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Testosterone can be safely and effectively administered to estrogen-treated post-
menopausal women experiencing hypoactive sexual desire. However, in the
United States and Canada, although it is often administered off-label, testosterone
co-administered with estradiol is not a federally approved treatment for sexual
arousal/desire disorder, partly because its mechanism is poorly understood. One
possible mechanism involves the aromatization of testosterone to estradiol. In an
animal model, the administration of testosterone propionate (TP) given in combination
with estradiol benzoate (EB) significantly increases sexually appetitive behaviors (i.e.,
solicitations and hops/darts) in ovariectomized (OVX) Long-Evans rats, compared
to those treated with EB-alone. The goal of current study was to test whether
blocking aromatization of testosterone to estradiol would disrupt the facilitation of
sexual behaviors in OVX Long-Evans rats, and to determine group differences in Fos
immunoreactivity within brain regions involved in sexual motivation and reward. Groups
of sexually experienced OVX Long-Evans rats were treated with EB alone, EB+TP, or
EB+TP and the aromatase inhibitor Fadrozole (EB+TP+FAD). Females treated with
EB+TP+FAD displayed significantly more hops and darts, solicitations and lordosis
magnitudes when compared to EB-alone females. Furthermore, TP, administered with
or without FAD, induced the activation of Fos-immunoreactivity in brain areas implicated
in sexual motivation and reward including the medial preoptic area, ventrolateral division
of the ventromedial nucleus of the hypothalamus, the nucleus accumbens core, and the
prefrontal cortex. These results suggest that aromatization may not be necessary for TP
to enhance female sexual behavior and that EB+TP may act via androgenic pathways to
increase the sensitivity of response to male-related cues, to induce female sexual desire.

Keywords: sexual desire, testosterone, estradiol, preclinical model, aromatase, fadrozole

INTRODUCTION

The role of androgens and estrogens in male sexual behavior in rodent models has been well
characterized (Hull et al., 1997; Sato et al., 2005; Hull and Dominguez, 2007), but the role
of androgens given in combination with estradiol has not been well studied in female sexual
behavior. This is particularly true for female sexually appetitive behaviors and the associated
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neural mechanisms, despite human data suggesting that
testosterone plays a key role in female sexual desire. Testosterone
is an effective treatment for estrogen-treated post-menopausal
women experiencing hypoactive sexual desire (Sherwin et al.,
1985; Burger et al., 1987; Shifren et al., 2000; Sherwin, 2002;
Braunstein et al., 2005; Davis and Braunstein, 2012). However,
one of the reasons that testosterone is not FDA-approved is due
to a lack of understanding of the neural mechanisms through
which it facilitates sexual desire in these women, and human
studies cannot identify where in the brain testosterone is acting,
nor the neural mechanisms through which it exerts its effects.
Testosterone is an aromatizable androgen that can exert its effects
through androgenic or estrogenic pathways and can activate
androgen receptors directly or indirectly following conversion
by 5α-reductase into dihydrotestosterone (DHT). Testosterone
can also activate estrogen receptors following aromatization to
estradiol (E2) (Simpson, 2002), or by increasing bioavailable
E2 through the displacement of E2 from sex-steroid binding
globulins, which bind androgens with higher affinity than
estrogens (Burke and Anderson, 1972; Selby, 1990). Some early
work has shown that both aromatizable and non-aromatizable
androgens are involved in female rat sexual preference tests
(de Jonge et al., 1986b), although comprehensive mechanistic
studies of where in the brain and through which mechanisms
testosterone facilitates sexual motivation when administered on
an EB-baseline have not been conducted. Animal literature has
identified hypothalamic, limbic, and the prefrontal cortex as
key brain regions involved in the activation of female sexually
appetitive behaviors, making them candidate regions where
testosterone may exert its actions. Thus, a better understanding
of the mechanisms through which testosterone facilitates sexual
desire, in candidate brain regions, can be addressed using
preclinical rodent models.

Animal studies have demonstrated that testosterone
propionate (TP) can facilitate sexual behaviors in ovariectomized
(OVX) as well as gonadally intact reproductively senescent
female rats. Administration of TP to OVX rats treated with
estradiol benzoate (EB) increases scent-marking frequency,
proceptive behaviors and partner preference for sexually active
males over EB administration alone (de Jonge et al., 1986a; Van
de Poll et al., 1988). Administration of TP also synergistically
increases proceptive (i.e., appetitive) sexual behaviors in OVX
females treated with EB and progesterone (Fernández-Guasti
et al., 1991), and to levels equivalent to treatment with EB
and progesterone (Jones et al., 2017). It has also been shown
that in the aged gonadally-intact female rat, TP capsules
implanted subcutaneously acutely increase both appetitive and
consummatory sexual behaviors (Jones et al., 2012). Recently it
was reported that testosterone propionate (TP) administered to
the sexually experienced EB-treated OVX Long-Evans rat, 4 h
prior to testing facilitates appetitive sexual behaviors beyond
the effect of EB alone (Jones et al., 2017). Thus, this rodent
model can be useful for increasing our understanding of the
mechanisms involved in TP-induced facilitation in an animal
model of hypoactive sexual desire.

One potential mechanism through which testosterone can
facilitate sexual desire is through an androgenic pathway.

Testosterone binds to androgen receptors directly and indirectly
following reduction to DHT, and numerous reports suggest this
as a possible mechanism. Firstly, whereas estrogen replacement
therapy alone does not restore decreased sexual function, desire
and arousal in many postmenopausal women (Utian, 1975;
Nathorst-Böös et al., 1993; Shifren et al., 1998), studies have
shown that testosterone, even in the absence of E2, yields a
modest, yet significant increase in sexual episodes and desire
in post-menopausal women (Davis et al., 2008). Secondly,
human studies have found a limited role of aromatization in
testosterone’s ability to reinstate female sexual behavior. In one
clinical study, post-menopausal women who were unresponsive
to an estrogen therapy received transdermal testosterone in
combination with either the aromatase inhibitor Letrozole, or
placebo. Blocking aromatization with letrozole did not affect
the enhancement in sexual satisfaction, general well-being and
overall mood (Davis et al., 2006). In addition, Shifren et al.
(2000) demonstrated that while a transdermal testosterone patch
improved sexual function and well-being in postmenopausal
women over placebo alone, serum free estradiol concentrations
between these groups did not significantly differ, suggesting
minimal aromatization. These results indicate that aromatization
may not be necessary for testosterone to exert its facilitative role
on female sexual desire in women treated with estrogens and
suggest that facilitation may occur via an androgenic mechanism.

The first goal of the current study was to determine whether
administration of the aromatase inhibitor fadrozole (FAD) would
block the facilitation of female sexual behavior by TP in EB-
treated females. Androgen receptors, estrogen receptors and
the aromatase enzyme are widely distributed in the female
brain, including the medial preoptic area (mPOA), ventromedial
hypothalamus (VMH), and amygdala (Roselli et al., 1985, 1987;
Handa et al., 1986, 1987; Wu and Gore, 2009; Wu et al., 2009;
Feng et al., 2010; Stanić et al., 2014), and these are some
key regions implicated in sexually appetitive behaviors. Thus,
a second goal was to begin to address the activation of neural
regions by testosterone’s facilitation of female sexual desire. To
this end, we examined the number of Fos-immunoreactive (Fos-
IR) cells within brain regions associated with sexual behavior
(Pfaus and Heeb, 1997).

MATERIALS AND METHODS

Animals
Sexually naive Long-Evans female rats (150–200 g), were
obtained from Charles River (St-Constant, Quebec). Female rats
were housed in pairs in shoebox cages in a reversed lighting
schedule (12/12 h light-dark, with lights off at 8 p.m.). Food and
water were given ad libitum. Male Long-Evans rats (200–250 g)
obtained from the same supplier were used as stimulus animals
(n = 33). These males were sexually experienced in the bi-level
chambers with a group of OVX sexually experienced Long-Evans
stimulus females primed with EB (10 µg/0.1 mL sesame oil) and
progesterone (500 µg/0.1 mL sesame oil) administered 48 and
4 h prior to sexual training, respectively. Males were housed
in groups of 3 or 4 in large plexiglass chambers lined with
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betachip. All other housing conditions were identical to those
described for females.

All animal procedures were conducted in accordance with
the standards established by the Canadian Council on Animal
Care (CCAC) and approved by the Concordia University Animal
Ethics Committee.

Surgery
One week after arrival, experimental female rats were bilaterally
ovariectomized (OVX) through lumbar incisions under a
mixture of 4 parts ketamine hydrochloride to 3 parts xylazine
hydrochloride administered by intraperitoneal injection
(1 mL/kg of body weight). Females were treated post-operatively
with subcutaneous injections of 3cc physiological saline, 0.03 mL
Banamine and 0.1 mL Penicillin G.

Hormone and Drug Preparation
All steroid compounds were received from Steraloids (Newport,
RI). EB (10 µg), progesterone (500 µg), and TP (200 µg)
were dissolved in 0.1 mL sesame oil under low heat for
approximately 30 min, and stored at room temperature.
Fadrozole hydrochloride (FAD; 1.25 mg/kg, Novartis Pharma and
Sigma Aldrich) was dissolved in 0.1 mL of 0.9% physiological
saline containing 20% 2-hydroxy propyl b-cyclodextrin and
administered via subcutaneous injection twice a day (12 h apart).
This dose was selected based on work showing that E2 was
reduced in hypothalamic and amygdaloid nuclear pellets in FAD
treated males compared to controls (Bonsall et al., 1992).

Experimental Procedure
All sexual behavior training and testing occurred in bi-level
chambers (Mendelson and Pfaus, 1989), during the middle third
of the dark cycle. These chambers are designed to facilitate the
experimenter’s view of the full behavioral repertoire of sexual
behaviors (Mendelson and Pfaus, 1989; Pfaus et al., 1999). Males
were placed in chamber alone for a 5 min habituation period.
Next, females were introduced to the chamber for a 30 min
training session.

After a 7 day post-operative recovery period, experimental
females were primed with subcutaneous injections of EB 48 h
before, and progesterone 4 h prior to each of four sex-training
sessions with sexually vigorous males (Jones et al., 2013). The
purpose of the sexual training sessions is to ensure that all
females have sexual experience and to reduce variability in sexual
responding (Gerall and Dunlap, 1973; and as in Jones et al., 2013).
Following these 4 training sessions, females were given a 2 week
hormone wash-out period before being randomly assigned to one
of three experimental groups (n = 11/group). During this 2 week
hormone wash-out, males were given 30 min training sessions
with a different subset of sexually-experienced, hormonally-
primed females every 4 days, to keep them sexually active.

EB was administered to experimental females by subcutaneous
injection 48 h, and TP (or an equal volume of the oil control) 4 h
before testing. FAD (or an equal volume of the vehicle control)
was administered by subcutaneous injection at 8 a.m. and 8 p.m.
every day for 3 days including the test day (Figure 1). For the
experimental session, females were given 30 min to copulate with
a sexually vigorous male.

All training and test sessions were video-recorded with a Sony
Handycam, digital files were transferred to a personal computer,
and sexual behaviors were scored blind to group condition using
the Behavioral Observation Program (Cabilio, 1996) customized
for rat sexual behavior.

Behavioral Measures
Solicitations, defined as head-wise orientation toward the male
followed by a run-away to the same or a different level, and hops
and darts were used as measures of appetitive sexual behaviors
(Pfaus et al., 1999; Jones et al., 2017). The consummatory
measure, lordosis, was measured on a 4-point scale according
to Hardy and Debold (1971) such that no lordosis was coded
as a zero and increasing lordosis magnitudes (LM) from low
to high were coded from 1 to 3. A lordosis quotient (LQ) was
calculated by taking the ratio of total LMs to the number of
mounts, intromissions and ejaculations received by the male.
Mounts, intromissions and ejaculations received from the male
were also coded (Pfaus et al., 1999).

c-Fos Immunoreactivity
Two weeks following the test day, a subset of females that
had been behavioral responsive on the test day (n = 5/group)
were given their respective treatments of EB, EB+TP, or
EB+TP+FAD, and were exposed to a sexually vigorous male
behind a metal grid divider for 1 h prior to sacrifice. This was
done so that females received only visual, auditory and olfactory
cues from the males, since the goal was to investigate activation
of regions involved in sexually appetitive behaviors without the
confound of activation induced by receipt of sexual stimulation
from the male, which is also known to differentially activate brain
regions (Pfaus et al., 1993, 1994, 1996).

Immunocytohistochemistry
Females were deeply anesthetized with an intraperitoneal
injection of sodium pentobarbital (120 mg/kg/mL), and perfused
intracardially with ice-cold phosphate-buffered saline (300 mL)
followed by ice-cold 4% paraformaldehyde in 0.1 M phosphate
buffer (300 mL). Brains were then removed, postfixed in
4% paraformaldehyde for 4 h, and stored overnight in 30%
sucrose at 4◦C.

Histology
Frozen coronal brain sections were sliced using a cryostat from
the olfactory bulb until the beginning of the cerebellum. All
sections were rinsed in cold 0.9% 50 mM tris buffer saline (TBS)
and put into a 30% hydrogen peroxide TBS solution and left for
30 min at room temperature. The sections were incubated for
2 h at room temperature in a 3% Normal Goat Serum (NGS)
solution mixed in 0.2% triton TBS. Following the preblocking
phase, sections were incubated for 72 h at 4◦C in a solution
containing: 3% NGS, primary rabbit polyclonal c-Fos antibody
(Fos ab5, Calbiochem, Mississauga, ON; diluted 1:10,000) in
a 0.05% triton TBS solution. Sections were transferred into
a solution containing: 3% NGS, secondary antibody (Vector
Laboratories Canada, Burlington, ON; 1:200) in a 0.2% triton TBS
solution for 1 h at 4◦C. Sections were then incubated for 2 h at
4◦C in the avidin-biotinylated-peroxidase complex (Vectastain
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FIGURE 1 | Experimental timeline. Females were ovariectomized 1 week after arrival into the colony, and given 1 week of recovery. All females were primed with
estradiol benzoate (EB) 48 h before, and progesterone (P) 4 h prior to each of four sex-training sessions with males. After a 2 week hormone washout period females
were randomly assigned to one of three experimental groups (n = 11/group): EB+Oil+Saline, EB+TP+Saline, or EB+TP+FAD (fadrozole). Estradiol benzoate (EB) was
administered to experimental females by subcutaneous injection 48 h, and testosterone propionate (TP), or an equal volume of the oil control, 4 h before testing.
FAD, or an equal volume of the vehicle control, was administered by subcutaneous injection at 8 a.m. and 8 p.m. every day for 3 days including the test day. For the
experimental session, females were given 30 min to copulate with a sexually vigorous male.

Elite, ABC kit, Vector Laboratories, diluted 1:55). Sections were
washed in TBS (3 × 5 min) between each incubation. Sections
were then washed for 10 min in a 50 mM Tris buffer solution
(pH = 7.6) before transferring to 3,3′-diaminobenzidine (DAB)
in 50 mM Tris (0.1 mL of DAB/Tris buffer, pH 7.6) for another
10 min. Finally, sections were incubated in a 8%NiCl2 (0.08 g)
solution (400 µL per 100 mL of DAB/H2O2 solution). The DAB
reaction was stopped by transferring the sections to cold TBS
(3 ×10 min washes) at room temperature. Sections were then
mounted on gel-coated slides and allowed at least 24 h to dry.
Sections were then dehydrated for 10 min each in 70, 90, and
100% ethanols, and immersed in Xylene for 2 h. The sections were
then coverslipped using permount glue and allowed to dry for
48 h before examination under a light microscope. Confirmation
of successful Fos-IR was made when dark staining was detected
within cell nuclei, as in Pfaus et al. (1993).

Tissue sections were examined at 40× and average numbers
of Fos-IR cells were counted bilaterally using five sections
for each region/rat, which appeared to contain the largest
number of Fos-IR cells (Pfaus et al., 1993, 1996; Coria-Avila
and Pfaus, 2007; Parada et al., 2010). Using the Paxinos and
Watson (1986) rat brain atlas regions of interest were identified
using standard visible anatomical landmarks (Pfaus et al., 1993,
1996; Smith et al., 1997; Coria-Avila and Pfaus, 2007; Parada
et al., 2010). Fos-IR cells were counted in the infralimbic
prefrontal cortex (IL; Plates 8–10), medial amygdala (MeA:
Plates 27–29), medial preoptic area (mPOA: Plates 20–22),
ventromedial hypothalamic nucleus (VMH; Plates 27–29) ventral
tegmental nucleus (VTA: Plates 39–43), nucleus accumbens
(NAc) core, and shell (Plates 11–15). The methodology applied
for taking pictures, selecting the region of interest, and
counting Fos-IR cells was as in previous papers from our
group, but specifically, we applied methodology and regions
of interest as previously reported in Coria-Avila and Pfaus
(2007), Parada et al. (2010), Pfaus et al. (1993, 1996) and
Smith et al. (1997). All pictures were taken by a researcher
(JGG) blind to experimental group. The researcher identified
and captured all sections containing the region of interest

which could be identified with the visible landmarks (as
described in Figure 2).

Images of each section were captured on a desktop computer
under the same light intensity using Q Capture Pro (version
5.1) connected to a Leitz microscope (40×) and saved in TIFF
format before importing into Image J. ImageJ software was used
to count the number of Fos-IR cells in each region by a researcher
blind to experimental group (SR). For each brain region, the
region of interest was identified according to standard anatomical
landmarks (Figure 2), then manually outlined on the sections
containing the largest number of Fos-IR positive cells. It should
be noted that this can lead to some minimal degree of inter-
subject variability in the exact location of Fos-IR counts within
the region of interest. The region of interest was identified and
outlined as described in previous publications (Pfaus et al., 1993,
1996; Smith et al., 1997; Coria-Avila and Pfaus, 2007; Parada
et al., 2010). Our methodology for counting Fos-IR cells consisted
first, of adjusting the brightness and contrast on the first section
counted using ImageJ and noting that contrast value to apply it to
all subsequent images for that region. Next, the threshold tool was
used to manually capture all cells that were subjectively identified
as immunopositive, blind to experimental group. For all images,
circularity was set to 0.3–1, and pixel size was set to 2–40.

Statistical Analyses
Data were analyzed with Statistical Package for the Social Sciences
(SPSS) software (Version 18). Due to violation of homogeneity of
variance, the Kruskall–Wallis test was used to analyze behavioral
differences between groups. Post hoc analyses were conducted
using the Mann–Whitney U and a Bonferroni correction was
applied for the three group comparisons (padj), but unadjusted
p-values are also reported for transparency and interpreted as
trends. Effect sizes were computed on the Mann–Whitney tests
using the formula r = Z/(sqrt(n)). The level of significance was
set to 0.05 for all tests.

Data are presented using boxplots, and outliers were defined
as generated by SPSS (outliers are defined as 1.5–3 times the
interquartile range, and extreme outliers are defined as values 3 or
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FIGURE 2 | Representative pictures of Fos-immunoreactive cells taken at 40X magnification in different hypothalamic and limbic structures in ovariectomized female
rats treated with estradiol benzoate (EB) alone, or in combination with testosterone propionate (TP), or TP and the aromatase inhibitor fadrozole (FAD). Landmarks
used to identify regions of interest include the claustrum (cl) and the forceps minor corpus callossum just superior to the cl for the IL; the ventral extent of the lateral
ventricle and the anterior portion of the anterior commissure (aca) for the NAc; the 3rd ventricle, optic chiasm and continuous anterior commissure for the mPOA; the
3rd ventricle and arcuate nucleus (Arc) and the three distinct VMH subdivisions for VMH sections; the optic tract (opt), internal capsule (ic), and piriform cortex for
MeA sections, and the dorsal 3rd ventricle, medial mammillary nuclei (ML and MM, lateral and medial, respectively) and the fasciculus retroflexus (fr) for the VTA. IL,
Infralimbic prefrontal cortex; NAc, Nucleus Accumbens; mPOA, medial preoptic area; VMH, ventromedial hypothalamus; MeA, medial amygdala; VTA, ventral
tegmental area.

more times the interquartile range). The number of animals that
displayed at least one occurrence of the behavior was calculated.
All animals were included in all analyses, except for lordosis
measures, where only females that received a mount from a male
were included, because the calculation of LQ and LM depends on
mounts received.

Brain data were analyzed using a one-way analysis of variance
(ANOVA) to test for differences between EB-alone, EB+TP and
EB+TP+FAD groups, and significant ANOVAs were followed up
with Fisher’s Least Significant Difference post hoc analysis. The
level of significance was set at 0.05 for all comparisons. Eta square
is reported as a measure of effect size for ANOVAs and Hedge’s g
for between group comparisons.

RESULTS

The percentage of females displaying each behavior within each
treatment group is shown in Table 1.

Appetitive Sexual Behaviors
The non-parametric Kruskall–Wallis was conducted to test for
behavioral differences between groups. Females treated with
EB+TP+FAD displayed more hops/darts (Figure 3A) compared
to EB-alone (U = 24, z = 2.486, p = 0.013, padj = 0.039,
r = 0.53), and to levels equivalent to EB+TP (U = 44, z = 1.091,
p = 0.275, padj = 0.825, r = 0.23; main effect, X2(2) = 7.530,
p = 0.023), whereas EB+TP tended to increase the number of

hops/darts compared to EB-alone (U = 30.5, 2.04, p = 0.041,
padj = 0.123, r = 0.43). Sexual solicitations (Figure 3B) did not
differ between females treated with EB+TP compared to EB-
alone (U = 44, p = 0.069, padj = 0.207, z = 1.817, r = 0.39), whereas
females administered EB+TP+FAD displayed significantly more
solicitations compared to EB-alone (U = 16.4, p = 0.001,
padj = 0.003, z = −3.354, r = 0.715) and tended to display more
than females treated with EB+TP (U = 30, p = 0.032, padj = 0.096,
z =−2.144, r = 0.46); main effect, X2(2) = 13.009, p = 0.001.

TABLE 1 | Percentage of females (n) displaying sexual behaviors according to
hormone treatment group (N = 11/group).

EB+O EB+TP EB+TP+FAD

Hops and darts 45.5%(5) 81.8%(9) 72.7%(8)

Solicitations 0% 27.3%(3) 72.7%(8)

Level changes 100%(11) 100%(11) 100%(11)

Defensive behaviors 91%(10) 100%(11) 90.9%(10)

LQa 0% 36.4%(4) 72.7%(8)

LRa 0% 36.4%(4) 72.7%(8)

Mounts 54.5%(6) 72.7%(8) 90.9%(10)

Intromissions 0% 18.2%(2) 72.7%(8)

Ejaculations 0% 9.1%(1) 63.7%(7)

aFor lordosis quotient (LQ) and lordosis rating (LR), only those females that were
mounted could be included in the analyses. The number of females mounted (with
or without intromission) per group are EB+O n = 6; EB+TP n = 8, EB+TP+FAD
n = 11.
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FIGURE 3 | Median frequency of hops/darts (A), solicitations (B), level changes (C), defensive behaviors (D), lordosis rating (E), and lordosis quotient (F) of
ovariectomized Long-Evans rats (n = 11/group) treated with estradiol benzoate (EB) with or without testosterone propionate (TP) and the aromatase inhibitor
fadrozole (FAD). Data were analyzed using Kruskall–Wallis to detect differences between groups, and significant effects were followed up using Mann–Whitney U, and
p-values were adjusted using a Bonferroni correction. Boxes represent interquartile range, and whiskers each represent the top and bottom 25% of scores. o Outlier.
+Extreme outlier. ∗Different from EB-alone, padj < 0.05. #Tendency to differ from EB-alone, p < 0.05, or padj < 0.10. aTendency to differ from EB+TP, p < 0.05.

Level Changes and Defensive Behaviors
More level changes (Figure 3C) were observed in females treated
with EB+TP+FAD (U = 19, p = 0.006, padj = 0.018, Z = −2.727,
r = 0.58) compared to those treated with EB-alone, whereas there
was a tendency for EB+TP to increase level changes compared
to EB-alone (U = 28, p = 0.033, padj = 0.099, Z = −2.137,
r = 0.46); EB+TP and EB+TP+FAD did not differ (U = 47,
p = 0.375, padj = 1.00, Z = −0.887, r = 0.19) [main effect,
X2(2) = 8.625, p = 0.013]. Defensive behaviors (Figure 3D) did
not differ between groups, X2(2) = 2.761, p = 0.251.

Lordosis
Lordosis rating (LR; Figure 3E) was higher in females treated
with EB+TP+FAD compared to EB-alone (U = 6.0, p = 0.005,
padj = 0.015; Z = −2.781, r = 0.70) and tended to be higher in
females treated with EB+TP compared to EB-alone (U = 9.0,
p = 0.036, padj = 0.108, Z =−2.094, r = 0.45), whereas LR did not
differ between females treated with EB+TP+FAD and EB+TP
[U = 18.0, p = 0.093, padj = 0.279, Z = −1.680, r = 0.41; main
effect, X2(2) = 9.455, p = 0.009]. LQ tended to be higher in
females treated with EB+TP compared to EB-alone (U = 12,
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FIGURE 4 | Median frequency of mounts (A), intromissions (B), and
ejaculations (C) that males made toward ovariectomized Long-Evans rats
(n = 11/group) treated with estradiol benzoate (EB) with or without
testosterone propionate (TP) and the aromatase inhibitor fadrozole (FAD). Data
were analyzed using Kruskall–Wallis to detect differences between groups,
and significant effects were followed up using Mann–Whitney U, and p-values
were adjusted using a Bonferroni correction. Boxes represent interquartile
range, and whiskers each represent the top and bottom 25% of scores. o

Outlier. +Extreme outlier. ∗Different from EB-alone, padj < 0.05. #Tendency to
differ from EB-TP, p < 0.05; ∗∗Different from EB-alone and EB+TP, both
padj < 0.05.

p = 0.052, padj = 0.156, Z = −1.940, r = 0.52, Figure 3F), and
was significantly higher in females treated with EB+TP+FAD
(U = 9.0, p = 0.009, padj = 0.027, Z = −2.612, r = 0.63) compared

to EB-alone, whereas LQ did not differ between females treated
with EB+TP and those treated with EB+TP+FAD [U = 28.0,
p = 0.206, padj = 0.618, Z = −1.355, r = 0.31; main effect,
X2(2) = 7.802, p = 0.020].

Male Stimulations
Females treated with EB+TP+FAD received significantly more
mounts (Figure 4A) than females treated with EB-alone (U = 21,
p = 0.008, padj = 0.024, Z = −2.626, r = 0.56), whereas females
treated with EB+TP did not differ from EB-alone (U = 41.5,
p = 0.200, padj = 0.600, Z = −1.281, r = 0.27), or from
EB+TP+FAD [U = 38.5, p = 0.151, padj = 0.453, Z = −1.452,
r = 0.31; main effect, X2(2) = 7.173, p = 0.028].

Whereas females treated with EB+TP did not differ from
EB-alone in the number of intromissions received (U = 49.5,
p = 0.148, padj = 0.444, Z = −1.447, r = 0.31), females treated
with EB+TP+FAD received significantly more intromissions
than females treated with EB-alone (U = 16.5, p = 0.001,
padj = 0.003, Z = −3.353, r = 0.71) and tended to receive
more than females treated with EB+TP [U = 28.0, p = 0.020,
padj = 0.060, Z = −2.332, r = 0.50; Figure 4B; main effect,
X2(2) = 13.729, p = 0.001].

Similarly, whereas females treated with EB+TP did not differ
from EB-alone in the number of ejaculations received (U = 55.0,
p = 0.317, padj = 0.951, Z = −1.000, r = 0.21), females treated
with EB+TP+FAD received significantly more ejaculations than
females treated with EB-alone (U = 22, p = 0.002, padj = 0.006,
Z = −3.067, r = 0.65), and compared to females treated with
EB+TP [U = 28.5, p = 0.014, padj = 0.042, Z = −2.451, r = 0.52;
Figure 4C; main effect, X2(2) = 13.136, p = 0.001].

Fos-IR
Descriptive data of all Fos-IR counts for each brain region by
group are shown in Table 2, and representative pictures are
shown in Figure 2. One-way ANOVAs were used to determine
if there were significant differences between treatment groups,
followed by an LSD post hoc analysis. EB+TP and EB+TP+FAD
had higher Fos -IR counts than EB alone, in the mPOA [p = 0.023,
g = 1.66; p = 0.01, g = 2.71, respectively, main effect of group,
F(2, 11) = 5.432, p = 0.023, R2 = 0.497], the NAc core [p = 0.02,
g = 2.36, p = 0.01, g = 2.70, respectively, main effect of group,
F(2, 11) = 6.008, p = 0.022, R2 = 0.572], the IL [p = 0.005,
g = 2.52, and p = 0.0048, g = 2.62, respectively, main effect
of group, F(2, 11) = 6.912, p = 0.015, R2 = 0.606], and the
vlVMH [p = 0.024, g = 2.46; p = 0.022, g = 1.74, respectively,
main effect of group, F(2, 12) = 14.705, p = 0.036, R2 = 0.485]
but EB+TP and EB+TP+FAD did not differ from each other
(mPOA, p = 0.624, NAc core, p = 0.654; IL, p = 0.180, vlVMH,
p = 0.850). In the VTA, EB+TP+FAD females had higher Fos-
IR counts than EB-alone (p = 0.007, g = 2.95) whereas EB+TP
tended to increase the number of Fos-IR counts compared to
EB-alone (p = 0.08, g = 1.57), but EB+TP and EB+TP+FAD
did not differ (p = 0.122) [main effect of group, F(2, 10) = 6.409,
p = 0.022, R2 = 0.616].

No differences between groups were found in the dmVMH,
F(2, 12) = 1.874, p = 0.204, R2 = 0.273, the NAc shell [F(2,

11) = 2.041, p = 0.186, R2 = 0.312], or the MeA [F(2, 12) = 0.455,
p = 0.647, R2 = 0.083].
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TABLE 2 | Average ± SEM numbers of Fos-immunoreactive cells in different
hypothalamic and limbic structures in ovariectomized female rats treated with
estradiol benzoate (EB) alone, or in combination with testosterone propionate (TP),
or TP and the aromatase inhibitor fadrozole (FAD).

Region EB EB+TP EB+TP+FAD

MeA 125.49 ± 38.85 159.19 ± 29.5 169.50 ± 31.14

mPOA 72.77 ± 26.28 224.13 ± 50.06∗ 251.03 ± 33.33∗

NAc

Core 74.23 ± 6.18 161.77 ± 19.98∗ 174.46 ± 23.6∗

Shell 273.37 ± 56.05 397.56 ± 47.85 402.33 ± 34.91

IL 83.40 ± 4.67 163.80 ± 17.26∗ 134.92 ± 12.25

VMH

Dorsomedial 19.81 ± 3.12 32.54 ± 5.92 27.79 ± 3.52

Ventrolateral 23.21 ± 2.46 38.81 ± 3.22∗ 39.94 ± 6.36∗

VTA 58.83 ± 4.62 76.81 ± 6.62 91.36 ± 6.32∗

n = 5/group. Some tissue sections were damaged or had poor staining, resulting
from 3 to 5 sections per region. EB, Estradiol Benzoate; TP, Testosterone
Propionate; FAD, Fadrozole Hydrochloride; MeA, Medial Amygdala; mPOA, Medial
Preoptic Area; NAc, Nucleus Accumbens; IL, Infralimbic Prefrontal Cortex; VMH,
Ventromedial nucleus of the hypothalamus; VTA, Ventral Tegmental Area.
∗Different from EB, p < 0.05.

DISCUSSION

The purpose of this study was to determine whether
administration of the aromatase inhibitor FAD would disrupt
the facilitation of female sexually appetitive behaviors that occurs
with TP treatment in EB-treated OVX rats, and to determine
whether Fos-IR differed between groups in brain regions known
to be involved in sexual motivation and reward. The present
results illustrate that blocking aromatization using FAD in
females treated with EB+TP increased hops/darts, solicitations,
level changes and lordosis measures compared to those treated
with EB-alone. These findings suggest that aromatization of
TP to estradiol is not necessary for the display of female sexual
behaviors in OVX rats treated with EB and TP. The Fos-IR
data suggest that TP may act within the mPOA, NAc core,
IL, and vlVMH to elicit its effects, and as well as the VTA,
which specifically had higher numbers of Fos-IR cells in the
EB+TP+FAD group compared to the EB-alone group.

In the current study, the behavioral levels induced by EB+TP
were less pronounced than levels reported in Jones et al.
(2017), particularly for LQ. However, this is not surprising given
previous reports that a number of factors can influence behavioral
sensitivity to estradiol, such as sexual experience (Gerall and
Dunlap, 1973; Pfaus et al., 1999), EB dose (Pfaus et al., 1999;
Jones et al., 2013), strain (Jones et al., 2013), bedding type (Jones
et al., 2015), and exposure to male cues (Jones et al., 2015).
Important individual differences exist in behavioral sensitivity
to hormone treatments on sexual behavior. Thus, to ensure that
females were all behaviorally sensitive to sex steroid hormones,
we examined behaviors induced by EB+P priming on the fourth
day of behavioral training, and for all groups LQ and LR were
near maximal (range LQ = 0.93–0.98; range LR = 2.43–2.69), and
no differences were detected between groups on any behavioral
measure (Supplementary Table 1) suggesting that on average,
the groups were equally as responsive to sex steroid hormones

under equivalent and optimal hormone priming conditions.
The variability in sensitivity to EB and TP is reminiscent of
reports in the human literature, showing that some women’s
low sexual desire responds rather well to estrogens administered
alone, and that testosterone can be particularly beneficial to
improving sexual desire in women who are unresponsive to
estradiol alone, as originally reported by Burger et al. (1987). In
addition to the environmental and experiential factors outlined
above, hormone sensitivity can be dependent on differences
in biological mechanisms, such as steroid hormone receptor
density, enzymes, and hormone binding globulins, among other
factors. Although the effectiveness of surgical ovariectomy and
hormone administration were not formally tested, the high and
normal levels of behavioral responding during the training phase,
as well as the low level of responding in the control groups suggest
that those manipulations were effective. Additional research will
be needed to increase our understanding of individual differences
in hormone sensitivity, and to determine who responds best to
which treatments. Such considerations are already being taken
into account for women presenting with differing etiologies (i.e.,
top-down or bottom-up sexual inhibition) of hypoactive sexual
desire (e.g., Sarin et al., 2013; Poels et al., 2014).

The facilitation of EB+TP compared to EB-alone did not
attain the strict statistical cut-offs in the current study, in contrast
to the statistically significant increase in appetitive behaviors
reported in Jones et al. (2017). We note however that the pattern
of results in the current study mimic those reported in Jones
et al. (2017), and moreover, the effect sizes on appetitive behaviors
between EB-alone and EB+TP treated animals are similar in
magnitude in the current study (hops/darts r = 0.43; solicitations
r = 0.39; level changes r = 0.46) and Jones et al. (2017) (hops/darts
r = 0.68, solicitations r = 0.68, level changes r = 0.60). The effect
sizes range from moderate to large, suggesting a reliable and
moderate ability for TP to facilitate appetitive sexual behaviors
in EB-treated OVX female rats.

In the present study, blocking aromatase in OVX EB+TP
treated rats enhanced appetitive sexual behaviors beyond that of
EB-alone. The administration of TP tended to increase hops/darts
and level changes beyond that of EB-alone, with moderate effect
sizes on hops/darts, level changes, as well as solicitations (with
r ranging from 0.39 to 0.46). The administration of FAD to
females treated with EB+TP enhanced appetitive measures of
sexual behaviors, such that EB+TP+FAD displayed significantly
more hops/darts than EB-alone, and tended to display more
sexual solicitations than females treated with EB+TP. The effect
sizes between EB and EB+TP+FAD were moderate to large, with
r = 0.53 for hops/darts and r = 0.715 for solicitations, and small to
moderate between EB+TP and EB+TP+FAD, with r = 0.23 for
hops/darts and r = 0.39 for solicitations. These findings suggest
that aromatization to estradiol is not necessary for the facilitation
of appetitive sexual behaviors by TP when administered to EB-
treated females.

One strict interpretation of the present data is that FAD had
no statistically significant facilitative effect on appetitive sexual
behaviors beyond treatment with EB+TP (i.e., only a statistical
trend for FAD to increase solicitations beyond EB+TP was
detected). This interpretation could suggest that FAD may release
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an inhibitory effect induced by EB+TP (given that EB+TP+FAD
facilitated sexually appetitive behaviors beyond EB-alone), which
could involve, for example, extragonadal estradiol synthesis.
However, an inhibitory action of extragonadal estradiol in the
context of these data may not be a likely explanation for two
reasons. First, estradiol is not inhibitory to sexual behavior
in OVX oil-treated animals, and is necessary for the display
of sexual behaviors (Pfaff, 1980). One mechanism through
which EB+TP is thought to exert its effects is by indirectly
increasing bioavailable estradiol, following its displacement from
steroid hormone binding globulins by testosterone (Burke and
Anderson, 1972). However, in our OVX females, endogenous
levels of estradiol are probably too low, even given the multiple
sites of extra-gonadal synthesis of estradiol (Barakat et al., 2016),
particularly because FAD was administered twice a day for the
duration of the experimental phase, and has previously been
shown to effectively reduce E2 in hypothalamic nuclear pellets
(Bonsall et al., 1992). As such, a more likely explanation is that
more free androgen was available to act on androgen receptors
to facilitate sexual behaviors. Second, when considered with
previous publications using similar methods, EB+TP facilitates
appetitive sexual behaviors beyond EB-alone, as discussed above.
Nonetheless, we cannot rule out the interpretation that TP+FAD
releases inhibition in EB-alone treated OVX females, particularly
given that FAD was administered systemically, and that we
did not measure circulating E2, nor did we confirm that FAD
effectively reduced neural estradiol in our animals.

A more plausible and parsimonious interpretation of these
data, particularly when considered in the context of the data
presented in Jones et al. (2017) is that TP given in combination
with EB facilitates appetitive sexual behaviors, at least in part,
through androgenic mechanisms (Cappelletti and Wallen, 2016).
As discussed above, TP induces a reliable and moderate increase
in appetitive behaviors in EB-treated females, which was not
blocked by FAD administration. This is consistent with previous
results indicating the importance of androgen receptor activation
in female sexual behavior (Jones et al., 2010; Kudwa et al.,
2010). Testosterone has been shown to require the presence of
estradiol to exert its modulatory role on female sexual behavior
(Sherwin and Gelfand, 1987; Buster et al., 2005), thus it is
possible that EB administration 48 h before testing upregulates
androgen receptors, thereby facilitating the ability of testosterone
to act on androgen receptors in areas of sexual behavior as it
does with progesterone (Rubin and Barfield, 1983). It is also
interesting that EB+TP+FAD tended to enhance the expression
of sexual solicitations beyond that of EB+TP, and the only
brain region that revealed increased Fos-IR specifically in the
EB+TP+FAD group was the VTA. The VTA, a core component
of the mesocorticolimbic reward pathway, contains androgen
receptors (Kritzer, 1997; Kritzer and Creutz, 2008) and therefore
this is a key region of interest for future mechanistic studies.

Some earlier animal studies have shown the importance of
AR in the facilitation of female sexual behavior. For example,
Yahr and Gerling (1978) demonstrated that administration of
6-alpha-fluorotestosterone, a non-aromatizable androgen, could
induce sexual receptivity in female rats comparable to that of
TP. In addition, recent studies using selective androgen receptor

modulators (SARM) have revealed an important role of ARs in
female sexual behavior. Administration of a non-aromatizable
SARM that does not interact with estrogen receptors, to OVX rats
primed with sub-optimal levels of EB (2.0 µg) + progesterone
(100 µg) increased both proceptive and receptive sexual behavior
in sexually-experienced females (Kudwa et al., 2010). Moreover,
TP given in combination with R-bicalutamide, an anti-androgen,
reduced sexual preference of a female for an intact male
compared to TP-alone (Jones et al., 2010). Together these data
highlight the importance of ARs and contribute to a more
mechanistic approach underlying testosterone’s role in female
sexual behavior.

Additionally, treatment with FAD appears to have increased
the female’s attractivity. EB+TP+FAD-treated females received
more mounts and intromissions than EB-alone treated females
and tended to receive more intromissions than EB-TP, and
receive more ejaculations than both the EB-alone and EB+TP
treated females, all with correspondingly moderate effect sizes.
We suspect that the behavior of the males was influenced by
the appetitive behaviors and receptivity of their female partners,
which is also reflected in the percentage of females that were
mounted (i.e., about half the EB-treated females, and 73% of
the EB+TP, and 91% of the EB+TP+FAD females). Pfaus and
Pinel (1989) demonstrated that when training a male with a
non-receptive female, the male quickly learns that she is not
receptive followed by a drastic decrease in rate of mounting over
trials. In the present study, the male’s mounts, intromissions and
ejaculations on the final training day, occurring 2 weeks prior to
testing were normally distributed, and 100% of females in each
group were mounted (see Supplementary Table 1). Therefore,
the males’ sub-par sexual behaviors toward females receiving
EB-alone and EB+TP could be explained by the low appetitive
and receptive behaviors displayed by these females, a behavioral
pattern consistent with our previous reports of OVX Long-Evans
rats treated acutely with EB-alone (Jones et al., 2013, 2017).

As a first step to investigating potential brain regions where
TP may be exerting its effects to facilitate sexual motivation,
Fos-IR was examined within mesocorticolimbic regions known
to be involved in sexual motivation (Pfaus, 2009) following EB
treatment and exposure to a male behind a screen. Fos-IR was
investigated within the mPOA, MeA, IL, VMH, VTA, and NAc
core and shell. TP administration to OVX EB-treated females
induced Fos-IR in the mPOA, NAc core, IL and the vlVMH,
whereas activation within the VTA occurred with the addition
of FAD. These regions have a moderate to high density of ARs
(Handa et al., 1986, 1987; Fernández-Guasti et al., 2000; Wu et al.,
2009; Feng et al., 2010), making them potential candidate regions
where TP may exert its effects.

The mPOA is a critical component in mediating female
proceptive behaviors such as hops, darts and solicitations
(Erskine, 1989b; Hoshina et al., 1994), and is important for the
integration and interpretation of olfactory and auditory sensory
cues (Hull et al., 1997). In the current study we found that
compared to EB-alone, Fos-IR was expressed in more cells in
females treated with EB+TP regardless of whether FAD was
administered. These Fos-IR data parallel the behavioral data,
namely the higher appetitive measures compared to EB-alone.
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Activity in the mPOA is sensitive to changes in hormonal milieu,
thus one possible mechanism is that TP is working in the female
mPOA as it does in the male, to modulate the mPOA’s neural
responsiveness to olfactory cues (Pfaff and Pfaffmann, 1969). TP
has also been shown to upregulate nitric oxide synthase, which
increases levels of nitric oxide, thereby increasing dopamine
release in the mPOA of male rats (Lorrain et al., 1996; Hull
et al., 1997; Hull and Dominguez, 2006). This relationship has
not been examined in the female brain, and we acknowledge that
the mechanisms may be different between the sexes. Nonetheless,
it is a likely candidate mechanism given that dopamine and the
activation of its distinct receptors (D1 and D2) in the mPOA
has been shown to mediate female sexual behavior (Matuszewich
et al., 2000; Graham and Pfaus, 2010, 2012). Therefore, within
the mPOA, TP may act through androgenic mechanisms. Future
mechanistic studies are needed to determine the combined effects
of estrogens and androgens on female sexual motivation within
the female mPOA.

Upstream of the mPOA, the amygdala is important for
integrating sensory information from the environment. The MeA
itself is involved in female sexual motivation, via dopaminergic
and progesterone signaling (Holder et al., 2015). The lack
of difference in Fos-IR expression within the MeA between
groups suggests that testosterone does not act within this region
to facilitate appetitive sexual behaviors, and further suggest
that all the females were detecting similar sensory input in
response to male cues.

The vlVMH is well-known as a critical region for the
expression of lordosis via estradiol signaling (Pfaff, 1968; Pfaff
and Sakuma, 1979; Pfaff et al., 2000, 2011). In the current study,
the vlVMH had significantly more Fos-IR nuclei in females
given either EB+TP or EB+TP+FAD, when compared with EB
alone. Consistent with this, EB+TP females displayed higher LR
and LQ compared to EB-alone. There is evidence that certain
androgens, such as DHT and 5α-androstane-3α,17β-diol, inhibit
EB-induced lordosis in female rats (Baum and Vreeburg, 1976;
Erskine, 1989a), and as such it is somewhat surprising that
FAD led to a significant increase in lordosis measures beyond
EB-alone, given that FAD is an aromatase inhibitor, which
suggests that TP acted via an androgenic pathway. In summary,
it is unclear through what mechanism within the vlVMH
EB+TP+FAD might facilitate lordosis, although downstream
midbrain mechanisms cannot be ruled out (Pfaff, 1980).

The dopaminergic output from the mPOA to the VTA is
essential for sexual behavior (Brackett and Edwards, 1984).
Females receiving EB+TP+FAD had significantly more Fos-IR
in the VTA compared to females receiving EB alone. Downstream
of the VTA, EB+TP+FAD, and EB+TP had significantly higher
Fos-IR expression in the NAc core, although not in the shell,
when compared to EB alone. The NAc has been implicated in
the motivation to engage in sexual behavior, as well as in the
rewarding properties of sexual behavior such as paced mating in
the female rat (Jenkins and Becker, 2001, 2003; Guarraci et al.,
2002, 2004). Specifically, the NAc shell has been shown to be
involved in processing of rewarding stimuli, while the core is
involved in motor function related to reward and reinforcement
(Ito and Hayen, 2011). Infusion of the testosterone metabolite

3a-diol into the NAc shell selectively increased appetitive sexual
behaviors (hops darts and ear wiggles) (Sánchez Montoya et al.,
2010). Because in the current study the administration of TP to
OVX EB-treated females upregulated Fos-IR in the NAc core
but not shell, and that occurred regardless of whether FAD
was also administered, it is likely that the effect of TP within
the NAc is associated with the rewarding properties of sexual
stimuli, or with the rewarding properties of TP itself (Nyby,
2008). It should be noted, however, that the dose of FAD used
in this study was selected based on work showing that estradiol
was reduced in hypothalamic and amygdaloid nuclear pellets
in FAD-treated male rats compared to controls (Bonsall et al.,
1992). Thus, because we did not measure aromatase activity in
our female animals following FAD administration, we cannot
be certain that the dose had the same level of effectiveness as
reported by Bonsall et al. (1992).

CONCLUSION

In conclusion, administration of FAD enhanced the facilitation
of appetitive and consummatory sexual behaviors in OVX
female rats treated with EB and TP, showing that aromatization
of testosterone to estradiol is not required for TP-induced
facilitation of sexual desire in our preclinical model. Moreover,
TP-induced activation of Fos-IR expression in brain areas
implicated in sexual motivation, behavior and reward, suggests
that TP may increase the sensitivity to male-related cues and may
enhance the female’s attractivity to the male. Future mechanistic
studies should investigate whether the facilitation by TP can be
blocked by giving androgen receptor inhibitors, and measuring
circulating levels of estradiol, testosterone, and SHBG to better
inform the mechanisms.
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