibility of “PfK13-independence” sug-

gest that other genetic polymorphisms will contribute to the overall phenotype of artemisinin

resistance that is currently in existence or will emerge in the future. Genomic profiling of

6A-R and 11C-R revealed unique sets of SNPs and CNVs that could represent such polymor-

phisms. Surprisingly, these polymorphisms did not involve genes with associations to any

drug sensitivity phenotypes of malaria parasites reported in the past. The two exceptions

include pffp2a and pfprp22. Pffp2a is a cysteine protease involved in hemoglobin digestion that

is believed to mediate the activation of artemisinin presumably via the release of haemoglobin-

derived iron[91]. Indeed Pffp2a can modulate artemisinin sensitivity in the ring stages[92],

and a nonsense mutation in pffp2a has been previously found in an in vitro-derived artemisi-

nin-resistant parasite line[36,37]. Hence the presence of the nonsense mutation the pffp2a
likely contributes to artemisinin resistance in 6A-R. The amplification of pfprp22 in both 6A-R

and 11C-R on the common segment of chromosome 10 coincides with its duplication in

another resistant parasite line derived from a D6 strain using artelinic acid[83,93]. However,
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this amplification at chromosome 10 had already been reported in naturally occurring infec-

tions including artemisinin sensitive parasites[75]. Hence its role in artemisinin resistance

remains unclear. Here, we were able to substantiate the potential of the chromosome 14 CNV

to influence the parasite’s sensitivity to artemisinin by the specific overexpression of two key

genes in this region: pftrx1 and pfspp. Both PfTrx1 and PfSpp play a role in the parasite’s anti-

oxidant defense system and/or protein damage stress response. Thioredoxin 1 is a key enzyme

in the Plasmodium NADPH-dependent thioredoxin system which is involved in the detoxifica-

tion of reactive oxygen metabolites, redox regulation of transcription factors, and control of

protein folding[77,78,94], while Signal Peptide Peptidase is a transmembrane protease compo-

nent of the ER-associated degradation pathway, which is utilized by the parasite to cope with

damaged or misfolded proteins[81]. Hence, the upregulation of pftrx1 and pfspp likely sup-

ports the increased capacity of the UPR which, in eukaryotic cells, subsequently employs traf-

ficking across cellular compartments, enzymatic processing of proteins to mediate their

folding and degradation, and attenuation of translation to mitigate the ER workload[95,96,97].

Consistent with this model, 6A-R and 11C-R both demonstrated differential expression of

genes related to translational control and the regulation of gene expression, including early

translational events (initiation), binding and processing of messenger RNA, as well as tran-

scriptional regulation via transcription factors and chromatin modification (see Fig 3A,

Tables A and B in S4 Table). It has been previously shown that that Plasmodium is also able to

cope with cellular stresses via translational repression involving the eif2α-mediated attenua-

tion of global protein synthesis[97,98,99], and the association of mRNA with RNA-binding

proteins that facilitate their stability (stress granules) or degradation (P-bodies)[98,99,100].

Transcriptional changes in many of these pathways were also observed in the in vivo isolates

[34]. Taken together, this data represents a spectrum of SNPs and CNVs that may represent

multiple, alternative genetic events that are yet to be observed or validated in the field but

could emerge and spread in the (near) future. These could either deepen the existing pfk13-

dependent artemisinin resistance phenotypes, or could give rise to new mechanisms com-

pounding alternative genetic backgrounds of P. falciparum populations (e.g. Indian or Afri-

can)[27,48,90].

Materials and methods

In vitro culture of Plasmodium falciparum
Two clonal parasite lines, named 6A and 11C, were previously derived from the P. falciparum
3D7 strain using limiting dilution[41] and subsequently used for in vitro drug selection. Con-

tinuous cultivation of parasites was performed as previously described[101]. Cultures were

maintained in purified human red blood cells at 1–2% hematocrit, in RPMI 1640 medium

(Gibco) supplemented with 0.25% Albumax I (Gibco), 2 g/L Sodium bicarbonate (Sigma), 0.1

mM hypoxanthine (Sigma), and 50 μg/L gentamicin (Gibco). Parasite cultures were kept at

37oC with 5% CO2, 3% O2, and 92% N2 and treated twice with 5% (v/v) sorbitol (Sigma) every

cycle to maintain stage synchronicity. Culture medium was replenished every 12–24 hours,

and freshly washed uninfected red blood cells (RBC) was added to the culture as needed. Mon-

itoring of parasitemia and parasite morphology was performed using microscopic evaluation

of thin blood smears that were first fixed with methanol (Merck), and then stained with

Giemsa (Sigma).

Ethical approval for the use of blood in this study was granted by the Institutional Review

Board of the Nanyang Technological University. All of the blood utilized for the in vitro culti-

vation of parasites was derived from healthy adult volunteers, and extracted by trained
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personnel at the National University Hospital Blood Donation Center, Singapore. All donors

provided their written informed consent.

In vitro selection of artemisinin-resistant Plasmodium falciparum
6A and 11C parents were each divided into two parasite lines: one selection line (6A-R,

11C-R), which would be subjected to artemisinin selection, and one control line (6A and 11C),

which would undergo mock treatment with dimethyl sulfoxide (DMSO) (Sigma). All parasite

lines were synchronized at 4 HPI and diluted to a parasitemia (percentage of parasitized eryth-

rocytes) of 2–5% prior to drug treatment. Each selection line was then pulse treated with a 900

nM artemisinin (Sigma) diluted in DMSO for four hours from 10–14 HPI; Control lines were

also pulse treated in parallel with pure DMSO, for four hours at 10–14 HPI. During treatment,

all parasites were kept at 2% hematocrit with 1 mL of parasitized blood. After treatment, the

media containing artemisinin and DMSO were removed, and the parasite pellets washed twice

with fresh media. Parasites were then resuspended in fresh media. Blood smears fixed with

methanol and then stained with Giemsa were prepared for each parasite line 20–24 hours after

washing to obtain post-treatment parasitemia as well as observe any morphological effects of

drug treatment. During the initial phase of drug selection, artemisinin-treated parasites were

allowed to recover to a viable parasitemia of at least 2% before artemisinin treatment. Once the

parasite lines were able to consistently survive artemisinin pressure, they were maintained as

synchronized cultures and subjected to pulse treatment with 900nM artemsinin from 10–14

HPI every other asexual cycle. Cultures were not kept away from artemisinin/DMSO treat-

ment for more than three consecutive generations. Both sets of parasite lines were subjected to

the same number of artemisinin and DMSO treatments throughout the course of drug selec-

tion, and at the same generations.

In vitro drug sensitivity assay

Standard (72-hour) drug assay and 4-hour pulse drug assay. Ring-stage parasites grow-

ing in a tightly synchronous culture were synchronized by treatment with 5% (v/v) sorbitol at

2–4 HPI, and diluted down to 1% parasitemia, 2% hematocrit. They were then dispensed into

24-well plates containing 12–18 serially diluted concentrations of the drug being tested to

make for a final parasitemia of 1%, at 1% hematocrit. For non-artemisinin antimalarial drugs

quinine (QN) (Sigma), chloroquine (CQ) (Sigma), mefloquine (MEF) (Sigma) and pyri-

methamine (PYR) (Sigma), parasites were incubated continuously for 72 hours with the drug

starting from 6 HPI and into the next invasion cycle. For artesunate (ATS) (Sigma), dihydroar-

temisinin (DHA) (Sigma), dithiothreitol (DTT) (Merck), epoxomicin (EPX) (Sigma) and

hydrogen peroxide (H2O2) (Merck), parasites were incubated in drug for 4 hours at 10–14

HPI, after which the cultures were washed twice with fresh media to remove the drug, and

finally resuspended at 1% hematocrit and then allowed to reinvade. In the case of artemisinin,

drug sensitivity was evaluated using the standard (72-hour) drug assay format, as well as the

4-hour pulse format at 10–14 HPI, 20–24 HPI and 30–34 HPI. Number of new, viable parasites

in each well on the subsequent cycle after invasion was then evaluated by flow cytometry using

a double staining method that utilizes Hoechst 33342 (Sigma) and dihydroethidium (Sigma) as

previously described[102]. All assays involved technical duplicates per dose and was always

done in parallel for 6A-R and 6A, and 11C-R and 11C at the same generations. Dose-response

curves were plotted and fitted using the ‘drc’ package in R; IC50 and IC504hr values were

obtained using the same package.

Ring-stage Survival assay (RSA). The RSA was performed as previously described[45].

Briefly, tightly synchronous parasites are synchronized at 1–2 HPI and then incubated with
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700 nM DHA for 6 hours, after which they were allowed to grow into the next invasion cycle

for 66–72 hours. The amount of remaining viable parasites was measured with flow cytometry

using Sybr Green I (Invitrogen) and MitoTracker Deep Red FM (Molecular Probes). All assays

were carried out in biological triplicates, where each experiment involved technical duplicates

per dose, and was always done in parallel for 6A-R and 6A, and 11C-R and 11C at the same

generations.

Genome sequencing. Genomic DNA that was to be used for whole genome sequencing

using the Illumina MiSeq platform was purified from parasitized RBCs using the Easy DNA

kit (Invitrogen) according to the manufacturer’s specifications. Raw reads were mapped back

to the Plasmodium falciparum 3D7 reference genome using the Burrows-Wheeler Alignment

tool (BWA)[103], and reads having a mapping quality score < 30 were discarded. The

sequence alignment data was then post-processed using SAMtools[104] and SNPs were called

using SAMtools:mpileup. Only high quality intragenic SNPs where the non-reference allele

has position coverage > 75% were included in the analysis. Hypervariable genes belonging to

multi-gene families were not taken into consideration.

Microarray-based comparative genomic hybridization. Genomic DNA to be used for

microarray-based comparative genomic hybridization (CGH) was isolated using the phenol-

chloroform extraction method[105]. CGH was then carried out on DNA from 6A-R, 6A,

11C-R and 11C as previously described in detail[106,107]. Genomic DNA (3 μg) was first

amplified and coupled with aminoallyl-dUTP (Biotium) using Klenow Fragment (3’- 5’exo-)

enzyme (New England Biolabs) and random (N9) primers (1 mM). The reaction products

were then purified using the MinElute PCR purification kit (Qiagen) following the manufac-

turer’s instructions. The Klenow reaction product (2–3 μg) was then labelled with either Cy5

(GE Healthcare) or Cy3 (GE Healthcare) in the presence of 0.1M NaHCO3 pH 9.0 for 4 hours

in the dark, and then purified using the MinElute PCR purification kit (Qiagen). Equal

amounts of Cy5-labelled sample DNA and Cy3-labelled reference DNA were then mixed with

2x Hybridization Buffer (Agilent Technologies) and deposited onto a microarray chip contain-

ing 10,367 probes covering over 5,000 genes in the Plasmodium falciparum genome. Microar-

rays were incubated at 65 o C in rotator oven (Agilent Technologies) for 20 hours and then

scanned using the PowerScanner (Tecan). Background subtraction, normalization and filter-

ing of raw signal intensities for each array was carried out using the R package ‘limma’[108],

and detection of copy number alterations was carried out using the R package ‘GADA’ (Geno-

mic Alteration Detection Analysis)[109].

Transcriptional profiling

Sample collection for transcriptional profiling. In order to ensure tight synchrony,

resistant and sensitive parasite cultures were subjected to five consecutive sorbitol treatments

over three generations prior to harvesting samples for the first timepoint for each experiment.

IDC transcriptome. Starting from the early ring stage (4 HPI), six timepoints for each

parasite line were harvested at 8-hour intervals over the course of the entire asexual blood

stage.

Steady state ring-stage transcriptome. Parasitized RBCs were harvested during the mid-

ring stage at the same timepoints that were targeted for arteminisinin selection. Six timepoints

were collected at 2-hour intervals starting from 10 HPI until 20 HPI.

Ring-stage artemisinin treatment transcriptome. Transcriptional profiling of parasites

under artemisinin pressure was also performed during the 4-hour window, and under the

same drug concentration (900 nM) used for artemisinin selection. Highly synchronized para-

sites were exposed to artemisinin at 10 HPI, and RBC fractions were collected at 1 hour, 2
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hours, and 4 hours after the start of treatment. In parallel, cultures treated with DMSO instead

of artemisinin were grown and harvested under the exact same conditions to serve as controls.

RNA extraction. Total RNA was extracted from tightly synchronized parasite cultures

using the TRIZol-Chloroform method as previously described in detail[107]. Briefly, the para-

sitized RBC pellet was resuspended in TRIzol reagent (Invitrogen). Chloroform (Fisher-Scien-

tific) was then added, and the resulting aqueous phase was recovered and mixed with

isopropanol to precipitate the RNA. The RNA was then resuspended in nuclease-free water

and stored in aliquots at -80 o C.

cDNA synthesis, SMART amplification and microarray hybridization. The protocol

for first strand cDNA synthesis, SMART amplification of double-stranded cDNA, and finally

microarray hybridization was carried out using the protocol previously published by Bozdech

et al.[107]. 500 ng of total RNA was used as the input for reverse transcription was carried

out using SuperScript II (Invitrogen). The cDNA product—which represents the total cDNA

pool—was then amplified using SMART-PCR using a mixture of aminoallyl-dUTP and

dNTPs. 4 μg of SMART-amplified samples were then labelled with Cy5. On the other hand,

the reference cDNA which was generated from pooling together RNA from all IDC stages of

3D7 was labelled with Cy3. Equal amounts of Cy5- and Cy3-labelled products were then

deposited onto a microarray chip containing 10,265 probes covering over 5,000 genes in the

Plasmodium falciparum genome. Background subtraction, normalization and filtering of raw

signal intensities for each array were done using the R package ‘limma’[108]. The resulting

log2ratio expression values of redundant probe sets representing a single gene were then aver-

aged to obtain the mean expression for that particular gene. These gene expression datasets

were then used for downstream analyses.

Data analysis for transcriptomic data. The IDC transcriptomes of each resistant and

sensitive parasite lines were reconstituted using the Fast Fourier Transform method described

previously[33,101]. Furthermore, the parasite age for each sample was subsequently estimated

with respect to a reference IDC transcriptome (Dd2 strain) based on a Spearman Rank Corre-

lation Coefficients as described by Mok et al.[33]. Significantly up- and downregulated genes

were identified at p-value < 0.05 and FDR < 0.25. The p-values for each gene were calculated

using pairwise student’s t-test and corrected by expression permutation (n = 1000) across

timepoints. FDR was estimated by expression permutation across genes (n = 1000). Z-scores

were also calculated for each gene according to the formula described in the previously pub-

lished work by Mok et al. 2011[33]. In brief, it takes into account the ratio of the signal differ-

ence between resistant and sensitive parasite lines to noise, and rescaled to the number of time

points. Genes were then ranked by z-scores and subjected to Gene Set Enrichment Analysis

(GSEA) to identify differentially expressed functional pathways[110]. Enriched gene sets hav-

ing a nominal p-value < 0.05 and FDR q value < 0.25 were considered to be statistically

significant.

Plasmid construction. Three candidate genes (PF3D7_1454700, 6-phosphogluconate

dehydrogenase (pf6pgd), PF3D7_1457200, Thioredoxin 1 (pftrx1), and PF3D7_1457000, Signal

Peptide Peptidase (pfspp) were chosen for functional validation using a stable, episomal over-

expression system. Full-length cDNA of each gene was first derived using gene-specific prim-

ers having the NheI restriction site on the 5’ end of the forward primer and the BamHI
restriction site on the 5’ end of the reverse primer to allow for unidirectional cloning into the

multiple cloning site (MCS). Each gene was inserted into pBcamR_3xHA vector[111] at the

BamHI/NheI sites on the MCS upstream of the triple hemagglutinin (HA) sequence in order

to obtain an HA-tagged protein product. The recombinant plasmids were then transfected

into 3D7-6A parasites as previously described[112] and maintained via positive selection with

2.5 μg/mL blasticidin (BSD) (Sigma). A parasite line was also generated by transfecting 3D7-
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6A parasites with the empty pBcamR_3xHA plasmid and grown in BSD alongside the overex-

pression parasite lines to serve as vector control. Primers used for generating inserts are listed

in S8 Table.

Quantitation of gene overexpression. To verify that the overexpression lines were indeed

producing a surplus of each candidate gene, real-time quantitative PCR (relative quantifica-

tion) was performed using gene-specific primers that are able to interrogate both the endoge-

nous and episomal transcript, and using PF3D7_1218600 (Arginyl-tRNA synthetase) as the

reference gene. The parasite line transfected with the empty pBcamR_3xHA vector was used

as the control sample for ΔΔCt.

Total RNA was first extracted from synchronized parasite cultures using the TRIZol-Chloro-

form method as described previously[107]. First strand cDNA synthesis was first carried out on

50 ng of each transfectant line using oligo-dT-primed reverse transcription using SuperScript II

Reverse Transcriptase (Invitrogen) according to the manufacturer’s instructions. The first-

strand product was then used as the starting template for real-time qPCR using KAPA SYBR

FAST qPCR Universal Master Mix. The ΔΔCt method was used to analyze the relative changes

in expression level for each of the four candidate genes, where ΔΔCt = [(Ct of Sample Target

Gene–Ct of Sample Reference Gene)–(Ct of Control Target Gene–Ct of Control Reference

Gene)], and 2-ΔΔCt is taken as the fold-change of the relative gene expression. All PCR reactions

were performed in triplicates. Primers used for quantitative PCR are listed in S9 Table.

Western blot analysis. The parasitized RBC fraction was first lysed with 0.1% Saponin

(Sigma) in 1 x PBS, and then washed three times with 1 x PBS. The resulting RBC-free parasite

pellet was then subsequently resuspended in 2 x Laemmli Buffer mixed with 1x EDTA-free

Protease Inhibitor (Roche), and then boiled at 100 o C for 10–15 mins. The supernatant con-

taining the total soluble protein lysate was collected and identical amounts of protein lysate

(100 μg) from each transfectant line was then loaded onto and separated using a 12%

SDS-PAGE gel. To probe the protein of interest, an anti-HA mouse monoclonal antibody

(Santa Cruz Biotechnology) at 1:2000 dilution was used, while an anti-β-actin mouse monoclo-

nal antibody (Sigma) at 1:2000 was used as a loading control. An horseradish peroxidase

(HRP)-conjugated goat anti-mouse antibody (Santa Cruz Biotechnology) at 1:2000 dilution

was used to probe the anti-HA primary antibody, and an HRP-conjugated sheep anti-mouse

antibody (GE Healthcare) at 1:2000 dilution was used against the anti-actin antibody. Detec-

tion was performed using the Immunocruz Western Blotting Luminol Reagent (Santa Cruz

Biotechnology) according to the manufacturer’s specifications, and the chemiluminescent

image was acquired using the Luminescent Image Analyzer LAS4000 System.

Supporting information

S1 Fig. Effects of a 4-hour pulse of 900 nM artemisinin on Plasmodium parasites at 10–14

HPI. Following a 4-hour pulse treatment with artemisinin of unselected 6A and 11C parasites

from 10–14 HPI, Giemsa-stained smears were prepared at three timepoints: right after treat-

ment, 14 hours after treatment and 24 hours after treatment. In parallel, smears of DMSO-

treated parasites were also monitored at the same timepoints for comparison.

(TIF)

S2 Fig. Stage-specific chemosensitivity profiling of in vitro-selected P. falciparum against

artemisinin. Plots depict the mean dose-response curves between resistant and control para-

site lines comparing their stage-specific sensitivity to a 4-hour artemisinin pulse at 20–24 HPI

(IC5020hpi/4hr) and 30–34 HPI (IC5030hpi/4hr)(A), and their artemisinin sensitivity across the

IDC using a standard drug assay format (IC50)(B). Drug assays were performed in biological
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triplicates.

(TIF)

S3 Fig. Chemosensitivity profiling of in vitro-selected P. falciparum against other antima-

larials and artemisinin-related compounds. Plots show mean dose-response curves compar-

ing the ring-stage sensitivity (IC5010hpi/4hr) of 6A-R vs. 6A, and 11C-R vs. 11C to a 4-hour

pulse of artemisinin derivatives dihydroartemisinin (DHA) and artesunate (ATS)(A), as well

as artemisinin-related compounds hydrogen peroxide (H2O2), epoxomicin (EPX) and dithio-

threitol (DTT)(C). Mean dose-response curves comparing chemosensitivity of 6A-R vs. 6A,

and 11C-R vs. 11C for quinine (QN), chloroquine (CQ), mefloquine (MEF) and pyrimeth-

amine (PYR) using a standard drug assay format (IC50) were also obtained (B). MEF sensitiv-

ity was also evaluated in a previously in vitro selected T996-derived artemisinin-resistant

parasite line. The histogram depicts the mean IC5010hpi/4hr for T996-R and its nonselected par-

ent, while the adjacent plot shows their corresponding mean dose-response curves (D). Drug

assays were performed in biological triplicates.

(TIF)

S4 Fig. Transcriptional profiling of in vitro-selected P. falciparum across the IDC and

under artemisinin pressure. Genome-wide transcriptional profiling was performed for all

parasite lines across the asexual blood stage (IDC) and under artemisinin pressure. (A)Heat-

maps represent the IDC transcriptomes of 6A-R, 6A, 11C-R and 11C across the IDC, over 6

timepoints (TP) and sampled at 8-hour intervals; Genes have been ordered according to the

phase and frequency of expression using Fourier analysis. The right panel shows parasite age

in HPI of each parasite line that was estimated by calculating the maximum Spearman rank

correlation of the transcriptomic information at each timepoint with a reference IDC tran-

scriptome. (B)Comparative transcriptomic analysis was also done on resistant vs sensitive par-

asites under a 4-hour pulse of artemisinin from 10–14 HPI. Heatmaps show significantly up-

and downregulated genes (corrected p-value < 0.05, FDR< 0.25) in artemisinin-resistant par-

asites relative to their artemisinin-sensitive controls. Noted are the differentially expressed

pathways between artemisinin-resistant and artemisinin-sensitive parasites (GSEA p< 0.05,

FDR< 0.25). All genes from the total transcriptomic datasets were ranked by their z-score

based on the difference in expression between resistant and sensitive lines, and used for GSEA.

A more detailed list of differentially expressed genes and pathways can be found in S2A File

and Table A in S5 Table (6A-R vs 6A), and S2B File and Table B in S5 Table (11C-R vs 11C).

Data shown represents time-course transcriptomes over a single IDC.

(TIF)

S5 Fig. Tracking CNV stability of in vitro-selected P. falciparum. To check for the stability

of the CNVs identified, CNV profiles for 6A-R and 11C-R were assessed three times across

multiple generations and continuous cultivation under artemisinin selection over the course

of five months. Chromosome plots reflect the subtracted log2ratio of the artemisinin-resistant

parasite lines relative to their control counterparts.

(TIF)

S6 Fig. Ring-stage chemosensitivity profiling of pftrx1-, pf6pgd- and pfspp-overexpression

transfectants against artemisinin. Plots depict mean dose-response curves against a 4-hour

pulse of artemisinin at the ring stage for each of the pftrx1-, pf6pgd-, and pfspp- overexpression

parasite lines, shown side by side with that of the vector control. Drug assays were performed

in biological triplicates.

(TIF)
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S1 Table. IC5010hpi/4hr values of 6A-R, 6A, 11C-R and 11C throughout the course of arte-

misinin selection. Numbers represent the IC5010hpi/4hr values (mean ± standard deviation).

(PDF)

S2 Table. Artemisinin IC5020hpi/4hr, IC5030hpi/4hr and IC50 values of 6A-R, 6A, 11C-R.

Numbers represent the IC504hr and IC50 values (mean ± standard deviation).

(PDF)

S3 Table. IC values of 6A-R, 6A, 11C-R for other antimalarials (DHA, ATS, QN, CQ, MEF

and PYR) and artemisinin-related compounds (H2O2, DTT and EPX). Numbers represent

the IC504hr values (mean ± standard deviation) for DHA, ATS, H2O2, DTT and EPX, and the

72-hour IC50 values (mean ± standard deviation) against non-artemisinin derivatives (QN,

CQ, MEF, PYR).

(PDF)

S4 Table. Differentially expressed pathways between artemisinin-resistant and artemisi-

nin-sensitive parasites at 10–20 HPI (mid to late ring stage). Differentially expressed path-

ways between 6A-R vs 6A (Table A) and 11C-R vs 11C (Table B) were identified using GSEA.

Enriched gene sets with a p-value < 0.05 and FDR < 0.25 are considered statistically signifi-

cant.

(PDF)

S5 Table. Differentially expressed pathways between artemisinin-resistant and artemisi-

nin-sensitive parasites under 900 nM artemisinin pressure from 10–14 HPI. Differentially

expressed pathways between 6A-R vs 6A (Table A) and 11C-R vs 11C (Table B) were identi-

fied using GSEA. Enriched gene sets with a p-value < 0.05 and FDR < 0.25 are considered sta-

tistically significant.

(PDF)

S6 Table. Copy number-amplified genes detected in 6A-R and 11C-R. Listed are genes that

show an increase in copy number in resistant parasite lines relative to their sensitive controls.

Significant differences in mRNA expression between resistant and sensitive parasite lines

across the IDC were evaluated using pairwise student’s t-test and corrected by expression per-

mutation (n = 1000) across timepoints. FDR was estimated by expression permutation across

genes (n = 1000). Genes having a corrected p-value < 0.05 and FDR< 0.25 are considered to

be significantly upregulated.

(PDF)

S7 Table. IC5010hpi/4hr values of overexpression and vector control parasite lines. Numbers

represent the values (mean ± standard deviation).

(PDF)

S8 Table. Primers used for PCR amplification of full-length cDNA inserts for generating

overexpression constructs.

(PDF)

S9 Table. Primers used for quantitative real-time PCR amplification.

(PDF)

S1 File. Significantly up- and downregulated genes between artemisinin-resistant and arte-

misinin-sensitive parasites at 10–20 HPI (mid to late ring stage). Differentially expressed

genes between 6A-R vs 6A (S1A File) and 11C-R vs 11C (S1B File) were identified using pair-

wise student’s t-test and corrected by expression permutation (n = 1000) across timepoints.
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FDR was estimated by expression permutation across genes (n = 1000). Significantly up- and

downregulated genes were identified at corrected p-value < 0.05 and FDR < 0.25.

(XLSX)

S2 File. Significantly up- and downregulated genes between artemisinin-resistant and arte-

misinin-sensitive parasites under 900 nM artemisinin pressure from 10–14 HPI. Differen-

tially expressed genes between 6A-R vs 6A (S2A File) and 11C-R vs 11C (S2B File) were

identified using pairwise student’s t-test and corrected by expression permutation (n = 1000)

across timepoints. FDR was estimated by expression permutation across genes (n = 1000). Sig-

nificantly up- and downregulated genes were identified at corrected p-value < 0.05 and

FDR< 0.25.

(XLSX)
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