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Abstract
Genetic variation can alter brain structure and, consequently, function. Comparative statistical analysis of mouse 
brains across genetic backgrounds requires spatial, single-cell, atlas-scale data, in replicates—a challenge for 
current technologies. We introduce Atlas-scale Transcriptome Localization using Aggregate Signatures (ATLAS), 
a scalable tissue mapping method. ATLAS learns transcriptional signatures from scRNAseq data, encodes them 
in situ with tens of thousands of oligonucleotide probes, and decodes them to infer cell types and imputed 
transcriptomes. We validated ATLAS by comparing its cell type inferences with direct MERFISH measurements 
of marker genes and quantitative comparisons to four other technologies. Using ATLAS, we mapped the central 
brains of five male and five female C57BL/6J (B6) mice and five male BTBR T+ tf/J (BTBR) mice, an idiopathic 
model of autism, collectively profiling over 40 million cells across over 400 coronal sections. Our analysis revealed 
over 40 significant differences in cell type distributions and identified 16 regional composition changes across 
male-female and B6-BTBR comparisons. ATLAS thus enables systematic comparative studies, facilitating organ-
level structure-function analysis of disease models.

Main
The quest to link genotype to phenotype is a cornerstone of biology1. Advances in molecular mapping now allow 
for the measurement of complex phenotypes, such as the spatial organization of cellular transcriptional states 
in organs2. Mapping multiple genetic backgrounds will deepen our understanding of how genetics shape organ 
structure, especially for neurodevelopmental conditions like autism, which have strong genetic underpinnings3. 
However, atlas creation remains limited to single genetic backgrounds or individual animals due to cost and 
resource constraints4,5, restricting our understanding of how genetic variation impacts organ architecture. Just as 
genome sequencing became more feasible with the availability of reference genomes, the availability of spatial 
reference atlases now enables the development of higher throughput approaches for systematic exploration of 
the relationship between genetics, anatomy, and physiology.

Spatial transcriptomics is the core technology for organ mapping2,6, but its ability to capture all RNA molecules is 
inherently limited. The ease of mapping nucleic acids and the wealth of information the transcriptome provides 
about cellular phenotypes7 have made spatial transcriptomics the leading method for organ-wide studies. 
However, given the enormous number of mRNA molecules—ranging from 10¹6 in large human organs like the 
liver or brain to 10¹³ in smaller organs like the mouse brain—counting every mRNA molecule is impractical, 
even when only a subset of an organ is mapped via sectioning. Fortunately, capturing all mRNA molecules 
is unnecessary. The transcriptome is highly redundant, and most spatial transcriptomic technologies capture 
less than 1% of total mRNA, relying on computational methods to integrate this data with scRNAseq to build 
comprehensive atlases. These integration methods have evolved significantly over the past decade, from 
simple landmark gene approaches8,9 to advanced computational techniques that harmonize scRNAseq and 
spatial data10. Current mouse brain atlases, built with spatial barcoding11, in situ sequencing12, and hybridization 
methods4,5, rely on these techniques to create detailed maps.

Given that transcript-level spatial transcriptomics data serves as signatures for data integration, we explored 
whether more efficient methods could yield more informative signatures. Single-cell transcriptomics tools often 
reduce the dimensionality of sparse, high-dimensional transcriptomes using techniques like principal component 
analysis (PCA)13 or non-negative matrix factorization (NMF)14, demonstrating that these reduced-dimensional 
approximations of transcriptional states serve as powerful signatures for scRNAseq data integration. Currently, 
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such signatures are accessible only in silico, requiring laborious RNA counting. Could these transcriptional 
signatures be measured directly, bypassing the need for individual gene expression measurements? Aggregate 
measurements, where multiple genes are measured together, have been used for compressed sensing15 and to 
enhance fluorescence detection sensitivity16. We realized that, with the appropriate design of an oligonucleotide 
probe pool, aggregate measurements could directly encode lower-dimensional cellular transcriptional signatures 
in situ. This approach enables the direct measurement of transcriptional states without counting individual RNA 
molecules. It allows us to measure transcriptional signatures at the cell level, making ATLAS suitable for large-
scale measurements and facilitating comprehensive organ mapping.

Here, we introduce ATLAS, a scalable tissue mapping technology that combines in situ encoding, based 
on existing reference atlas data (Figure 1), with in silico decoding to generate cell type maps and imputed 
transcriptomes (Figure 2). We validated ATLAS by directly measuring marker genes in ATLAS samples and 
conducting quantitative comparisons with reference atlas data (Figure 2). To demonstrate its scalability, we 
performed comparative studies of sex dimorphism in B6 mice and a comparison between male B6 and BTBR 
animals, an autism model. We mapped the central brain region (CCFx 4.5-9.5 mm) using 21–49 coronal sections 
per brain. ATLAS produced detailed cell type maps and imputed transcriptomes for over 40 million cells from 
405 sections across 15 animals. Using these data, we reconstructed 3D cell type distributions across the three 
conditions (Figure 3). Two complementary comparative analyses were conducted: first, identifying cell types 
with statistically significant differences in spatial distribution—two in the male-female comparison and 41 in the 
B6-BTBR comparison (Figure 4); and second, identifying differences in overall cell type composition, revealing 
two regions with differences in male-female comparisons and 14 regions in B6-BTBR comparisons (Figure 5). 
These results demonstrate the power of ATLAS in revealing how genetic variation influences organ architecture.

In situ encoding of cellular transcriptional signatures
ATLAS expands the capabilities of encoding hybridization from binary codes to linear projection. Encoding 
hybridizations like MERFISH17 and seqFISH18 rely on binary bipartite codebook matrices, where each matrix 
element bij represents the mapping between gene i and readout j, achieved using pools of bivalent DNA oligos 
that bind both the gene and the readout. To extend beyond binary mappings, we designed oligo pools to 
represent continuous weights wij, where each weight corresponds to the number of probes per gene i for a given 
readout j, allowing hybridization to perform a matrix multiplication of a nonnegative weight matrix with a cellular 
transcriptome vector. This enables the projection of cellular mRNA into a low-dimensional space in situ (Figure 
1b). We implemented this using DPNMF, a variant of non-negative matrix factorization19,20, which reconstructs 
gene expression data while separating predefined labels, producing sparse, low-dimensional factorizations. 
Using BICCN single-cell transcriptional data and cell-type labels21, we derived a DPNMF projection matrix that 
reduces 6,133 genes into an 18-dimensional transcriptional signature. The matrix was scaled and digitized to 
match the number of encoding probes binding sites available. DPNMF’s sparsity made this feasible with a total 
of 31,564 probes in the final oligo pool, enabling efficient in situ implementation of a dimensionality reduction 
operation. 

To ensure that in situ measurements accurately reflected the designed linear projections, we optimized the 
protocol to minimize non-specific binding and eliminate non-specific signals. Building on the MERFISH protocol 
22, we made several adjustments (see Methods). Key changes included: (1) Clearing twice, before and after 
encoder probe hybridization; (2) RNA encoder probes with higher melting temperatures than DNA, allowing them 
to stay bound during high-temperature clearing and enable more stringent hybridization with DNA readout probes 
(Extended Figure 2ab); (3) Enhanced mRNA anchoring to polyacrylamide gels using melpha-X 23, ensuring 
RNA retention during clearing (Extended Figure 2c); and (4) Acquisition of background images before each 
hybridization round for accurate subtraction of residual fluorescence (Extended Figure 2d). These optimizations 
enabled us to reliably use total integrated fluorescent intensity to measure cellular transcriptional signatures.

We then stained a brain section with DPNMF probes and measured the projection of cellular transcriptional states 
(Figure 1c). The resulting data revealed distinct transcriptional states across different cells, which produced 
brain regions with clear spatial signatures. Some projected components displayed multimodal distributions, 
while others exhibited more continuous patterns, indicating multiple distinct subpopulations (Extended Figure 
3a) providing an insight into DPNMF encoding. Specific regions, such as the cortical layers, demonstrated clear 
combinatorial encoding of transcriptional states (Figure 1d). These results show that our encoding approach 
captures rich and diverse information about cellular transcriptional states.
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Decoding and validation of ATLAS signatures
The aggregate signatures represent a dimensionality-reduced version of cellular transcriptional states, making 
them suitable for direct use in unsupervised clustering. Using standard Leiden clustering on a correlation-based 
KNN graph of cells (see Methods), we identified distinct clusters that qualitatively align with known brain regions, 
supporting the notion that ATLAS signatures are highly informative and provide insights into underlying cellular 
transcriptional states (Extended Figure 3b). This demonstrates the strength of using dimensionality-reduced 
representations for classifying cells, especially in cases where no agreed-upon cell type taxonomy exists. 
However, continuously generating new cell type taxonomies with each brain mapping effort is impractical and 
adds confusion within the research community, as it necessitates mapping across different nomenclatures 24. To 
address this challenge within the ATLAS framework, we developed a complementary supervised approach that 
aligns ATLAS’s decoding with existing reference nomenclature, reducing confusion across studies.
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To decode ATLAS signatures into predefined cell types, we developed a Bayesian recursive harmonization 
and classification approach called SCALE (Single Cell Alignment Leveraging Existing data, Extended Figure 
4a, see Methods for details). The Bayesian framework was chosen for two key reasons: (1) it maximizes the 
use of reference atlas information, consistent with the principles of ATLAS, and (2) it leverages strong prior 
knowledge of cell type distributions based on anatomical location in the brain. We generated spatial probability 
maps for each cell type subclass and incorporated supervised learning based on reference scRNAseq data 
to infer the posterior probability of a transcriptional signature belonging to a specific cell type. The process 
involved projecting scRNAseq data into a lower-dimensional space and harmonizing it with ATLAS data through 
a recursive classification and correction approach. Following the strategy used to harmonize reference atlas 
FISH with scRNAseq data 4, we stepped through the cell-type dendrogram, applying simple linear corrections 
after each classification step (Extended Figure 4ac). This recursive descent brought the ATLAS data into the 
projected scRNAseq reference space, making imputation a straightforward process using a KNN approach. The 
final cell-type calls qualitatively matched expected data (Figure 2b).

To validate ATLAS, we employed two complementary approaches: direct measurement of marker genes and 
quantitative comparison to existing reference atlases. Marker genes were measured following a modified 
MERFISH protocol, where cellular mRNAs were anchored to a polyacrylamide gel (see Methods). After imaging, 
the MERFISH probes were removed using denaturing conditions, and the same sample was hybridized with 
ATLAS RNA encoding probes. Because the tissue mRNAs were covalently anchored to the gel, we experienced 
minimal RNA loss, allowing repeated imaging with both protocols. Using this procedure, we measured the 
expression of 170 marker genes, a subset of the original set used in the reference atlas 4, for cells in a single 
coronal section hemisphere, and obtained their cell type information using ATLAS encoding/decoding. We found 
remarkable agreement between the reference and ATLAS-decoded marker genes for all cell types, qualitatively 
validating ATLAS decoding (Figure 2c). Initial quantification showed a strong correlation in cell type abundance 
between ATLAS and reference data (Pearson correlation of 0.87). However, this does not account for spatial 
positioning. To quantitatively assess spatial predictions, we compared ATLAS to multiple reference datasets, 
as none represent a definitive biological ‘ground truth.’ We developed a statistical pairing procedure using a 
greedy algorithm to optimize correlation scores and spatial proximity (see Methods), generating a distribution of 
correlation values for each cell pair across 336 shared genes (Figure 2e). ATLAS imputation showed comparable 
agreement with MERSCOPE and MERFISH atlases, similar to the agreement between these two independently 
measured datasets. StarMAP, which uses in situ sequencing and a different scRNAseq dataset for imputation, 
had the lowest agreement with other methods. Notably, the strongest agreement was observed between ATLAS 
and MERFISH imputation, demonstrating that 18-dimensional cellular-level transcriptional signatures can be as 
effective as 1100-dimensional gene-level signatures for imputation purposes. These validation analyses confirm 
that ATLAS provides accurate cell type inference and gene expression imputation.

Scaling acquisition to map 15 mouse brains
Encouraged by the high quality of the ATLAS signatures, we expanded the scale of data collection. Iterative 
FISH approaches rely on high-magnification imaging and a closed chamber design, imaging one coverslip at 
a time. To fully leverage ATLAS’ capabilities for large-area imaging with low magnification, we redesigned the 
fluidics system to use an open chamber design (Extended Figure 5). This allowed for multi-well imaging, where 
three wells were hybridized while the other three were imaged, enabling continuous imaging and minimizing 
the impact of hybridization time. We also used large 40 mm coverslips in each of the six wells, accommodating 
four coronal brain sections per coverslip. A single 3-day imaging run thus captures data from 24 brain sections. 
Data were collected from 15 brains across three conditions (B6 female, B6 male, BTBR male). Initially, each 
brain was sectioned into 24 serial sections, spaced 200 µm apart, covering CCFx from 4.5 to 9.5 mm. The 20 
µm-thick sections were taken in triplicate, allowing us to replace sections that did not meet quality standards 
(see methods). For instance, brain WTM05 required three imaging runs due to section failures in the first two, 
ultimately resulting in 49 sections for this brain. After quality control (see methods), the dataset comprised over 
40 million cells from over 400 sections (Figure 3a, Extended Figure 6).

This large dataset was then used to construct 3D spatial distribution maps for all 334 cell types at the subclass 
level across the three mapped conditions (Figure 3c, see Methods for details). In constructing these surfaces, 
we assumed left-right brain symmetry, effectively increasing the sample size from five to ten per condition. This 
larger sample size helped address missing values, primarily caused by sectioning artifacts such as tears, folds, 
etc. Focusing on subclass granularity, we created volumetric estimates of the spatial abundance for each cell 
type using 100 µm³ voxels. All statistical comparisons between conditions employed a permutation strategy, 
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where animal labels were permuted, and hundreds of thousands of volumetric cell-type spatial abundances were 
inferred under the null hypothesis that there are no differences between genetic backgrounds.

Differences in spatial distribution at the cell type level
Building on the accuracy (Figure 2) and scale (Figure 3) of our cell-type volumetric maps, we conducted a 
comparative analysis to identify differences in spatial distributions across B6 male vs. female and B6 male vs. 
BTBR male. We focused on the spatial distribution of each of the 334 subclasses across the two conditions (see 
Methods). To ensure that our analysis captured spatially explicit differences, we first calculated for each voxel, 
the difference (residual) between the two conditions. We then quantified the overall spread of residual distribution 
using entropy measure. This approach quantifies the divergence between spatial distributions while maintaining 
spatial context, where lower entropy indicates greater similarity and higher entropy reflects more pronounced 
differences. Statistical significance was assessed by comparing the observed entropy values to a null distribution 
generated through permutation. Permutation was performed on the animal label, and the resulting p-values were 
adjusted for multiple hypothesis testing using the false discovery rate (FDR). 
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The male-female comparison revealed significant spatial differences in two GABAergic neuron types (Figure 4a, 
Supplementary Table 1). The first, ‘076 MEA-BST Lhx6 Nfib Gaba,’ aligns with neuronal populations previously 
linked to male social behaviors 24,25. The second, ‘050 Lamp5 Lhx6 Gaba,’ had not been previously implicated 
in sexual dimorphism, yet expresses markers associated with neurons from the sexually dimorphic preoptic 
area (POA) 24, a region known to regulate sex-specific brain function 26. Analyzing the magnitude and spatial 
distribution of these differences (Figure 4c), we found that they are localized to the hypothalamus and affect up 
to ~1% of neurons in regions such as the medial amygdala (MEA), indicating a modest but regionally specific 
impact.

The B6-BTBR comparison revealed 41 significant differences in cell type distributions, affecting a larger number of 
brain regions and showing greater magnitude than the male-female comparison (Figure 4ab). These differences 
included both inhibitory and excitatory neuron subclasses. Notably, changes were enriched in the Agranular 
Insular cortex (AIv and AId), with overall differences in neuronal populations exceeding 10% in these regions. 
Previous studies have also identified the insular cortex as a key region of difference in BTBR animals 27,28, where 
altered cell type composition is thought to affect multisensory integration compared to B6 mice. Another region 
showing over 10% change was the dorsal raphe nucleus (DR), in agreement with prior studies using broader cell 
type inference from antibody staining 29. 

These findings underscore the strengths of ATLAS in comparative spatial distribution analysis, revealing both 
well-characterized and previously unexplored differences in cell type spatial distributions. The high granularity 
of transcriptionally defined neuron types provided more detailed insights than prior histopathological studies, 
which reported only modest differences between B6 and BTBR brains 30. However, using high-granularity cell 
types as a comparison unit poses challenges: (1) molecular changes within a cell type may not significantly alter 
its transcriptional state enough to change ‘type identity,’ and (2) localized shifts in cell type distribution may be 
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difficult to detect when most of the cell type remains spatially consistent. While the first challenge is intrinsic to 
ATLAS and requires further data, the second could be addressed through complementary analysis that compares 
spatial distributions on a voxel level rather than by cell type.

Regional differences in cell type composition 
The composition of cell types across brain regions plays a key role in shaping brain function. To assess local and 
regional differences in cell type composition for the male-female and B6-BTBR comparisons, we calculated the 
voxel-wise correlation distance of cell type composition vectors between the two conditions. These correlation 
distances were compared to a null distribution generated by permuting animal labels, resulting in a 3D probabilistic 
map that highlights spatial locations where differences between conditions are unlikely to arise by chance (Figure 
5).
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We identified two adjacent regions within the hypothalamus that exhibited significant sexual dimorphism. Region 
1 overlaps with the anterior hypothalamic nucleus (AHN), while Region 2 primarily overlaps with the ventral 
premammillary nucleus (PMv). Both regions are known to be sexually dimorphic31, though they have been 
studied to different extents. Interestingly, the AHN was one of the first sexually dimorphic regions identified in 
rats in 1977 32 and was initially believed to be similar across mammals. However, follow-up studies showed 
that, unlike in rats, there are no morphological differences in the AHN of mice33. More recent molecular studies 
have re-established its sexually dimorphic nature34, and our findings of specific neuronal cell type differences 
further refine the molecular resolution of sexual dimorphism in the AHN. Region 2, the PMv, is a well-established 
sexually dimorphic region, with roles in maternal aggression35, reproductive control36, male social behavior37, and 
intermale aggression38. Previous studies identified sexually dimorphic neuron populations within the PMv (e.g., 
PMv-DAT39, PMv-PACAP40), complementing our systematic identification of subclass-level abundance changes. 
Interestingly, although we identified several neurons associated with the ventromedial hypothalamus (VMH), 
a known sexually dimorphic region located between the AHN and PMv, the VMH itself did not show significant 
differences (p-value = 0.08). Interpreting such negative results is challenging as it could simply be that we do 
not have the statistical power to find differences and further analysis using the high throughput capabilities of 
ATLAS may clarify this. It is also possible that sexual dimorphism in the VMH is driven more by gene expression 
or chromatin state changes than by cell type abundance, an open question in many sexually dimorphic brain 
regions41.

We identified 14 regions with distinct cell type compositions in BTBR males compared to B6 males. Regions 3 and 
5 showed a marked decrease in oligodendrocytes in BTBR mice, alongside a mild increase in cortical neurons. 
This aligns with the BTBR model’s lack of a corpus callosum 30, a region typically enriched in oligodendrocytes. 
These regions also overlapped with areas with high morphological difference from the CCF reference (Extended 
Figure 7). Region 13 also overlaps with fiber tracts, but instead of an increase in oligodendrocytes, we 
observed a notable rise in HPF CR neurons. In contrast, Regions 6, 8, 9, and 10 exhibited higher numbers of 
oligodendrocytes in BTBR mice, accompanied by reductions in PAG-RN Nkx2-2 Otx1 GABAergic neurons in 
Region 6, and decreases in TH Prkcd Grin2c glutamatergic neurons in Region 9, along with multiple cell type 
changes in Regions 8 and 10. Region 4 overlaps with the retrosplenial cortex, which has been shown to have 
reduced volume in BTBR mice via fMRI, though molecular details were lacking 42. Regions 12, 14, 15, and 
16 overlap with various hypothalamic nuclei, and across these regions, more than 10 cell types showed over 
5% compositional differences. Regions 7 and 11 were dominated by a switch between two closely related cell 
types (L6 CT CTX to L6 IT CTX in Region 7, and STR D1 to STR D6 in Region 11). Given that the underlying 
transcriptional changes in these cells are more continuous than implied by these discrete labels, it is likely that 
the differences in these regions reflect more gradual transcriptional shifts, which are captured as compositional 
changes in our analysis that places cells into distinct categories. 

These findings demonstrate ATLAS’s capability to perform large-scale comparative compositional analyses 
across spatial volumes exceeding 400 mm³, with voxel sizes of 0.001 mm³, each containing tens of cells. 
Many of the regions identified as compositionally different were previously associated with sexual dimorphism 
or behavioral differences between B6 and BTBR mice, while other regions are novel. Further investigation is 
required to elucidate the functional implications of these newly identified changes in cellular composition across 
these regions.

Discussion
ATLAS is a scalable approach for mapping cellular transcriptional states by learning transcriptional signatures 
from reference scRNAseq data, encoding them in situ with oligo pools, and decoding them to infer cell types and 
imputed transcriptomes. By incorporating data integration from the outset, ATLAS optimizes tissue mapping by 
eliminating the need to measure individual genes, relying instead on transcriptional signatures derived from matrix 
factorization. We validated ATLAS’s accuracy through direct measurements of marker genes and quantitative 
comparison with four other brain atlases, demonstrating its performance to be on par with or better than traditional 
gene expression reconstruction methods. ATLAS’s high throughput, as demonstrated by profiling over 40 million 
cells across 15 animals, enabled in-depth comparative analyses that revealed significant differences in cell-type 
spatial distributions and regional composition across the brain. In the male-female comparison, ATLAS identified 
differences in two GABAergic neuron types and highlighted sexually dimorphic regions such as the anterior 
hypothalamic nucleus (AHN) and the ventral premammillary nucleus (PMv), both linked to sex-specific behaviors. 
In the B6-BTBR comparison, ATLAS uncovered 41 distinct cell types with spatial distribution differences and 
regional changes across 14 brain regions, including reductions in oligodendrocytes and increases in cortical 
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neurons in the Agranular Insular cortex and dorsal raphe nucleus, regions previously associated with autism-
related behaviors. Crucially, ATLAS not only confirmed established differences but also uncovered novel regions 
and cell type variations, generating key hypotheses about molecular neuroanatomical differences underlying 
functional variations between genetic backgrounds. This demonstrates the power of ATLAS as a comprehensive 
tool for systematic tissue mapping and comparative studies of brain structure-function relationships.
 
ATLAS’s scalability arises from its shift from single-molecule to single-cell imaging, resulting in ~100x faster 
imaging and ~100x smaller image datasets, simplifying downstream computational analysis. Importantly, this 
benefit comes without a reduction in accuracy. However, there are downsides to transitioning from molecule-level 
to cell-level transcriptional signatures. First, ATLAS lacks subcellular resolution. While this can be addressed by 
combining ATLAS with MERFISH to capture submicron gene expression data, doing so reintroduces molecule-
level measurements, counteracting ATLAS’s key advantages. Second, ATLAS requires high-quality scRNAseq 
reference data. Although the decreasing cost of scRNAseq and the growing availability of reference datasets 
mitigate this issue in most cases, challenges remain when mapping nontraditional model organisms or disease 
conditions with heavily perturbed transcriptional states, where generating new reference data would increase 
overall costs. Third, ATLAS completely relies on data integration with scRNAseq. While gene-level transcriptional 
signatures also benefit from data integration, they can still be interpreted directly without it. ATLAS’s deep reliance 
on data integration is both its greatest advantage—enabling its substantial scalability—and its most significant 
limitation, as it makes the method more indirect. This trade-off ensures that there will always be a role for 
approaches providing direct gene expression measurements.

Several avenues exist for improving ATLAS. First, the reference dataset used to design the encoding scheme 
was outdated and only included scRNAseq data from the cortex and hippocampus 21. The fact that this encoding 
performed well across other brain regions highlights the robustness of our approach, but updating the reference data 
would further enhance ATLAS’s accuracy. Second, in this study, we chose to use 18-dimensional transcriptional 
signatures. This choice represents a tradeoff between accuracy and throughput, and future applications of 
ATLAS should adjust this hyperparameter to balance throughput needs and decoding complexity. Third, ATLAS’s 
throughput could be significantly increased through signal amplification methods, reducing imaging times and 
potentially eliminating the need to capture background signals, which could cut imaging time in half. However, 
the amplification must be linear to preserve the accurate representation of cellular transcriptional states—a 
requirement that does not apply to transcript-level measurements. This limits the use of non-linear amplification 
methods like RCA 43, but both bDNA 44 and HCR 45 offer promising avenues for linear amplification, potentially 
boosting throughput by another 10x. Fourth, the polyacrylamide RNA anchoring and extensive clearing used 
in ATLAS make it compatible with light sheet imaging, which could further increase throughput and enable 3D 
reconstruction of entire organs. Finally, while this study focused on cell type-related gene expression programs, 
ATLAS could be adapted to map any gene expression program involving multiple genes—such as those related 
to inflammation, cancer, or stress—by incorporating additional aggregate signatures, thereby providing cellular 
insights beyond cell type identity. 

Databases like the Protein Data Bank (PDB) have been essential in understanding the structure-function 
relationship at the molecular level, often through comparisons of wild-type and mutated protein structures. 
Similarly, ATLAS offers a way to reconstruct anatomical structures at single-cell resolution across conditions with 
known genetic and functional differences. This paves the way for the creation of an ‘Organ Data Bank,’ analogous 
to the PDB, that would enable systematic analysis of the relationship between organ structure (anatomy) and 
function (physiology).

Data and code availability
All data is available here (https://doi.org/10.5281/zenodo.13851748) and code can be found here (ATLAS 
https://github.com/wollmanlab/ATLAS_Mouse_Brain/ MERFISH https://github.com/wollmanlab/PySpots 
Imaging https://github.com/wollmanlab/Scope Fluidics https://github.com/wollmanlab/Fluidics)
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Methods: 

Encoding Matrix Design

Encoding Matrix was fit using SMART-seq data collected from the mouse whole cortex and hippocampus due to 
its high capture efficiency per cell 1. Gene expression was normalized to a total sum of 100,000 Genes with an 
average expression below 1 in any cell type were removed to encourage weight assignment to higher expressed 
genes. Genes that had an average expression above 100 in any cell type were also removed to encourage 
the use of more genes as highly expressed genes have a strong effect on reconstruction accuracy as well as 
cell type distances purely due to magnitude. Potential encoding probes were designed for each gene using 
Paintshop with a probe length of 30bp. Genes were further filtered if no probes could be designed. Reference 
dataset was class balanced to the cluster level to ensure that rarer cell types had a meaningful effect on the 
design. Encoding matrix was fit using a modified version of Discriminant Projective Non Negative Matrix Fac-
torization (DPNMF 2,3) which consists of a discriminant aspect that maximizes the variance between cell types 
while minimizing the variance within a cell type as well as a reconstructive aspect that increasing the accuracy 
of gene reconstruction. A high mu value of 50 was used for the discriminant aspect ensuring that more weight 
was applied to the discriminant aspect than the reconstruction aspect. The resulting loading matrix was scaled 
bitwise and integerized to maximize the utilization of the encoding probes that were designed for each gene. This 
involved clipping the highest weighted genes per bit and scaling so that the highest weighted genes utilized all 
encoding probes that were possible for those genes. The integerized encoding matrix was then clipped for each 
gene at the maximum number of probes that could be designed for that gene (i.e. if a gene only had 27 probes 
but needed a weight of 30 the encoding matrix was clipped to 27). Resulting encoding matrix consisted of 6,654 
Genes and 35,919 Probes. 

Encoding Probe Design

A complex oligo pool of encoding probes was designed for ATLAS consisting of 35,919 encoding probes, tar-
geting 6,654 genes. ATLAS encoding probes were engineered to contain a 30-nucleotide target sequence with 
specific homology to the mRNA of interest. The targeted sequences for the encoding probes were designed 
to have a GC content ranging from 45% to 65%, resulting in a melting temperature between 65°C and 72°C. 
20-nucleotide readout arms were appended to the ends of the target sequence, and concatenated by two flank-
ing regions designed for primer amplification. Two primers, a forward and reverse, were designed for the initial 
amplification of the oligo pool, with minimal homology, to any encoding probe. The reverse primer was designed 
with a NheI restriction digest site, used in later steps. An additional forward primer containing a T7 promoter was 
also designed for subsequent rounds of PCR amplification. 

For marker gene validation probes, an oligo pool of 16,320 encoding probes  was designed to target 170 genes. 
The probe design follows the same structure as the ATLAS probes, with the key difference being that four read-
out arms were appended to the ends of the target sequences instead of three. Additionally, the same forward and 
reverse primers were incorporated at the ends of the probes. 

Encoding Probe Amplification

The template molecules for the ATLAS oligo pool (Twist Biosciences) were amplified in two limited cycle PCR 
reactions to minimize the formation of nonspecific products. A small-scale PCR reaction was first carried out 
using 0.4 ng/uL of the initial Twist template, following the manufacturer’s recommended guidelines. KAPA HiFi 
hot start ready mix (Fisher Scientific, 50-196-5217) was used for PCR amplification, with 0.3 µM of primers. The 
initial template amplification did not include the forward primer with T7 promoter. The correct product size was 
validated on an Agilent 2100 bioanalyzer and then on a 15%TBE-Urea polyacrylamide gel (Thermo Fisher Scien-
tific, EC68852BOX) in every step after that. The PCR product was cleaned using a phenol-chloroform extraction 
and desalted using a 10 kDa centrifugal filter column (Sigma Aldrich, UFC5010). The amplified product was 
used as the template for the second PCR reaction at 0.04 ng/uL per reaction volume. Product was amplified with 
KAPA HiFi hot start ready mix and 0.3 µM T7 forward primer, adjusting the melting temperature accordingly. For 
marker gene validation probes, the second PCR reaction was performed with 0.3 µM T7 reverse primer. Elon-
gation times for the second reaction were also increased to 45 sec, deviating from Twist recommendations of 15 
seconds. To enhance probe penetration, the PCR product was digested overnight at 37°C with 1 unit of NheI-HF 
(New England Biolabs, R3131) per µg of product, reducing the size of the encoding probes from 113 nt to 94 nt. 

Digested PCR products were converted to RNA encoding probes using a high yield in vitro transcription (IVT) 
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kit (New England Biolab, E2040S). Reaction concentrations were maintained as per the manufacturer’s recom-
mendations, with the exception of CTPs (Thermo Fisher Scientific, R0451), which were added to the reaction 
volume at a final concentration of 5 mM. IVT amplification was carried out overnight at 37°C before cleaning and 
desalting as described above. The final concentration of encoding probes was quantified using a BR RNA Qu-
bit kit (Thermo Fisher Scientific, Q10210) and size verified via gel electrophoresis. RNA encoding probes were 
aliquoted into 1.5 mL tubes, with 600 μg allocated per experiment. The encoding probes were dried completely 
using a speedvac and stored at -80°C until further use. The same protocol was followed for the preparation of 
nonspecific encoding probes.

For marker gene validation probes, IVT products were converted to DNA encoding probes using Reverse Tran-
scriptase (Maxima H Minus Reverse Transcriptase, EP0751). Reaction concentrations were maintained as per 
the manufacturer’s recommendation with 40 µM forward primer containing a Uracil at the 3’ end. RT was carried 
out overnight at 53ºC before cleaning and desalting as described above. To enhance probe penetration, the RT 
product was digested overnight at 37°C with 1 unit of USER Enzyme (New England Biolabs, M5505L) per µg of 
product, reducing the size of the encoding probes from 150 nt to 130 nt. DNA encoding probes were aliquoted 
into 1.5 mL tubes, with 100 μg allocated per experiment. The encoding probes were dried completely using a 
speedvac and stored at -80°C until further use.

Coverslip Functionalization 
Coverslips (40 mm, #1.5; Bioptechs, 40-1313-03193) were cleaned by submerging in a 1:1 solution of 37% HCl 
and methanol with sonication for 30 minutes. They were then rinsed twice with deionized water and once with 
100% ethanol, each for 5 minutes, before being dried completely at 70°C. The coverslips were subsequently 
submerged in a mixture of 0.1% (v/v) triethylamine (Sigma Aldrich, 471283) and 0.2% (v/v) allyltrichlorosilane in 
chloroform for 30 minutes. After rinsing once in chloroform and twice in 100% ethanol, the coverslips were dried 
at 70°C. They were then treated with 2% (v/v) (3-Aminopropyl)triethoxysilane (APES, Sigma Aldrich, 440140) 
in acetone for 10 minutes, followed by two 5 minute rinses in deionized water and once in 100% ethanol. The 
coverslips were dried once more at 70°C and stored under vacuum until further use. Functionalization treatment 
is necessary for improved tissue and gel adhesion to coverslips 4.

Animals 

Adult BTBR T+ Itpr3tf/J male and C57Bl6/J male and female mice aged 56 days were used for this study. To 
reduce the stress of animals due to shipping and handling, mice were maintained for one week upon arrival on 
a 12 hour:12 hour light/dark cycle with access to food and water before sectioning. 

Sectioning

Whole mouse brains were harvested at 8 weeks of age and perfused promptly in 1x PBS (Thermo Fisher Scien-
tific, 10010049) with 0.1% (v/v) Tween-20 (Sigma Aldrich, P1379) and 3 mg/mL Poly(vinylsulfonic acid, sodium 
salt) solution (PVSA, Sigma Aldrich, 278424) (1x PBSTw). Samples were embedded in optimal cutting tempera-
ture (OCT, Fisher Scientific, 23-730-571) compound immediately and flash frozen in liquid nitrogen before being 
stored at -80°C. The day before sectioning, samples were mounted onto a cryostat specimen disk and stored 
at -20°C allowing the sample to equilibrate to sectioning temperatures. A cryostat was used for serial sectioning 
of the central brain region (CCFx 4.5-9.5mm) for each animal. Each series consisted of 24-20 µM thick coronal 
sections with an even spacing of 200 µM between sections. Sections were distributed 4 per coverslip and fixed 
soon after. Three technical replicates were obtained for each series generated. 

Fixation

Before fixation, samples were allowed to sit for 5 minutes to ensure proper tissue adhesion to the coverslip. The 
sections were then fixed with 4% (v/v) paraformaldehyde (PFA, Electron Microscopy Sciences, 15714) in 1x 
PBScontaining 3 mg/mL PVSA for 10 minutes , followed by three 5 minute washes in 1x PBSTw. Sections were 
stored in 70% ethanol at -20°C until further use.

Permeabilization

Samples were stored for a minimum of 72 hours to a maximum of 4 months before preparation. Upon removal 
from storage conditions, samples were washed three times in 1x PBStw for 5 minutes at room temperature, and 
permeabilized in 1x PBS containing 1% (v/v) Triton X-100 (Sigma Aldrich, X100) and 3 mg/mL PVSA for 30 min-
utes at 47°C with constant agitation.

MelphaX RNA modification
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Following permeabilization, the samples were rinsed three times in 20 mM MOPS (pH 8) containing 0.1% (v/v) 
Tween-20 and 3 mg/mL PVSA at 47°C for 5 minutes each. After the final rinse, the samples were aspirated dry, 
and 100 µL of 0.5 mg/mL MelphaX diluted in MOPS buffer was pipetted directly onto tissue sections for RNA 
modification. To prevent evaporation, a small piece of parafilm was placed over the MelphaX solution, and the 
samples were incubated at 47°C for 1 hour. MelphaX was prepared according to EASI-FISH protocol 5. 

Hydrogel embedding

After RNA modification, samples were rinsed three times for 5 minutes in 1xTBS (2 mM TRIS 300 mM NaCl) 
with 0.1% (v/v) Tween-20 and 3 mg/mL PVSA (1xTBStw) at room temperature. A gel solution containing 3% 
19:1 acrylamide:bis-acrylamide (Sigma Aldrich, A3449) in 1xTBS with 0.1% (v/v) Tween-20 and 3 mg/mL PVSA 
was prepared for sample hydrogel embedding. 3 mLs of gel solution were made per coverslip and split, with 
2mLs containing 0.1% (v/v) N,N,N′,N′-Tetramethyl ethylenediamine (TEMED, Sigma Aldrich, T7024) and 1 mL 
containing 1% (w/v) Ammonium persulfate (APS, Sigma Aldrich, A3678). Gel solution containing TEMED was 
added to samples for 30 minutes under vacuum allowing the solution to penetrate into the tissue sections. After 
degassing, the 1 mL of gel solution containing APS was added to the sample and briefly mixed by pipetting. A 
pedestal containing a coverslip, treated with gel slick (Lonza, 50640) was inverted onto the sample to form a gel 
between the pedestal and the sample, the excess gel solution was aspirated off. Samples sat for 2 hrs allowing 
the gels to polymerize fully before being separated from the pedestal with a razor blade. 

Pre-Clearing

Samples were washed three times for 5 minutes with 1xTBStw at 47°C. A 2% (v/v) sodium dodecyl sulfate (SDS, 
Thermo Fisher Scientific, AM9820) solution in 1xTBS with 0.1% Tween-20, 3 mg/mL PVSA, and 1% (v/v) pro-
teinase K (New England Biolabs, P8107S) was used to clear the sample. Digestion was carried out at 47°C with 
agitation for 18 hrs and then rinsed three times for 5 minutes with 1xTBStw. All steps in clearing, including the 
washes before and after, should be done at 47°C to avoid precipitation of SDS.

Encoding 

A 50% (v/v) formamide (Thermo Fisher Scientific, AM9344) solution in 1xTBS with 0.1% Tween-20 and 3 mg/mL 
PVSA was used to equilibrate the sample in a hybridization buffer for 10 minutes at 47°C. Each coverslip was 
aspirated dry and hybridized with 30uL of encoding solution containing 600 ug of RNA encoding probes (150 ug/
section) in 50% (v/v) formamide with 10% (w/v) dextran sulfate (Sigma Aldrich, D6924) and 1xTBS and 0.1% 
Tween-20 and 3g/mL PVSA. The encoding solution was pipetted directly onto the sample before being covered 
with a parafilm square. Hybridization of encoding probes was carried out for 18 hrs before being washed 4 times 
for 15 minutes at 47°C with agitation in 50% formamide in 1xTBS with 0.1% Tween-20 and 3 mg/mL PVSA . For 
MERFISH, encoding was done with 30% (v/v) formamide at 37ºC since the probes are DNA. 

Post-Clearing and Hydrogel embedding

Samples were washed three times with 1xTBStw for 5 minutes at 47°C and cleared a second time to further 
reduce encoding probes that may have bound non-specifically. Clearing was done for 3 hrs, as described above, 
and then washed with 1xTBStw at 47°C. A second hydrogel was formed on the sample, as described above, to 
reduce any lifting caused by tissue clearing of dense brain regions. Sample was washed three times in 1xTBStw 
for 5 minutes and stored in a 10% formamide solution in 1xTBS with 0.1% Tween-20 and 3 mg/mL PVSA at 4°C

Automated Data Collection Hardware & Software

We developed a custom fluidics system to enable continuous high-throughput imaging across six 40-mm cov-
erslips, addressing limitations of commercial fluidics systems in multiwell, high-flow environments. Our system 
allows for simultaneous imaging and hybridization by alternating between two groups of wells, significantly re-
ducing liquid handling time and maximizing throughput.

A chamber was designed with six 35 mm wells, creating a watertight seal with the coverslips while preserving 
imaging space. The wells were configured in a tight two-by-three arrangement, fitting in the stage adapter foot-
print, with four M3 screw holes surrounding each well. This profile was used to mill 2 mm stainless steel plates for 
compressing the chamber and providing a flat imaging plane. The edges of the chamber design were then inset 
by 0.5 cm to account for expansion once assembled. To create the chambers, a negative mold was designed 
and 3D printed using PETG. Two part silicone was mixed and degassed for 15 minutes to minimize large bubbles 
in the chamber. The silicone was then poured into the mold and allowed to set overnight at room temperature. 

The chamber is assembled by aligning a steel plate with a silicone chamber placed on top of it. Coverslips are 
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then placed on top of the silicone chamber with samples facing the steel plate. A second steel plate is then 
placed on top of the samples and secured to the chamber using four M3x16 coverslips around each sample. The 
bottom of each sample is then cleaned using lens cleaner and lens paper, and a small sticker was added to the 
edge of each coverslip to serve as a reference point for autofocus. Once placed on the microscope, fluidics is 
integrated using a 3D printed lid, holding blunt-tipped needles in each chamber at an angle to prevent vacuum 
formation. This open-well design supports milliliters-per-second flow rates, substantially improving throughput 
compared to traditional closed chambers.

To accomplish milliliters-per-second flow rates a fluidics system was assembled consisting of a syringe pump, 
multiposition valves and python software control allowing automated control of up to 30 readout hybes as well 
as strips on 6 large sample wells. A 5mL glass syringe was used to minimize system maintenance and improve 
system reliability at high flow rates. Vici 10-24 port multiposition valves were daisy chained to enable easy ex-
pansion to large numbers of readout solutions. Fluidics tubing ranged from 1/16 inch in paths that were shared 
across multiple solutions and 1/8 inch diameter for tubing that goes directly to solutions allowing for faster flow 
rates. Additional features including vacuum aspiration for faster liquid removal and syringe mixing within open 
wells were added to improve reproducibility. 

Custom python software (GITHUB LINK) integrates the fluidics system with ATLAS protocols, featuring a mod-
ular, file-based control system compatible with microscope software control. The user-friendly GUI allows for 
real-time simulation of protocols and manual control, facilitating flexible protocol development and execution.

Chamber preparation for data acquisition 

Fluidics system was cleaned by flushing with ethanol and rinsed with 1xTBStw before each experiment and 
stored in Ethanol for longer durations. Deep cleaning was performed by flushing with 10% Bleach before stan-
dard cleaning if contamination was suspected. Up to 6 coverslips were assembled into each chamber. Samples 
were stained with 1xTBS with 0.1% (v/v) Tween-20 and 3 mg/mL PVSA with 2ug/mL 4’,6-diamidino-2-phenylin-
dole (DAPI, Sigma Aldrich, D9542) for 5-10 minutes at room temperature manually and rinsed three times with 
1xTBS with 0.1% (v/v) Tween-20 and 3 mg/mL PVSA before being attached to the fluidics system.

Data Collection

Images were captured on a custom Epifluorescent microscope with a 10X/0.45 NA Objective. Excitation light 
was provided by Solis LEDS for imaging Cy5 disulfide conjugated readout probes and PCB mounted LEDs for 
imaging dapi for nuclear stain. Emission was collected on FLIR Blackfly USB Camera with a pixel size of 0.425-
0.49 µm. Microscope was controlled via Micromanager and custom MATLAB interface 6. 

Focus and Position Selection

Initial focus was set manually and entire coverslips were imaged to visualize dapi. Positions containing sections 
were manually selected using a custom drawing script. 5 evenly spaced positions were manually focused for 
each section as well as a reference position containing a registration sticker per coverslip. A plane was fit for 
these positions per section to extrapolate focus and set relative to the registration sticker focus. Before each 
round of imaging the registration sticker was imaged and the focus plane was adjusted to ensure cells were in 
focus across the multiple days of staining, striping and imaging. 

Automated Strip

Samples were stripped from fluorophores similar to MERFISH protocol 4 and imaged before the hybridization 
of each new readout probe, allowing them to be used as a background image for downstream analysis. Flu-
orophores attached with a disulfide to readout probes were stripped from the sample with 2.5 mL of 0.25 mM 
Tris(2-carboxyethyl)phosphine hydrochloride (TCEP, AKSci, X4741) in 1xTBS with 0.1% (v/v) Tween-20 and 3 
mg/mL PVSA . Samples were incubated in TCEP solution at room temperature for 30 minutes, and mixed once 
halfway through before being rinsed three times with 1xTBStw before imaging. 

Automated Hybridization

Samples were briefly rinsed once in 30% (v/v) formamide in 1xTBS with 0.1% (v/v) Tween-20 and 3 mg/mL PVSA 
with 2ug/mL 4’,6-diamidino-2-phenylindole (DAPI, Sigma Aldrich, D9542). Readout probes, diluted to 10 nM in 
30% (v/v) formamide in 1xTBS with 0.1% (v/v) Tween-20 and 3 mg/mL PVSA and 2ug/mL DAPI, were added to 
the sample. Hybridization of readout probes was carried out for 30 minutes at room temperature, with one mixing 
step half way through. Excess readout probes not bound were washed from the tissue three times with 30% (v/v) 
formamide in 1xTBStw with 2ug/mL DAPI, and twice with 1xTBStw, before imaging. 
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Image Processing

Raw images were processed using custom python code available in the project’s Github repo. In short, raw 
images were binned to a pixel size of 0.85-0.98 µm. Camera constant and excitation light contamination was 
experimentally calculated for each acquisition and subtracted. Uneven illumination and emission capture was 
experimentally calculated for each acquisition and corrected. Images were subjected to a 2 pixel median low 
pass filter to remove hot or dead pixels as well as a 25 pixel sigma rolling ball high pass filter to remove residual 
constant as well as background that is much larger than cells. 

Background acquisitions were registered to readout acquisition using cross correlation on dapi images. Back-
ground acquisitions were then subtracted from readout acquisitions for only the signal channel. Processed imag-
es were then registered to a reference hybe and stitched together using cross correlation of dapi images. 

Cells were segmented using Cellpose 7 cyto3 model on the stitched reference dapi image for nuclei as well as a 
max projection of all readout images for total cell. Missed cells in dense areas were recovered by calling peaks 
in dapi images and morphologically dilating to a 5 µm radius. For each cell the median of the segmented pixels 
for each measurement was calculated and saved for future analysis as well as the cells segmentation properties 
and spatial coordinates.

Common Coordinate Framework Registration

Each section was registered to the common coordinate framework by first assigning an approximate ccf x through 
visual inspection with reference MERFISH data. Registration in z and y were performed by manually clicking 
registration points and fitting a radial basis function model to convert from experimental spatial coordinates to 
CCF coordinates.

Low Quality Cell Filtering

Non cells were removed as cells below a sum signal threshold as well as beyond 50um from a connected com-
ponent graph created from the spatial coordinates of all cells. Low Quality cells due to hydrogel integrity or reg-
istration errors were removed as any cell that had a dapi signal decrease of more than 50% in 2 or more rounds. 

Cell Scalar Correction

To correct for uneven staining and total RNA content the overall magnitude of each cell vector was normalized. 
First a robust magnitude was approximated by correcting bits where cells were outliers and then taking the sum 
of the corrected cell vector. Cells were normalized by scaling their approximate magnitudes to the same value. 
Residual scalar differences due to the position of each cell in the optical field of view were corrected by fitting a 
linear regression between image coordinates and each measurement.

Unsupervised Clustering

Measured cell vectors were normalized bitwise by centering around the median and scaling by the robust stan-
dard deviation of the 1st to 99th percentile cells for each bit. An igraph implementation of leiden was then per-
formed with a high resolution parameter. Clusters within correlation of 0.9 were then merged.

Decoding & Harmonization. 

To decode ATLAS signatures into predefined cell types, we employed a Bayesian recursive harmonization and 
classification approach called SCALE (Single Cell Alignment Leveraging Existing data). This method maximizes 
the use of reference atlas data and incorporates spatial priors derived from the anatomical structure of the brain.

Reference ATLAS Vectors: Reference ATLAS vectors were computed by projecting scRNAseq data through the 
DPNMF projection matrix, reducing the data to an 18-dimensional space. This dimensionality reduction enabled 
us to align the scRNAseq data with spatial transcriptomic signatures measured by ATLAS.

Spatial Priors: Spatial priors for each cell were generated using a kernel density estimate of cell type distributions 
based on CCF-registered reference MERFISH data. The kernel density was approximated by using numpy histo-
gramdd on the ccf coordinates for each type with a binsize of 100 µm. The three dimensional histogram was then 
smoothed using a gaussian filter with a sigma of 100 µm in the CCF y and z axes and 250 µm in the x-axis. To 
calculate the spatial prior of a single cell, the ccf coordinates of that cell were used to pull the density estimate of 
each cell type in that location, normalizing to a sum of 1. These spatial priors represent the probability of finding 
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specific cell types in certain brain regions, leveraging known anatomical structures. Spatial probability maps for 
each subclass were constructed across the brain using these priors.

Balanced Reference Vectors: To ensure an even comparison across sections, reference vectors were sampled 
based on the average spatial priors of all cells in a given section, creating a section-balanced reference. Refer-
ence vectors and measured vectors were normalized using robust magnitude and bitwise corrections.

Initial Neuron vs Non-Neuron Classification: Unsupervised clusters using cellular transcriptional signatures were 
classified into neurons and non-neurons using a pynndescent based KNN classifier trained on section-balanced 
reference cells with euclidean as the metric and 25 neighbors. After this neuron/non-neuron classification, the 
spatial priors were updated to include either only neurons or only non-neurons, depending on the classification 
of the cluster.

Recursive Subclass Classification: For subclass-level classification, we employed a recursive decision tree 
method. The decision tree structure was constructed by averaging the cell type vectors from reference scRNA-
seq data and fitting a dendrogram based on pairwise correlations. At each binary decision point in the tree, two 
operations were performed:

1. Posterior Probability Calculation: For each cell, the posterior probability of belonging to one of the two 
subtrees was calculated. This was done by combining the spatial prior with the likelihood of the cell type, 
inferred from a sklearn logistic regression classifiers trained on section-balanced reference cells.

2. Harmonization: After each binary decision, the median and robust standard deviation (std) of the mea-
sured data were aligned with reference cells within the selected subtree. This linear correction ensured 
that the measured data was harmonized with the reference scRNAseq data.

Final Subclass Assignment and Imputation: Cells continued through this recursive decision process, moving 
down the decision tree and being harmonized at each step until they reached a final subclass label at the leaves 
of the tree. At this point, cell types were assigned, and the data was fully harmonized with the reference atlas. 
Imputation of transcriptomes was then performed using a nearest neighbors approach based on transcriptional 
signatures. Using the harmonized vectors for the measured cells the 15 nearest reference neighbors were cal-
culated using pynndescent based KNN with euclidean as the metric. Imputed expression was calculated as the 
average gene expression for these 15 reference cells.

Validation - pairing two datasets. 

The accuracy of imputation was calculated using pseudo-pairing procedure. Two matching sections from differ-
ent datasets (e.g.. ATLAS imputed and MERSCOPE) based on CCFx values after registration done as described 
above. To account for overall sampling frequency the total number of cells were downsampled to the same num-
ber. Cells were then paired across datasets in a greedy pairing algorithm, as finding global optimal pairing was 
too computational time consuming. The greedy pairing first created a list of all candidate pairing of all pairs of 
cells  100 um from each othe. The correlation score for all candidate pairs was calculated based on the Pearson 
correlation of the log gene expression across the 336 shared genes among all brain atlases. The correlation 
scores were sorted from highest to lowest, and the greedy algorithm selected pairing according to this sorted list 
after each selection, excluding possible pairing that included a cell that was just paired. The output of this pairing 
algorithm was the correlation score between all optimally paired cells. The cumulative distribution function of 
these correlation scores was used to evaluate the quality of agreement between the two datasets. Higher agree-
ment results in increased area under the curve and more cells above each threshold. 

Validation marker gene selection

The genes for MERFISH validation of subclass types were selected from a set of 500 genes in the referenced 
MERFISH data. Genes that contributed most to subclass classification were prioritized by selecting those with 
the highest F1 scores. To enhance the signal in MERFISH imaging, genes with more than 96 hybridization 
probes were chosen. The number of bits also aligned with the number of hybridization rounds used in the ATLAS 
data collection, while maintaining a Hamming-Distance-4 for error correction. 17 ‘blank’ barcodes were included 
to measure the false-positive rate in MERFISH measurement, resulting in a final selection of 170 genes.

Validation marker gene MERFISH Imaging

Images were captured on a custom Epifluorescent microscope with a 63x Objective. The excitation light for imag-
ing Cy5 was consistent with the ATLAS protocol. The PCB-mounted UV LED was used for imaging the fiduciary 
markers and dapi. Emission was collected with a pixel size of 0.083 µm. For each position, 4 z-indexes were 
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captured per dataset with 1 µm spacing. MERFISH imaging was done using FCS2 chambers as described 4. 

Validation marker gene - combining ATLAS and MERFISH analysis

After completing the 18 rounds of MERFISH hybridization and imaging, the FCS2 chamber was disassembled, 
and the coverslip with the tissue was placed in a petri dish. To remove the marker gene DNA encoding probes, 
the sample was washed 4 times for 15 minutes at 47°C with agitation in 50% formamide in 1xTBS with 0.1% 
Tween-20 and 3 mg/mL PVSA. The sample was hybridized with the ATLAS encoding probes following the previ-
ously described protocol. The fluidics system was cleaned as outlined earlier, and the microscope objective was 
switched to 10x. After the post-encoding clearing and washes, the sample was assembled back into the FCS2 
chamber and imaged according to the ATLAS protocol. 

Validation marker gene MERFISH Image Analysis

Image analysis was performed using custom Python code (GITHUB LINK). In short images were corrected by 
replacing hot pixels with the medians of their immediate neighbors before being subjected to a highpass and 
lowpass filter to remove background and high frequency noise. Readout rounds were registered to a reference 
hybe using fiduciary markers. Spots were called with trackpy locate (link). Spots were paired across rounds of 
hybridization into candidate transcripts. Transcripts that matched designed barcodes within 1 error were as-
signed to cells using a segmentation mask generated with cellulose (link) on dapi images. Cells with fewer than 
10 transcripts were removed. Individual fields of view were registered between MERFISH segmentation and 
ATLAS segmentation using a rigid transformation to minimize the residual distance between paired segmenta-
tion masks. Cells with paired masks that were larger than 2 um were filtered to ensure accurate pairing between 
datasets. 

Construction of 3D volumetric cell type inference

To analyze the spatial distribution of cell types across mouse brain samples, we developed a data processing 
pipeline to convert individual cell coordinates and types into a standardized 5D tensor. For each of the 15 ani-
mals, the X, Y, Z coordinates and cell types were binned into a 100 µm grid in the tissue section plane (CCF z and 
CCF y) and 300 µm along the anterior-posterior (AP) axis, which accounts for the 200 µm sectioning performed. 
The AP axis was upsampled by a factor of 3 relative to the tissue section plane to increase resolution and create 
an isotropic matrix. This binning was implemented for each animal and cell type using NumPy’s histogramdd 
function.

A key challenge was managing incomplete data due to section tears and holes. Voxels with cell counts below 
50% of the average cell count per voxel were replaced with NaN values. To address unequal sampling densities 
across animals, a correction factor was applied based on the average number of cells per voxel across all sam-
ples, assuming that total cell counts per voxel remain constant across animals. A Gaussian filter with sigma of 
150 µm was applied to the data with to reduce noise and interpolate values in low-density regions. The resulting 
4D tensors from each animal were then stacked to create a 5D tensor (sample, X, Y, Z, cell type).

Comparative analysis - cell type spatial distributions. 

The statistical analysis of cell type distributions used the 5D tensors described above. Assuming brain symmetry, 
the tensors were reshaped so that the two hemispheres from each section were treated as separate samples, 
with one hemisphere flipped horizontally. For each comparison (male vs. female or B6 vs. BTBR), the relevant 
hemispheres were selected. For each cell type, the average counts at each voxel were calculated and rescaled 
to have the same mean, ensuring that the identified differences reflected spatial changes rather than global 
abundance.

A per-voxel 3D matrix of the differences between the two distributions was then computed. The residuals from 
this comparison were used to calculate the entropy of the spatial distributions. Residuals made the comparison 
spatially explicit, as voxel-wise abundance was compared across identical locations. Entropy was chosen to 
quantify the overall extent of the differences, with identical distributions yielding zero residuals and thus zero 
entropy, and highly distinct distributions producing high entropy.

To assess statistical significance, we applied a permutation procedure, where sample indices were permuted 
before averaging for each cell type. This allowed estimation of the probability distribution for the residual entropy. 
We used an adaptive sampling approach, performing an initial 1,000 permutations for each cell type and extend-
ing to 10,000 permutations when p-values were estimated to be smaller than 0.005.

Comparative analysis - regional compositional analysis. 
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Similar to the cell type analysis, the regional analysis used the inferred 5D tensors as input, assumed brain sym-
metry, and calculated the average 4D tensor (X, Y, Z, Type) for each condition (B6 male, B6 female, BTBR male). 
For each voxel, the correlation distance (1 - Pearson correlation coefficient) between the type distributions of 
the two conditions was calculated. This correlation distance was then compared to a null distribution generated 
through a permutation procedure, as described in the cell type analysis. We used a similar adaptive procedure 
for p-value estimation, starting with 1,000 permutations and extending to 10,000 when p-values were smaller 
than 0.005.

Additional References

1. Yao, Z. et al. A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation. Cell 

184, 3222–3241.e26 (2021).

2. Guan, N., Zhang, X., Luo, Z., Tao, D. & Yang, X. Discriminant projective non-negative matrix factorization. 

PLoS One 8, e83291 (2013).

3. Song, D., Li, K., Hemminger, Z., Wollman, R. & Li, J. J. scPNMF: sparse gene encoding of single cells to 

facilitate gene selection for targeted gene profiling. Bioinformatics 37, i358–i366 (2021).

4. Moffitt, J. R. & Zhuang, X. Chapter One - RNA Imaging with Multiplexed Error-Robust Fluorescence In 

Situ Hybridization (MERFISH). in Methods in Enzymology (eds. Filonov, G. S. & Jaffrey, S. R.) vol. 572 

1–49 (Academic Press, 2016).

5. Wang, Y. et al. EASI-FISH for thick tissue defines lateral hypothalamus spatio-molecular organization. Cell 

184, 6361–6377.e24 (2021).

6. Edelstein, A. D. et al. Advanced methods of microscope control using μManager software. J Biol Methods 

1, (2014).

7. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmen-

tation. Nat. Methods 18, 100–106 (2021).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 9, 2024. ; https://doi.org/10.1101/2024.10.08.617260doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.08.617260
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

6133

G
en

es

Extended Figure 1:ATLAS DPNMF Encoding Design. (a) Heatmap of the DPNMF Encoding Matrix showing the Log Weight of each gene on 
each measurement. weights directly translate into the number of encoding probes per gene per measurement. (b) Heatmap of the expected cell 
vector for each class level cell type calculated by projecting scRNAseq using DPNMF encoding matrix and averaging across cell types. zscore 
normalized. (c) 336 subclass level expected cell type vectors. zscore normalized
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Extended Figure 2: Experimental Method Development. (a) Violin Plots of the Mean Free Energy calculations from Nupacfor hybridization 
event structures. (b) pairwise heatmap of On and Off Target structure MFE stability scores. (c) Comparison of the RNA and DNA signal between 
hydrogel anchoring strategies (PolyT_Acrydite a hybridization based approach and MelphaX a covalent approach). (d) Visual of the low background 
present in the RNA channel prior to Readout hybridization. (e) Example of signal observed with ATLAS signatures. (f) Residual signal remaining after 
TCEP reduction of disulfide readout probe. (g) Subsequent Readout hybe which contains signal from Readout hybe 2 as well as residual signal from 
Readout Hybe 1.
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Extended Figure 3: ATLAS Transcriptional Signature measurements. (a) Visualization of the content of all 18 Measurements for a single section. 
Multiple modes of density can be seen within each pairwise log 10 scale signal plot. (b) Unsupervised clustering of measured cells for a single section. 
Spatial locations of each cluster of cells (c) TSNE locations of each cluster of cells
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Extended Figure 4: Decoding and Harmonizing. (a) Cartoon diagram showing decoding strategy. individual cells walk down a decision tree 
of cell types. Decisions are made by taking the likelihood that a cell is a cell type based only on features calculated using a logistic regressor 
trained on reference scRNAseq cells and the Spatial prior expectation of what cell types are present in that cells physical location calculated 
using a kernel density estimate with a ccf)z and ccf_y sigma of 100 um and ccf_x of 250 um on referenece MERFISH data. (b) Visual
Representation of the Spatial Prior demonstrated by passing measured cells through the decoder ignoring likelihood. (c) Results of Data 
Harmonization. Cells are shown for each measurment colored by source. Black for reference scRNAseq and Red for harmonized measured 
ATLAS cells. (d) Results of Data Decoding at the subclass level. 
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Extended figure 5: Automated Open Chamber Fluidics System. (a) Schematic Design of Fluidiics  software  (squares) and hardware (circles).
Liquid is extracted from source tubes using automated syringe pump and valves and depositied on sample coverslips. Waste is removed in reverse. 
Object oriented software implementation allows for modular integration of multiple device drivers as well as multiple units of each device. Current 
implementation allows for up to 30 rounds of readout hybridization and 30 rounds of stripping across each of 6 experimental wells. (b) Picture of 
Custom epifluorescent microscope with open source fluidics system attached. (c) visual of Graphical User Interface which allows manual control
when software control is not needed. (d) open well design of chamber consists 6 coverslips as well as a thick soft silicone chamber sandwiched 
between two rigid steel plates. Two needles are placed in each well one for aspirating liquid and another for adding and removing liquid. Open 
Chamber allows for liquid exchange rates higher than closed systems and the multi well format allows for simultaneous imaging and hybridization. 
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Extended Figure 6: Dataset. Visualization of 400 sections collected across 15 animals spannind three genetic backgrounds[ B6 Male in orange, B6
Female in purple and BTBR Male in Cyan] ordered anterior to posterior.  
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Extended Figure 7: BTBR Morphology Differences. (a) 18 B6 Male Sections ordered anterior to posterior. Deformation scores calculated 
as the absolute fold change in density for each cell before and after registration to common coordiante framework. (b) 18 BTBR Male Sections. 
known morphological changes in BTBR including loss of corpus callosum and and a severely reduced hippocampal commisure show high deformation
scores compared to the relatively low deformation scores in B6 mice. 
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