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Abstract: Climate change-induced abiotic stress results in crop yield and production losses.
These stresses result in changes at the physiological and molecular level that affect the development
and growth of the plant. Reactive oxygen species (ROS) is formed at high levels due to abiotic
stress within different organelles, leading to cellular damage. Plants have evolved mechanisms to
control the production and scavenging of ROS through enzymatic and non-enzymatic antioxidative
processes. However, ROS has a dual function in abiotic stresses where, at high levels, they are toxic to
cells while the same molecule can function as a signal transducer that activates a local and systemic
plant defense response against stress. The effects, perception, signaling, and activation of ROS and
their antioxidative responses are elaborated in this review. This review aims to provide a purview of
processes involved in ROS homeostasis in plants and to identify genes that are triggered in response to
abiotic-induced oxidative stress. This review articulates the importance of these genes and pathways
in understanding the mechanism of resistance in plants and the importance of this information in
breeding and genetically developing crops for resistance against abiotic stress in plants.

Keywords: antioxidative; enzymatic and non-enzymatic enzymes; ROS reactive genes; hormones;
signaling; environmental stresses

1. Introduction

Abiotic stresses affect plant morphology, biochemistry, physiology, and anatomy through processes
such as photosynthesis, respiration, growth, and development, where prolonged stress induces
death [1–3]. Plants have evolved physiological and metabolic mechanisms that may be instrumental in
alleviating environmental stresses such as drought, cold, salinity, metal toxicity, and submergence.
These processes are regulated through the activation of gene networks or pathways that result in
either enhanced tolerance or resistance [3–5]. During stress, harmful by-products that are detrimental
to plants are produced. Superoxide radicals, hydrogen peroxide (H2O2), hydroxyl radicals (OH•),
and singlet oxygen (1O2) are reactive oxygen species (ROS) formed in response to the reduction
of oxygen molecules in planta [5]. These oxygen radicals affect proteins and lipids, resulting in
cellular damage and death [6]. When provided with optimal growth conditions, the ROS levels within
organelles are low. However, in periods of stress, these levels are elevated due to disturbances in cellular
water potential, affecting cellular homeostasis [7–9]. Homeostasis of ROS in the cell is achieved through
a balance between its production and scavenging [9], where growth conditions, severity, and duration
of stress affects cellular equilibrium [10,11]. ROS production and scavenging are somewhat opposed,
where an overproduction of this molecule is toxic to the cell, while, as a signal transducer, it triggers the
plant’s defense. The initial burst of ROS production activates downstream processes post-stress, which
leads to defense mechanism mobilization and the management of stress [12–14]. The ROS-scavenging
mechanism plays a crucial role in protecting against stress damage in plants [7,14,15]. Understanding

Int. J. Mol. Sci. 2020, 21, 5208; doi:10.3390/ijms21155208 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-9854-3219
http://www.mdpi.com/1422-0067/21/15/5208?type=check_update&version=1
http://dx.doi.org/10.3390/ijms21155208
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2020, 21, 5208 2 of 29

the mechanism of ROS production, signaling, and scavenging allows for a powerful strategy to enhance
crop tolerance toward environmental conditions [16].

ROS is generated in the cell as a consequence of electron leakage during photosynthesis
and respiration [17]. To moderate the overproduction of ROS and oxidative stress, plants have
a well-regulated antioxidative mechanism that consists of enzymatic and non-enzymatic components
that can balance ROS synthesis and scavenging and prevent cellular damage [18–20]. Superoxide
dismutase (SOD), catalase (CAT), and peroxides (POX) are among the enzymatic antioxidant systems
that regulate the homeostasis of ROS within organisms [21]. These enzymes are involved in the
reduction process of O2− to H2O2 [22]. The non-enzymatic components, which are generally made up
of players such as ascorbic acids, α-tocopherol, flavanoid, glutathione, carotenoids, lipids, and phenolic
compounds, efficiently mitigate oxidative damage by reducing ROS activity or by working together
with the enzymatic players to achieve efficient antioxidant activity via the utilization of H2O2 [19,20].
The mode of action and regulation of both these antioxidant systems and the members will be
discussed later.

In the past years, the importance of oxidative stress management and the role of local and systemic
ROS signaling in addressing abiotic stress have been extensively studied [15,23]. Despite these studies,
there remains a wide variation in the reports on antioxidant activities in various abiotic-stressed plants.
Here, we provide an overview of the antioxidant stress management mechanisms in plants and the role
they play in abiotic stress response. The regulation and key components of abiotic stress management
are yet to be completely understood. This review provides an overview of the status of ROS production
in plants and how the plant system achieves ROS homeostasis. Further, the signaling involved in
achieving homeostasis between ROS production and scavenging within plant organelles is discussed
in brief. Most importantly, this review provides a list of genes involved in ROS regulation in abiotic
stress. This information is important for us to identify pathways and genes that regulate oxidative
stress in plants and to determine key targets for use in the breeding and genetic engineering of crops.

2. Antioxidants and Abiotic Stress Modulation

The whole plant experiences abiotic stress. The stress experienced is then transmitted to distal
tissues in the plant through signaling systems that involve hormones or molecules (abscisic acid
(ABA), jasmonate salicylic acid, etc.). This, therefore, indicates the importance of stress management in
mitigating the effects of stress on the whole plant [24–26]. Reviews have focused on ROS metabolism,
ROS sensory response, signaling networks [13,27–29], and their ability to cross-talk with other molecules
in addressing developmental and environmental stresses [27,30,31]. Most reviews highlight the control
over stomatal aperture, reduced CO2 levels, and photosynthesis as the contributing factor toward
elevated ROS levels in plants [17,32–35]. Elevated levels of abiotic stress-induced ROS may be
produced through a reduction in electron transport in the Calvin cycle and a higher electron leakage
during photosynthesis in the Mehler reaction. Together, this results in higher respiration and lower
photosynthesis and elevated ROS levels in stressed tissues [36]. Both these reactions occur within the
chloroplast and, therefore, require these organelles to be robust against ROS, which is achieved through
the function of antioxidant enzymes (enzymatic regulators) that quenches ROS activity. In addition,
abiotic stresses (salt, heat, and drought) also influence photo-respiration, resulting in hydrogen peroxide
(H2O2) production [17]. Within plant cells, both H2O2 and O2− function as secondary messengers
that control cell death, cell cycle, growth, development, hormone signaling, and stress responses [37].
However, the scavenging systems are not reactive toward hydroxyl radicals and, at high levels, result
in deleterious effects to organelles [32,36,38] through lipid peroxidation, which injures membranes and
causes damage to biological molecules such as lipids, nucleic acids, and proteins, ultimately resulting
in cellular damage and death [39].

Crop production is severely impaired as a consequence of overproduction of ROS in the organs
during abiotic stresses [21]. In response to endogenous signals (hormones and signal molecules) and
exogenous environmental stimuli (biotic or abiotic stresses), several enzymes such as NADPH oxidases,
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amine oxidases, polyamine oxidases, oxalate oxidases, and a large family of class III peroxidases that
are localized at the cell surface or apoplast are induced and result in elevated ROS production [21,40,41].
Therefore, to reduce loss from ROS, the antioxidant activity in the plant needs to increase [42]. As ROS
is continuously produced in plants within the chloroplast, peroxisome, and mitochondria, ROS removal
systems have to be well-controlled to ensure the wellbeing of tissues and organs. Resistant lines
exhibit better ROS removal systems and membrane stability toward deleterious radicals compared
to susceptible ones [28,43]. It is, therefore, important for the homeostasis of ROS scavenging to be
maintained in all stress induced (biotic or abiotic) and normal physiological responses in planta [18,44].

3. Multi-facetted Mechanisms in Abiotic Stress-Related ROS Homeostasis

In unstressed conditions, ROS is generated within the cell at low levels. However, when subjected
to abiotic stresses, ROS levels are elevated, which activates stress pathways within the plant cells [27,45].
Therefore, it is essential that the various enzymatic and non-enzymatic ROS-scavenging systems
present in different organelles work together in ROS detox and achieve ROS homeostasis [46,47].
Ford et al. (2011), in a proteomic study conducted on wheat, showed that several antioxidative enzymes
were present under stress [48]. The most dominant enzyme was catalase (CAT), which is required
for metabolizing photorespiratory H2O2 when water is limited like in drought. Similar antioxidative
systems were also present in Arabidopsis thaliana [49] where core genes for redox homeostasis include
antioxidative and reductant-regenerating enzymes, which respond in both a complex and specific
manner. These genes that regulate enzymatic and non-enzymatic processes work in tandem within the
system. As many genes are induced during ROS response, an equal number are repressed during the
same process [50–52].

Besides the enzymatic and non-enzymatic processes, sugars are the new emerging ROS scavengers.
The emerging “sugar as antioxidant” concept is based on redox balance that is achieved through
their relationship in photosynthesis, mitochondrial respiration, and fatty acid β-oxidation in various
organelles. Excess sugar results in increased cytosolic H2O2 through metabolic pathways while sugars
also result in the reduction in power that contribute toward H2O2 scavenging via the oxidative pentose
phosphate (OPP) pathway, which feeds the NADPH metabolism that activates the antioxidative
process [53,54]. This is the dual nature of sugars in ROS homeostasis. Sugars like mannitol can protect
from the oxidative damage of chloroplasts. These sugars affect gene expression through sugar-specific
signaling cascades, which regulate the expression of abiotic stress-related genes such as superoxide
oxidase (SOD), heat shock proteins (HSP) and glutathione-S-transferases (GST). In recent years,
hexokinase (HXK), Snf1-related kinase 1, and INV have been identified as sugar signaling regulators.
Trehalose is another sugar that has been shown to regulate abscisic acid (ABA) metabolism and protect
against oxidative stress of photosystem II (PSII) during stress in plants [55,56]. These sugar-specific
pathways together with plant hormone signaling and stress-related pathways, when integrated, are able
to participate in plant defense responses.

Reports have also implicated proline in maintaining redox homeostasis by resulting in NADPH
utilization. In a study involving transgenic wheat, higher proline resulted in reduced lipid peroxidation
and ROS damage during abiotic stresses [57]. Proline mitigates stress through up-regulation of
proline biosynthesis, scavenging of OH• or 1O2, and an active proline metabolic flux linked to
other metabolic pathways. Through this, proline maintains cellular energy and NADP+/NADPH
balance. This protects cells and contributes toward other pathways such as the tricarboxylic acid
cycle (TCA) and GSH. Proline feeds into the electron transport chain (ETC) via proline dehydrogenase
(PRODH) that results in superoxide and H2O2 formation. When PRODH expression is increased due
to high ROS, apoptosis and cell death results in the activation of the hypersensitive response (HR).
PRODH-dependent ROS production in the mitochondria is linked to proline, pyrroline-5-carboxylate
reductase (P5CR), and delta-1-pyrroline-5-carboxylate dehydrogenase (P5CDH). Therefore, an increase
in PRODH/P5CDH results in an increase in proline metabolic cycling where P5C is converted to proline
via P5CR and NADPH [58].
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Sharma et al. (2011) stated that proline accumulates during drought as a solute where mutants
defective in proline production were sensitive to drought. Pro-Glu is also implicated in NADP[H]
homeostasis [59]. Proline and glycine betaine aids in water uptake [60,61] and ROS quenching, which
protects against tissue damage [62,63]. Besides scavenging hydroxyl ions, prolines also bind redox
active ions and protect against hydroxyl ion damage [64]. Together with sugars, prolines protect the
photosystems against peroxidation in drought [65]. Recently, ABA-insensitive mutants revealed that
abi4 increased proline levels in stress and could not be rescued through exogenous application of ABA.
However, when sucrose was supplied, the ABA response was restored, indicating that ABI4 has a role
in ABA-sugar regulation of proline [53]. Excess ROS generation may also be circumvented through
alternative oxidases that divert the electron flow and reduce electron leaks that generate O2

•− [66].
There are possibly other mechanisms utilized by plants to assist in the balancing of ROS levels and the
energy spent in plants. These processes may include events such as leaf curling, leaf movement, and
photosynthesis apparatus reassembly [67]. Through the change in the ROS levels, plants can perceive
stress and respond accordingly through complex pathways and processes [68]. The easiest way of
keeping ROS homeostasis within the plant is to remove the stress on the plant system, thus resulting in
a reduction in ROS to levels non-toxic to the plant [12].

4. Signaling and Control in Abiotic Stress-Associated ROS Homeostasis

Plant systems activate signaling cascades that trigger downstream components to manage both
biotic and abiotic stress. H2O2 signaling pathways result in the accumulation of protectants that
guard against the effects of the cellular redox state and the effect therein. ROS participates in stress
signaling through the transduction of signals from mitogen-activated protein kinases (MAPKs) [34,69],
which leads to the induction of several pathways, and activation of gene expression downstream.
The activated MAPKs signaling cascade adjusts the levels of H2O2 through the detox antioxidant
systems [70,71]. The H2O2 is the most stable and easily disseminated form of oxidative stress.
These molecules act as a switch that enables the messenger to be effective. In addition, the H2O2

molecules have affinity to thiol groups, which implies a role for this molecule in stress modulation [40,47].
Compared to the animal system, plants have a more modulatory effect on the levels of H2O2 compared
to completely destroying the molecule within the cell [32,47]. This is achieved through the role of
antioxidants within the cell that regulates ROS signaling and levels in the host [40,72,73]. Primary or
secondary messengers trigger plant-signaling cascades. Some plant hormones like auxins (IAA),
abscisic acid (ABA), ethylene (ET), cytokinins (CK), brassinosteroids (BR), gibberellins (GA), jasmonates
(JA), and salicylic acid (SA) regulate plant defenses and other biological processes in response to
stress [73–75]. When under stress, the signal is amplified and stress-related genes are induced in
response through signal molecules (ABA, SA, JA, and ET) [73,76–78].

There is an intricate connection between ROS levels and ABA produced in plants. ABA is
probably the most important signal molecule that controls a lot of physiological processes including
stress response to abiotic stress [79,80], where it regulates osmotic balance and induces resistance to
stresses [79–81]. This is achieved through the activation of antioxidant genes (CAT, SOD, peroxidase
(POX)) by ABA [82] through ROS-induction and increased levels of NADPH oxidase [83]. In rice,
drought-hypersensitive mutants DSM1 and DSM2 have shown the ability to regulate POX expression
and control ABA levels that lead to ROS quenching [84,85]. Further, over-expressed OsCPK4 and
OsSIK1 genes regulate avoidance of lipid peroxidation, and results in the accumulation of SOD, CAT,
and POX that acts to lower the H2O2 levels in the cell [86–88]. Up-regulated levels of antioxidant
genes (CAT, SOD, POX, GST) result in reduced ROS levels. Research has also shown that the induced
expression of GST genes by cold, salt, drought, and heavy metals is a common mechanism for
increased tolerance to oxidative damage. In alfalfa, the over-expression of the MsGSTU8 gene with
higher GST activity reduces ROS accumulation by increasing other antioxidant enzyme activities to
improve osmotic regulation and reduce ROS damage [89]. Through mutant studies in Arabidopsis,
two PP2C phosphatases ABI1 and ABI2 were identified as negative regulators of ABA signaling,
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and down-regulators of H2O2 in vitro. ABI1 and ABI2 are involved in Ca2+ ion channeling through
ABA signaling that controls stomatal closure. ABA-induced Ca2+ ion channels were disrupted in abi1-1
and abi2-1 mutants, where stomatal closure was affected in the abi2-1 mutant, while abi1-1 remained
functional. However, in vivo, both genes interacted with GPX3 (glutathione peroxidase) and regulated
ABA- and H2O2-induced stomatal closure. Oxidized GPX3 reduced the phosphatase activity of ABI2
and converted ABI2 to an oxidized form in vitro. ABI1 acts upstream of ROS production and ABI2
works downstream of ROS production in the cell [90–92]. In another set of Arabidopsis genes, AtGPX3
and AtGPX6, H2O2 levels affect ABA signaling, ABA-responsive gene expression, CA2+ channel
activation, and stomatal closure, indicating that the redox status regulates all these processes [93–95].

5. Organelles Regulation of ROS Homeostasis during Abiotic Stress

In the following sections, we will review the effect of abiotic stresses on plant cells and their
effects on different organelles. Figures 1–4 describe the processes ongoing in each organelle under
abiotic stress.

5.1. ROS Regulation in the Chloroplast

Photosystems (PS) I and II are the reaction center in the chloroplast where ROS is produced
through inhibition of CO2, and low water levels are due to stress. Control of ROS levels in the
chloroplast is vital for plant survival under stress [96]. The ETC in the PS is the chief source of ROS
in chloroplasts. The ROS status in plants changes with the physiological and environmental status
of the plant. When not stressed, the electrons flow from the excited PS to reduce NADP to NADPH,
which then enters the Calvin cycle where CO2 is reduced as the electron acceptor. Conversely, there
is an overload on ETC, which results in electron leakage from ferredoxin to O2, producing O2

•− [97].
When exposed to high light intensity with low CO2 intake due to stomatal closure, there is a direct
transfer of electron to molecular oxygen through the Mehler reaction in PSI [38]. These superoxide
radicals are converted by a membrane-bound Cu/ZnSOD to H2O2, which is further converted by a
thylakoid-bound POX to water [98]. The thylakoid-based POX then reacts with thioredoxin to protect
against oxidative stress, especially in drought, and provides an alternate water–water cycle to detox the
radicals in the chloroplast [18,99,100]. Meanwhile, in PSII, 1O2 are generated through electron transfer.
H2O2 produced in PSI plays a role in inhibiting 1O2 through the water–water cycle [101–103]. Levels of
singlet oxygen when kept unchecked trigger genetic programming such as growth retardation and
death through the EXECUTER pathways [104] (Figure 1).

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 5 of 29 

 

regulated ABA- and H2O2-induced stomatal closure. Oxidized GPX3 reduced the phosphatase 

activity of ABI2 and converted ABI2 to an oxidized form in vitro. ABI1 acts upstream of ROS 

production and ABI2 works downstream of ROS production in the cell [90–92]. In another set of 

Arabidopsis genes, AtGPX3 and AtGPX6, H2O2 levels affect ABA signaling, ABA-responsive gene 

expression, CA2+ channel activation, and stomatal closure, indicating that the redox status regulates 

all these processes [93–95]. 

5. Organelles Regulation of ROS Homeostasis during Abiotic Stress 

In the following sections, we will review the effect of abiotic stresses on plant cells and their 

effects on different organelles. Figures 1–4 describe the processes ongoing in each organelle under 

abiotic stress. 

5.1. ROS Regulation in the Chloroplast  

Photosystems (PS) I and II are the reaction center in the chloroplast where ROS is produced 

through inhibition of CO2, and low water levels are due to stress. Control of ROS levels in the 

chloroplast is vital for plant survival under stress [96]. The ETC in the PS is the chief source of ROS 

in chloroplasts. The ROS status in plants changes with the physiological and environmental status of 

the plant. When not stressed, the electrons flow from the excited PS to reduce NADP to NADPH, 

which then enters the Calvin cycle where CO2 is reduced as the electron acceptor. Conversely, there 

is an overload on ETC, which results in electron leakage from ferredoxin to O2, producing O2•− [97]. 

When exposed to high light intensity with low CO2 intake due to stomatal closure, there is a direct 

transfer of electron to molecular oxygen through the Mehler reaction in PSI [38]. These superoxide 

radicals are converted by a membrane-bound Cu/ZnSOD to H2O2, which is further converted by a 

thylakoid-bound POX to water [98]. The thylakoid-based POX then reacts with thioredoxin to protect 

against oxidative stress, especially in drought, and provides an alternate water–water cycle to detox 

the radicals in the chloroplast [18,99,100]. Meanwhile, in PSII, 1O2 are generated through electron 

transfer. H2O2 produced in PSI plays a role in inhibiting 1O2 through the water–water cycle [101–103]. 

Levels of singlet oxygen when kept unchecked trigger genetic programming such as growth 

retardation and death through the EXECUTER pathways [104] (Figure 1). 

 

Figure 1. A diagrammatic representation of the processes in the chloroplast during stress where 

reactive oxygen species (ROS) is produced through inhibition of CO2, and low water levels are due 

to stress. The electron transport chain (ETC) in the photosystem (PS) is the main source of ROS in 

chloroplast. 

Figure 1. A diagrammatic representation of the processes in the chloroplast during stress where reactive
oxygen species (ROS) is produced through inhibition of CO2, and low water levels are due to stress.
The electron transport chain (ETC) in the photosystem (PS) is the main source of ROS in chloroplast.
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5.2. ROS Regulation in the Mitochondria

The production of ROS is lower in the mitochondria compared to the chloroplast. There is a
variation in plant and animal ROS production in mitochondria, wherein in plants, the mitochondria
are also the site of photorespiration that is surrounded by carbohydrate solutes [88]. In drought,
when respiration rates are high, and transpiration and photosynthesis are low, the demand on
mitochondrial ATP is high to compensate for chloroplast ATP production, which causes an increase in
ROS levels in the mitochondria [105]. ROS is produced within several sites in mitochondria. In this
organelle, the O2 is reduced to O2

•− via the NADPH dehydrogenase [complex I] [106]. Within the
mitochondria complex I and III, the electron transfer complex has sufficient energy to reduce O2 to
ROS from overreduction of the ubiquinone pool (UQ) [107–110]. An electron is donated to cytochrome
C1 when UQ is in a fully reduced state. This results in a highly unstable radical complex, which brings
about electron leakage and O2

•− formation [111]. When NAD is low within the complex, there is a
reverse electron flow from complex II to I [112,113]

There are alternative ROS-producing sources in the mitochondria like aconitase [114]. While the
mitochondria are the source of ROS production, this organelle also has its detoxification system
made up of alternative oxidase (AOX) and MnSOD. Aconitase causes the production of ROS while
1-galactono-γ lactone dehydrogenase (GAL) directly donates an electron to the ETC [63]. The O2

•− that
is formed in this organelle is quickly converted to a stable membrane-permeable H2O2 by MnSOD or
ascorbate peroxidase (APX). AOX together with MnSOD work at maintaining the reductive state of the
UQ pool while reducing O2

− to O2 [115,116]. Giraud et al. (2008) report that mutant AOX Arabidopsis
plants were sensitive to drought and light stress, indicating a role for this enzyme in ROS detox [117].
The largest amounts of ROS found in the mitochondria are as O2

− molecules, which are converted in the
detox process by MnSOD and APX to H2O2 and O2 eventually [111]. As in chloroplast, mitochondria
produce ROS even in the non-stressed state at basal levels, and any form of stress causes alleviation in
ROS due to ATP synthesis, leading to a reduction in the UQ pool [18,116,118,119] (Figure 2).
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to ATP synthesis, leading to a reduction in the ubiquinone pool (UQ) pool. Several enzymes work
together to manage ROS levels in mitochondria.
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5.3. ROS Regulation at the Peroxisomes

In drought due to reduced CO2 and O2 levels in the cell, there is an increase in the production
of glycolates, which are then oxidized by glycolate oxidase in the peroxisome to H2O2 [88,120,121].
Just as in the mitochondria and chloroplast, the peroxisome produces the O2

•− even in their normal
metabolism. Through a fine balance between scavenging and production, ROS levels in peroxisome are
kept in check [122]. There are two sites of O2− production in the peroxisomal matrix where xanthine
oxidases convert xanthine and hypoxanthine to uric acid and O2

−, and at the proximal membrane,
O2 is used as an electron acceptor by NADH and Cytb to produce O2

− [123]. Metabolic processes
that produce H2O2 in the peroxisome include β-oxidation, disproportionation of radicals, and the
flavin oxidase pathway [88,124,125]. CATs detox the system of H2O2 while APX and ascorbic acid
(AsA)-GSH scavenge H2O2 in the peroxisome [9,126,127]. The reduced AsA-GSH contents result in
lipid peroxidation of peroxisomes. Other than these enzymes, POX, a polyamine-catabolizing enzyme,
has been shown to regulate stress-responsive genes to facilitate the production and scavenging of ROS
in the peroxisome [128–130] (Figure 3).
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5.4. ROS Regulation in the Apoplast

Stress-induced ROS production is combined with the effect of ABA in the apoplast [27,131,132].
NADPH oxidases generated in the stomatal guard cells in Arabidopsis produces ROS in the apoplast as
a consequence of ABA-induced stomatal closure [92,133]. AtRbohD and AtRbohF are two genes that
regulate NADPH oxidases in Arabidopsis [134,135]. Other than the NADPH oxidases, peroxidases,
cell wall-linked oxidases, polyamine oxidases, and oxalate oxidases play a role in generating H2O2

in the apoplast [136]. One important source of apoplastic ROS production is the cell wall-linked
oxidases [63]. The oxalate oxidase, a cell wall germin-like protein, is known to release H2O2 and CO2

from oxalic acid [137]. This enzyme is mostly involved in plant defense against biotic and abiotic
stress. Amine oxidases are found in the apoplast and are contributors to plant defense through the
production of H2O2. These oxidases cause the oxidative deamination of polyamines via cofactors.
As observed by Heyno et al. (2011), the hydroxyl ion generation in the apoplastic region of the cell
in full or in part contributes to cell wall-bound peroxidases [138]. The increased production of H2O2
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results in higher levels of polyamines and Ca2+. This results in more H2O2 being produced, which,
in turn, activates the antioxidative machinery along with increased synthesis of higher polyamines
and secondary messengers like Ca2+. ABA levels are also elevated, which leads to the activation of
polyamine-activated signaling pathways in response to abiotic stresses [128] (Figure 4).

5.5. ROS Regulation at Cell Walls and Plasma Membranes

The cell walls of plants when stressed accumulates oxidative radicals OH•, O2
•−, H2O2, and 1O2.

The cell walls-localized peroxidases, lipoxygenases, oxidases, and polyamines are responsible
for the generation of ROS. These oxygen radicals are also responsible for the lipid peroxidation
of polyunsaturated fatty acids (PUFA) found in the cell wall of plants that produce ROS [13].
The peroxidases found in the cell walls catalyze the formation of H2O2 through NADH, through malate
dehydrogenase. ROS generation by cell wall-associated peroxidases trigger biotic responses and the
alteration of potassium [K] levels in drought-affected plants [88,111]. Liu et al. (2015), in his review,
described polyamine’s role in plant stress response as one that is mediated through antioxidant systems
or suppression of ROS [12]. Therefore, the exogenous application of polyamines or the activation of
polyamine-related genes would lead to the activation of antioxidant processes in situ in plants exposed
to drought, salinity, nutrient deficiency, temperatures, and others [18,129,139].

As for the plasma membrane, NADPH oxidases localized in the membrane are responsible for
generating O2

•− through the transfer of an electron from NADPH to O2, which is then converted
by SOD to H2O2. The NADPH oxidases in the plasma membranes are crucial players in the stress
response of plant cells to environmental factors such as abiotic stresses [18,63]. In certain cases, multiple
enzymes were found to catalyze the conversion of O2 to O2

•−. For instance, in soybean, other than
NADPH oxidase, a quinone reductase also functions in the presence of menadione to facilitate the
conversion of O2 to O2

•− [18,63,140] (Figure 4).
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Figure 4. The processes involved in the production and control of ROS in different organelles within
a plant system. The above is observed during stress response in plants. All these organelles are
collectively responsible at maintaining ROS homeostasis in the cell.

6. Genes Regulating ROS Homeostasis in Abiotic Stress

There are an array of genes identified as key players of ROS regulation in plants [79]. Large numbers
of genes are activated in response to abiotic stress in plants. These genes are highly regulated in their
expression [141]. In the following section, we will briefly expound on the roles played by some of these
genes, specifically genes involved in the activation and regulation of ROS in abiotic stress response [142].
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These genes have been divided into various classes to enable a systematic illustration [143]. Table 1
and Figure 5 provide details of some of these genes and how these genes are interconnected in the
regulation of abiotic stress.

Table 1. List of mitogen-activated protein (MAP) kinases and the processes they are implicated
to regulate.

MAP Kinase Phosphorylated Amino
Acids List of MAP Kinases These MAP Kinases Respond or

are Involved in These Processes

MAPKKK Serine Threonine

MEKK1, MEKK2,
MEKK3, MEKK4,
MAPKKK18, GhMAPKKK49
DSM1, DSM2

Influences oxidative, abiotic, and
biotic stress.
Hormones: Abscisic acid;

MAPKK Threonine/tyrosine

MKK1, MKK2,
MKK6, GhMKK1,

Influences oxidative, abiotic, and
biotic stresses and cell division.
Hormones: Salicylic acid;

MKK3, GhMKK3, Influences oxidative, abiotic, and
biotic stresses and cell division.
Hormones: Salicylic acid;

MKK4, MKK5 GhMKK4,
GhMKK5,

Influences oxidative, abiotic, and
biotic stresses
Hormones: Jasmonic acid.

MKK7, MKK8, MKK9,
MKK10, RhMKK9,
GhMKK9 ZmMKK10

Influences oxidative and biotic
stresses, Hormones: Ethylene

MAPK Serine/Threonine/Tyrosine

MPK3, MPK6, MPK10
OsMPK6, ZmMPK3, RhMPK6,
ZmMPK6-2, OsMPK3,
ZmMPK3

Influences oxidative, abiotic, and
biotic stresses.
Hormones: Jasmonic acid
and ethylene

MPK4, MPK5, MPK11, MPK12,
MPK13 OsMPK4ZmMPK4-1,
OsMPK5, OsMPK5, ZmMPK5

Influences oxidative, abiotic, and
biotic stresses and cell division.
Hormones: Salicylic acid;

MPK1, MPK2, MPK7,
MPK14, ZmMPK7,
OsMPK2AtMPK7,
OsMPK7, GhMPK7

Influences oxidative, abiotic, and
biotic stresses.
Circadian-rhythm-regulated.
Hormones: Jasmonic acid,
abscisic acid.

MPK8, MPK9,
MPK15/16/17/18/19/20
GhMPK17, ZmMPK17

Influences oxidative, abiotic, and
biotic stresses.
Hormones: Jasmonic acid
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6.1. Protein Kinases and Phosphatases

One of the important gene groups involved in ROS signaling is the mitogen-activated protein
kinases (MAPK). There have been many MAPK cascades studied in plants [144]. This gene can
be activated by different external stimuli. For instance, MPK6 in Arabidopsis is activated by abiotic
stress (drought) and repressed under rehydration [145,146]. In roses, RhMPK6 is produced at
high levels during hydration, which phosphorylates and stabilizes RhACS1, resulting in ethylene
production [147]. Through signal transduction that follows, flower opening and senescence are
controlled. Chen et al. (2017) also notes that RhMKK9 is involved in dehydration-dependent ethylene
biosynthesis, where it works on RhMPK6-RhACS1 [148]. In another study by Mitula et al. (2015),
MAPKKK18 was reported to control stomatal aperture and development [149]. Through mutant
studies of this gene, it was concluded that MAPKKK18 controlled ABA-dependent stomatal closure
under stress [145,150].

GhMKK1 from cotton was able to increase stress resistance and result in ROS homeostasis.
Likewise, BnMKK1 (from Brassica napus), when introduced and overexpressed in transgenic tobacco,
triggered ABA signaling, causing rapid water loss and drought sensitivity. This, therefore, indicates that
this gene generates drought-susceptible plants [151]. GhMKK5, however, reduced tolerance to salt and
other stresses [152]. In Arabidopsis, overexpression of GhMPK17 resulted in increased H2O2 levels and
osmotic stress [145,153]. In cotton, a novel GhMAPKKK49 was induced in response to ABA or H2O2 [142].
Further, GhMAPKKK49 was also hypothesized to interact with GhMKK4 and GhMKK9 in mediating
ABA- and H2O2-mediated abiotic stress responses. Wang et al. (2016) reported that GhMKK3 regulates
drought tolerance through control of the water deficit. GhMKK3 overexpression in tobacco effectively
induced ABA-responsive stomatal closure and reduction in stomatal numbers [154,155]. Danquah et
al. (2015) noted that GhMKK3 and GhPIP1 work in concert with GhMPK7 to generate drought and
ABA-activated MAPK modules [156]. Transgenic tobacco overexpressing ZmMKK3-1 (ZmMKK3) from
maize exhibited enhanced tolerance toward stress-induced oxidative stress [152]. ZmMKK1 is induced
by ABA in maize roots and results in drought and salinity tolerance in Arabidopsis [157]. ZmMPK4-1,
ZmMPK7, and ZmMPK17 were also involved in the regulation of oxidative stress [158] where ZmMKK10
is jointly activated by ZmMPK7 and ZmMPK3 during drought in maize [159]. Similarly, AtMPK6,
AtMPK7, OsMPK5, and OsMPK show ABA-induced defense as in ZmMPK3 and ZmMPK6-2 [152,155].
Salt Intolerance 1 (SIT1), a receptor-like kinase (RLK), is expressed at high levels in rice root cells during
stress and is induced when exposed to salt stress. SIT1 activation of MPK3 and MPK6 in drought and
salinity was determined via immunoprecipitation assays where both kinases were reported to form a
complex with SIT1 [160], leading to the phosphorylation of MPK3 and MPK6. From the reports on
various plant systems, MAPK pathways are involved in both biotic and abiotic stress modulation and
act in concert with phytohormone and calcium ion signaling to activate antioxidant in plants.

Protein phosphatases are another large gene family found in plants. The sequencing project of
Medicago truncatula identified and characterized PPC2 genes in the genome [161]. Further genome
analysis in other plants systems such as rice, tomato, Arabidopsis, peppers, and maize indicated the
presence of PP2C gene families [162–164]. These genes are responsible for the plants adaptation
to environmental conditions and stresses [165]. There are two main subfamilies of PP2C that
are present in plants. The subfamily A of PP2Cs are involved in stress responses that are
ABA-dependent, while subfamily B phosphatases are MAPK regulators [165]. Further studies
of the PP2C genes in Arabidopsis and rice indicate an active role for these genes in abiotic stresses that
are ABA-dependent [163,166]. In M. truncatula, subfamily A genes were either up- or down-regulated
during drought in an ABA-contingent manner. Through an in-depth study of the PP2C gene in
M. truncatula, MtPP2C8, MtPP2C37, MtPP2C46, MtPP2C47, MtPP2C67, MtPP2C72, and MtPP2C73
were reported to be homologous to the HAI PP2Cs in Arabidopsis and are induced by stress. In addition,
MtPP2C92 and MtPP2C65 expression were induced under stress. In Arabidopsis, the HAI PP2Cs provide
drought resistance and have the greatest influence on the ABA-independent low-water-potential
phenotypes compared to the classical phenotypes [166]. Further, the homologs of MtPP2C92 and
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MtPP2C65 in Arabidopsis (ABI1 and ABI2, respectively) are the most well-documented PP2C genes that
are ABA-dependent and are active under abiotic stresses [163,165]. The MP2C (homolog with AP2C1)
in alfalfa acts as a negative regulator of the MAPK pathway in cold and drought [167,168]. The AP2C2
(homolog MtPP2C72) regulates ROS levels in response to biotic and abiotic stresses [168]. AP2C1 is
strongly induced in response to drought and cold, while AP2C2 is less responsive [164].

6.2. Transcriptional Factors

Transcriptional factors (TFs) play an important role in stress-responsive gene regulation and
expression. ERF, DREB, APETALA, WRKY, NAC, and Zn finger families play an important role in
stress regulation in plants [169–172]. Zn finger family proteins (ZFP) are important in cellular function
in eukaryotes and have been divided into several classes such as C2H2, CCCH, C2HC, and C2C2
based on the location of their Zn residues [173,174]. ZFP have been implicated as regulators of defense,
development, growth, and stress in plant systems [175,176]. ZFPs play a key role in oxidative stress
response in various plant systems [177]. ZFPs are integral in ROS defense where genes such as ZAT7,
ZAT10, and ZAT12 are up-regulated in Arabidopsis knockout plants during oxidative stress [178–180].
A drought- and salt-tolerant Arabidopsis mutant, dst, encodes a C2H2-type ZFP with the ability to
negatively regulate stomatal closure. This is achieved through a DST-mediated H2O2 regulation of
increased stomatal closure and enhanced drought resistance [181]. In rice, the DST complex was
reported to work in association with DST Co-activator 1 [DCA1] to regulate stomata, and aperture
and downstream regulation of drought-responsive genes. This complex induces genes involved in
POX production and H2O2 detoxification. However, overexpression of DCA1 increased sensitivity
to stress [182]. In rice, the OsAHL1 gene expression improved stress tolerance through alleviation of
stress at the plasma membrane [183].

ZFP36, another C2H2-type ZFP gene, is involved in antioxidant defense and enhances resistance
to oxidative stress tolerance in rice [184,185]. This gene is a major player in the regulation of cross-talk
between key players of oxidative stress such as H2O2, NADPH oxidase, MAPK, and ABA signaling [184].
The incorporation of the ZFP245 (C2H2) gene in rice increased abiotic stress tolerance through the
activation of ROS-scavenging enzymes such as SOD and POX. ZFP179, ZFP182, and ZFP252 were
also linked to the oxidative stress response via ROS signaling in rice [27,153,186]. A tandem ZFP,
OsTZF1, negatively regulates leaf senescence under drought and oxidative stress in rice through
the expression of ROS homeostasis genes and scavenging enzymes [153,187]. Similarly, GhTZF1,
a TZF gene, also modulates oxidative and senescence stress in cotton through the mediation of ROS
equilibrium [188].

Another TF family that has a wide involvement in rice and Arabidopsis is the WRKY family,
which has over 100 WRKY genes in both plants collectively. This TF regulates both biotic and abiotic
stresses [189]. The WRKY TF family is recognized by the presence of WRKYGQK heptapeptide and
a zinc-finger-like motif at the N- and C-terminus, respectively [190,191]. These conserved domains
play an important role in regulating important physiological processes by binding to promoter regions
of target genes [161,192,193]. WRKY, in association with ROS and ABA, functions in mitigating
the effects of oxidative stress in rice. OsWRKY30 and OsWRKY45 are two WRKY genes in rice
that, when overexpressed, are effective at increasing drought tolerance in rice under the regulation
of OsNAC6 and SNAC1 as promoters. The OsWRKY45 also plays an important role in abiotic
stress in Arabidopsis [194,195]. Further, when the WRKY57 gene from Arabidopsis was transferred to
rice, the transgenic rice showed reduction in water loss, electrolyte leakage, and cell death. In these
interactions, OsNAC1 and SNAC1 have been implicated as the promoters controlling WRKY57 function.
These plants exhibit up-regulation of stress-responsive genes with higher antioxidant and proline
content [196]. In transgenic soybean, the GmWRKY27 interacts with GmMYB17 to repress promoter
activity and gene expression of GmNAC29, which results in reduced ROS levels and enhanced stress
tolerance [197]. GmNAC29 negatively regulates stress where it enhances ROS production enzymes,
leading to elevated stress. In another study, Yan et al. (2014) showed that GhWRKY17 reduced drought
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and salt tolerance in tobacco plants through mediation of cellular ROS levels and ABA signaling [198].
Further, the BdWRKY36 gene isolated from Brachypodium distachyon positively regulates abiotic stress
through moderation of ROS homeostasis and regulation of stress-responsive genes [27,199].

NAC (for NAM, ATAF-1,-2, and CUC2) is one of the largest TF families with close to 300 members
in just Arabidopsis and rice [200,201]. NACs, like the previously discussed proteins, regulate plant
growth, development, oxidative stress, and drought tolerance [169,201–204]. GmNAC2, a soybean
NAC, negatively regulates abiotic stress through the induction of ROS signaling and expression of
stress-responsive genes [27,205–207]. The Eleusine coracana-isolated EcNAC1 gene, when transformed
into tobacco, exhibited enhanced ROS scavenging and expression of abiotic stress-related genes [208,209].
Further, the SNAC3 gene in rice positively regulates stress through ROS homeostasis and enhanced
ROS-associated enzyme activity [27,210]. A SNAC1-regulated downstream gene, OsPP18, mediates
drought resistance via ROS homeostasis [27,211]. The mutant ospp18 was susceptible to drought and
oxidative stress. As the ABA-induced expression of ABA-responsive genes was not disrupted in
the ospp18 mutant, the OsPP18 gene expression is predicted to be regulated in an ABA-independent
manner [27].

Another group of transcription factors that regulate multiple abiotic stress responses are the
AP2/ERF (APETALA2/ethylene response factor) families, which include DREB/CBF [212]. SUB1A,
an ERF found in certain rice varieties, was able to adapt to stress and economize on energies spent in
stress through ethylene and gibberellin responsiveness [213]. Following flooding and anoxic injury,
plants go through severe desiccation when the water subsides. This results in ROS accumulation
in plant tissues [213,214] where SUB1A enhances oxidative stress tolerance through activation of
ROS-scavenging genes. SUB1A is able to improve plant tolerance to abiotic stress through the induction
of ABA responsiveness and activation of stress genes [214,215]. The JERF3 gene from tomato has been
reported to regulate ROS activity and, therefore, reduces the osmotic and oxidative stress response in
any abiotic conditions [216] by binding to cis elements in stress-responsive genes. This gene in tobacco
increased abiotic stress tolerance [216].

6.3. ROS-Scavenging and Detoxification Proteins

Under stress, the ROS-scavenging gene families are activated in plants. Here, we present the
enzymatic (processes catalyzed by enzymes) and non-enzymatic (non-enzymatic regulation) genes
responsible for ROS-scavenging systems that manage the state of detoxification and homeostasis
within plant cells. These genes include ascorbate peroxidase (APX), CAT, dehydroascorbate reductase
(DHAR), glutathione peroxidase (GPX), glutathione reductase (GR), glutathione S-transferase (GST),
monodehydroascorbate reductase (MDHAR), myo-inositol monooxygenease (MIOX), peroxiredoxin
(PRX), proline synthesis, and SOD. In a study conducted on transgenic rice, the MnSOD gene expressed
in chloroplast exhibited a fold increase in antioxidant levels, leading to enhanced stress tolerance.
In plant systems, SODs are the frontline defense against ROS and are classified by the metal ions that
are bound to their active sites such as copper and zinc (Cu/ZnSOD), manganese (MnSOD), and iron
(FeSOD). Different metal ions-bound SODs are found in different cellular locations. For instance,
Cu/ZnSOD are found in the cytosol and chloroplasts, while MnSOD is located in the mitochondria
and peroxisomes. FeSOD is generally found in chloroplast but is significant in prokaryotes [217].
SODs protect the photosynthetic machinery against ROS in transgenic plants compared to wild
type under drought-stress [18,32,99,218]. Similarly, the Zn and Cu-containing superoxides remove
oxygen radicals from plant cells. Rice transformed with Zn/Cu SOD genes had increased abiotic
stress tolerance [62,219,220]. Further, in transgenic alfalfa, the overexpression of MnSOD from tobacco
increased the survival and yield of alfalfa over several seasons in drought conditions [221].

The APX is involved in the initial step of the AsA-GSH cycle that scavenges ROS and protects the
plant from stress [219,222]. This haem enzyme scavenges H2O2 through the AsA-GSH cycle where
H2O2 is converted to water and dehydroascorbate DHA [63,223,224]. In different abiotic stresses,
APX activity is elevated [225–227]. In rice, several isoforms of the APX gene have been identified in
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the genome. Out of these isoforms, the OsAPX2 gene has been shown to protect against oxidative
injury in rice seedlings [228,229]. The overexpression of OsAPX2 in transgenic rice increases APX
activity and results in a reduction in H2O2 and malondialdehyde (MDA) under abiotic stress [229].
The reduction in H2O2 and malondialdehyde (MDA) is probably the reason behind the increased
tolerance exhibited by transgenic rice compared to wild type in the booting stage where spikelet
fertility is enhanced [229]. OsAPX1 exhibited augmented spikelet fertility under cold stress [229].
Prakash et al. (2016) reported that both the APX3 and APX8 genes are responsible for drought tolerance
in IR64 and Nagina [230]. Like APX, GPX is another large family of diverse peroxidase isozymes
without the haem-thiol group. This enzyme is responsible for the reduction of H2O2 to water, and
lipid hydroperoxides to alcohol, hence repairing lipid peroxidation and membrane damage [120,231].
Both the intracellular and extracellular forms of this enzyme are involved in H2O2 scavenging. GPX and
other peroxidase enzymes bound to plant cell walls can oxidize phenols to result in the lignification of
cell walls [46]. GPX also functions as an oxidative signal transducer in plants [232]. In a functional
study of the PgGPX (Pennisetum glauccum GPX) genes introduced into rice, the transgenic lines showed
an enhanced antioxidant defense via lower H2O2 and MDA content during abiotic stresses [233].

As a haem-containing enzyme, catalase scavenges H2O2 in the peroxisome, glyoxysomes, and
other organelles during stress-related processes [18,234]. CATs respond variably to different abiotic
stresses [225,227,235–237]. It has a higher turnover rate minus the requirement for a reductant like
APX, giving it a higher affinity and scavenging ability of H2O2. The catalase isoforms are divided into
classes, which are specific to location. CAT1 and 2 are in the peroxisomes and cytosol while CAT3 is
in the mitochondria [68]. GR, another oxidoreductase, regulates the GSH redox state by catalyzing
the disulphide bond formation of the GSSG pool via NADPH. This is important in maintaining the
GSH at a reduced state. GR is predominantly located in the chloroplast but is also reported in cytosol
and mitochondria. Both GR and GSH have been identified as enzymes linked with tolerance against
various stresses in plants [238–240].

MDHAR accompanies APX and scavenges H2O2 in the mitochondria and peroxisome [236,237].
MDHAR accepts electrons from NADH and, together with DHAR and GR, regulates abiotic stress in
rice. DHAR works on ascorbate and recycles ascorbic acid (AsA) [241,242]. AsA is then oxidized to form
MDHA, which is further converted to DHA. DHAR through GSH reduces DHA to AsA and undergoes
rapid regeneration. This regeneration of AsA is moderated through the NADPH-MDHAR cycle [243],
which is essential in ensuring and maintaining a reduced pool of AsA [244,245]. Maintenance of the
cellular redox state of AsA is essential in abiotic stress tolerance. Increased DHAR and MDHAR
activity was reported in various plants subjected to abiotic stress [99,238,246,247]. GST together with
GSH can reduce POX activity in the cell through scavenging. In addition to their ability to conjugate
electrophilic compounds to GSH, GST displays POX-like activities [248]. There are over 100 GST genes
that have been reported in soybean, maize, and Arabidopsis [233] with diverse function, including
cellular metabolism, hormone homeostasis, cellular detoxification, apoptosis, and various other biotic
and abiotic stresses [249,250]. This enzyme is induced at high levels when plants are subject to abiotic
stresses [99,146,251,252].

MIOX produces AsA, which results in antioxidant defense. Oxidative damage in rice is reduced
through the overexpression of OsMIOX and increased ROS scavenging [19,253]. Another enzyme that
scavenges ROS is ornithine δ–aminotransferase (δ-OAT), which synthesizes proline, a non-enzymatic
ROS-scavenging system effective in abiotic conditions [21,254]. You et al. (2012) reported that the
overexpression of OsOAT induced enzyme activities that resulted in ROS quenching and improved
antioxidative activity within the plant cells [255]. Other than proline, metallothioneins (MTs) are
another low-molecular-weight protein that has metal-binding capabilities. MTs are involved in ROS
detoxification and the maintenance of safe redox levels. OsMT1a expression in rice is enhanced in
plants that are subjected to Zn2+ treatment and drought [256]. These plants exhibit elevated levels of
APX, CAT, and POD that result in these transgenic lines exhibiting heightened tolerance to drought
stress. Zn2+ homeostasis is important in improved resistance in plants. OsMT1a interacts with Zn
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finger transcription factors that can moderate the levels of Zn2+ within the cell. In cotton, GhMT3a
resulted in an enhanced ability to bind metal ions, resulting in efficient ROS scavenging in planta.
GhMT3a, when introduced into tobacco, resulted in improved resistance against multiple abiotic
stresses through lower H2O2 levels than those exhibited in wild-type plants [27,57,100,257].

In addition to the enzymatic and non-enzymatic genes that have been mentioned above, sugars
are suggested to have a role in antioxidative responses. Fructans, disaccharide, and sugar alcohols
possess antioxidative abilities and can efficiently remove hydroxyl radicals within plant cells and
organelles [54,258]. This non-enzymatic removal of the ◦OH radical is important as there are not any
enzymatic systems available for the removal of this toxic compound [259]. Galactinol and raffinose
have demonstrated similar potential to GSH in the removal of hydroxyl ions from plant cells [260].
The levels of these sugars in chloroplast are comparable to AsA and GSH, suggesting that these sugars
play a vital role in scavenging radical ions in this organelle [111,239,261]. However, the role of sucrose
as antioxidants is only relevant in plants with high levels of sucrose such as beet and sugarcane, where
they have been reported to remove ◦OH effectively [262].

6.4. Other Proteins

6.4.1. Ca2+ Transporters and Binding Proteins

Most of the Ca2+-binding sites contain the EF-hand motifs that are highly conserved amongst
eukaryotes [263]. The EF-hand motifs are also found in the proteins family that transport and manage
intracellular Ca2+ concentrations [264]. The influx and efflux of Ca2+ across the membranes is achieved
through Ca2+ATPases or antiporters. Both the calcium transporters and binding proteins help to
regulate processes by the altering of Ca2+ levels in cells. The main players of calcium binding in
plants are calmodulin [CaM], CaM-like proteins (CML), calcineurin-B-like proteins (CBL), and Ca2+

dependent protein kinases (CDPK). CaM, CML, and CBL are the sensors, while CDPK are sensor
responders that activate the kinase activity of this protein [265]. As drought affects growth, development,
and stress tolerance, Ca2+ is implicated in the regulation of signaling involving drought-affected
processes. Calcium-binding proteins bind calcium and thence activate the downstream phosphorylation
cascade of gene expression. This increases the levels of Ca2+ perceived by calmodulin and CDPK.
OsACA6, a form of Ca2+ATPase in rice, when overexpressed, is able to moderate the reduction in
ROS levels. The overexpression of this gene results in cellular homeostasis through the modulation of
ROS-scavenging systems [73,266].

Further, another group of proteins, annexins, are implicated in the response toward environmental
stresses on growth and development. One such annexin, OsANN1, functions as an ATPase with the
ability to bind Ca2+ and regulate the inflow and efflux of Ca2+ ions. Through the interaction with
OsCDPK10, a protein kinase, OsANN1 confers abiotic stress tolerance via antioxidant accumulation [267].
Further, through yeast two-hybrid system analyses, it was demonstrated that OsANN1 interacts with
OsCDPK24 and, therefore, regulates abiotic stress responses [268]. The RNAi knockout mutant of this
gene was sensitive to drought, while the overexpressing lines showed improved growth and higher
expression of the gene under abiotic stress, leading to SOD and CAT activities that facilitate ROS
homeostasis through a OsANN1 and H2O2 feedback mechanism.

In another study involving stomatal guard cells, it was reported that cytosolic Ca2+ increase and
activation of ABA results in activation of the anion channel, which causes the plasma membrane of the
guard cells to close. In Arabidopsis, an ABC protein, AtMRP5 was bound to the plasma membrane of
guard cells, which affects the ABA and cytosolic Ca2+ levels in the cell. Mutants of this gene showed
loss of ability to keep the stomata closed in drought. These mutants also showed impaired ABA activity,
indicating that this gene was responsible for Ca2+ control over guard cell aperture [269].
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6.4.2. SRO Proteins

SRO is a plant-specific protein group that has the PARP, RST and WWE domain [270]. The rcd1
[radical-induced cell death1] in Arabidopsis exhibited the ability to respond to various stimuli such
as ROS stress, salt stress, and irradiation by interacting with numerous transcription factors that
facilitate their involvement in developmental and stress-related responses [27,271,272]. The RCD1
gene regulates signaling pathways that are responsible for quantitative changes to gene expression in
response to ROS [273]. OsSRO1c is targeted by SNAC1 in rice [78], where it is induced in the guard
cells during abiotic stress and results in the accumulation of H2O2 and decreased stomatal aperture
and water loss. Due to its involvement in stomatal aperture control and water loss, the overexpression
of OsSRO1c has also been implicated in abiotic stress tolerance of rice through the regulation of the
SNAC1 novel pathway and DST [78]. Just like OsSRO1c, OsNAC5 and ONAC095 enhance drought
and oxidative stress tolerance in rice [274]. Further studies of the SRO protein in wheat showed that
this gene was also involved in the regulation of salinity stress in addition to redox homeostasis [27].
The regulation of salinity tolerance in wheat is achieved through the point mutation of the Ta-sro1
allele. The overexpression of the Ta-sro1 results in regulation of ROS through ROS-associated enzymes
such as AsA-GSH and GPX that result in cellular homeostasis [27].

6.4.3. ABA Metabolism-Related Proteins

ABA is involved in the response to abiotic stresses [275]. In drought, dsm2 mutants have shown
impaired β-carotene hydroxylase synthesis in rice [85]. This particular hydroxylase is a precursor
of ABA and is inhibited under drought stress. However, in overexpressing DSM2 lines, this gene is
expressed at high levels, leading to enhanced resistance to abiotic and oxidative stress. Other than
β-carotene hydroxylase, OsABA8ox3 is another hydroxylase-encoding gene that is involved in ABA
catabolism and regulates oxidative stress under various abiotic stresses [27]. RNAi-generated plants
of this gene showed improved drought and oxidative stress tolerance with enhanced superoxide
dismutase and catalase activities. In another study, transgenic tobacco carrying the 9-cis-epoxy
carotenoid dioxygenase gene showed enhanced tolerance to abiotic stresses. This enhanced resistance
has been linked to production of H2O2 that induces the expression of ROS-scavenging enzymes [276].

7. Conclusions and Future Prospective

Abiotic stresses hamper growth and development, which eventually results in low yields and
productivity. Stressed plants exhibiting elevated intracellular and extracellular ROS are different
organelles, leading to oxidative stress. Though the compartmentalization of antioxidant activities is
well defined, the recognition, response, and balancing of ROS activity in the plant require further
exploration. The coordination of the different enzymes in different compartments and the regulation of
ROS levels in response to stress are questions that require further attention. The ambiguities and gaps
in our knowledge are further compounded by the short half-life and the reactive nature of the molecule.
From the various studies that have been conducted over the past two decades, we may conclude,
in general, that ROS equilibrium involves cross-talk between ABA, Ca2+, and various other hormones
and signaling molecules. ROS as a signal transducer also activates a cascade of genes that assist in
abiotic stress tolerance in a ROS-dependent manner. Genes such as protein kinases and transcription
factors are important upstream components that are responsible for the activation of other downstream
genes involved in alleviating ROS toxicity. Genes that are involved in the regulation of ROS have been
studied quite well in rice and Arabidopsis.

In this review, we have provided an overview of the oxidative and non-oxidative mechanisms
involved in the reduction in ROS damage and the provision of tolerance and adaptation to abiotic stress.
We are still not completely clear on the mechanism by which Ca2+, hormones, and signal molecules
regulate abiotic stresses. Perhaps with the development of better imaging systems, we may be able
to utilize ion markers that provide a better understanding of their role in ROS metabolism. Further,
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genome information has been utilized in functional and metabolome studies that provide a clearer view
of the ROS network and its reactions. A combination of transcriptome, proteome, and metabolome
approaches may provide a comprehensive understanding of the networks involved in ROS production,
signaling, and control. These studies may result in the identification of key pathways, regulators,
and genes that are responsible for ROS homeostasis in plants. Some of these genes may be developed
into biomarkers to be used in plant stress-response studies.

By understanding the genes and their expression, we are then able to manipulate the endogenous
ROS levels to generate plants with improved defense, growth, development, and survival in adverse
abiotic stress conditions. Most of the genes identified in ROS homeostasis have been characterized
through the generation of transgenic plants. Some of these transgenic lines with overexpressing genes
have shown enhanced tolerance to multiple stresses [277]. However, the networks involved in the
function of these genes achieving ROS homeostasis requires further investigation and addition of any
new and relevant information into the existing pathways. Some of these genes have already been
used in elite cultivars and are candidates for biomarkers in the selection of abiotic-resistant crops.
The location of these genes and QTLs associated with these genes is also a suitable candidate for use in
the breeding and genetic engineering of resistant cultivars.
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