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Abstract

Hitchhiking and severe bottleneck effects have impact on the dynamics of genetic diversity of a population by inducing
homogenization at a single locus and at the genome-wide scale, respectively. As a result, identification and differentiation of
the signatures of such events from DNA sequence data at a single locus is challenging. This paper develops an analytical
framework for identifying and differentiating recent homogenization events at multiple neutral loci in low recombination
regions. The dynamics of genetic diversity at a locus after a recent homogenization event is modeled according to the
infinite-sites mutation model and the Wright-Fisher model of reproduction with constant population size. In this setting, I
derive analytical expressions for the distribution, mean, and variance of the number of polymorphic sites in a random
sample of DNA sequences from a locus affected by a recent homogenization event. Based on this framework, three
likelihood-ratio based tests are presented for identifying and differentiating recent homogenization events at multiple loci.
Lastly, I apply the framework to two data sets. First, I consider human DNA sequences from four non-coding loci on different
chromosomes for inferring evolutionary history of modern human populations. The results suggest, in particular, that recent
homogenization events at the loci are identifiable when the effective human population size is 50000 or greater in contrast
to 10000, and the estimates of the recent homogenization events are agree with the ‘‘Out of Africa’’ hypothesis. Second, I
use HIV DNA sequences from HIV-1-infected patients to infer the times of HIV seroconversions. The estimates are contrasted
with other estimates derived as the mid-time point between the last HIV-negative and first HIV-positive screening tests. The
results show that significant discrepancies can exist between the estimates.
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Introduction

Hitchhiking and severe bottleneck effects have similar signatures

on the population genome by reseting the molecular clock.

However, their impacts at the genome level are on different scales.

The hitchhiking effect has a local signature because recombination

breaks down linkage disequilibrium between sites on the genome;

consequently, the locus completely linked to a site under a positive

selection becomes homogenous in the population [1]. In contrast,

after relatively quick recovery of a population from a severe

bottleneck, it becomes genome-wide homogeneous. Identifying

and differentiating recent such events at a single locus can be

challenging because both processes have similar signature on the

genetic diversity at single locus. Thus, multi-locus DNA sequence

data can be a powerful source for this purpose.

After a recent homogenization event at a neutral locus, the

accumulated genetic diversity at the locus and the elapsed time are

positively correlated when assuming constant molecular clock. To

quantify the relation between genetic diversity at the neutral locus

in a low recombination region and the time elapsed since a recent

homogenization event, Griffiths [2], Tajima [3], and Perliz and

Stephan [4] used Wright-Fisher reproduction model with constant

population size and infinite-sites model [5] for the dynamics of

genetic diversity at the locus. They derived analytical expressions

for the expected number of polymorphic sites in a sample of DNA

sequences from such a locus. Although this framework is

computationally efficient for inferring the elapsed time, it is

applicable only for a single locus.

Simulation based inference methods have been developed for

the same problem to include an exponential population growth

model and full polymorphism data in samples of DNA sequences

[6], [7]. Although such methods have flexibility to include more

complex evolutionary scenarios, they are computationally more

intense.

I consider the same setting as in [2], [3], and [4] to develop an

analytical framework for identifying and differentiating recent

homogenization events at multiple neutral loci in low recombina-

tion regions. The loci are considered to be evolving independently,

for example, when the loci are on different chromosomes or on

same chromosome but far apart. I derive an analytical expression

for the probability distribution of the number of polymorphic sites

in a sample of DNA sequences. Based on this, I described

likelihood-ratio based tests for identifying and differentiating

recent homogenization events at multiple loci. I apply the

framework to two data sets. First, I use human DNA sequence
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data to infer evolutionary history and origin of modern human

populations. Second, I use HIV DNA sequences sampled from

HIV-1-infected patients to infer the times of HIV seroconversions.

Methods

The population genetic model
Genetic diversity at a neutral locus, in a low recombination

region, affected by a recent homogenization event is a result of

mutations accumulated at the locus since the homogenization

event. To model the dynamics of genetic diversity at such a locus

after the homogenization event, this paper combines the infinite-

sites mutation model and the Wright-Fisher reproduction model

with constant population size. The parameters in the model

represent the effective population size N, the elapsed time T since

the last homogenization event, mutation rate m per generation per

sequence, and the (effective) generation time g.

Variation in a sample of DNA sequences drawn from a

population evolving according to this model can be described as a

combination of genealogical and mutation processes. The

genealogical process traces ancestral lineages of the sample back

in time until the recent homogenization event at time T and stops

earlier if the most recent common ancestor of the sample is more

recent than the homogenization event. When N is large and the

time in this process is measured in N‘ generations, the genealogical

process can be approximated by a coalescent process derived from

the standard coalescent [8–12]. Here N‘ is a scaled population size

at the locus, determined by N and the type of the chromosome on

which the locus is located: N‘ is equal to N for the case of a

haploid population; for a diploid population with N=2 males and

N=2 females, N‘ is equal to N=2, 3N=2, 2N , or N=2 if the locus is

on the Y , the X, the autosomal chromosome, or on the

mitochondrial DNA, respectively. In this process the ancestral

lineages of the sample are traced until time t~T=(gN‘) and

mutations are added on the branches of the genealogy as

independent Poisson processes with rates equal to h=2, h:2N‘m.

In the infinite-sites model, each mutation occurs at a nucleotide

site that has not been mutated before.

Results

Probability distribution of the number of polymorphic
sites in a sample of DNA sequences

Under the model described above, the probability distribution

of the number of polymorphic sites Sn in a sample of n DNA

sequences can be represented as

IPn(sDt,h):IP(Sn~sDh,t)~IE
(hLn(t)=2)s

s!
e{hLn(t)=2

� �
, ð1Þ

where Ln(t) is the total length of the genealogy of n sequences.

This equation suggests that the probability can be expressed

through the derivatives of the moment generating function gn(u,t)

of Ln(t), defined as gn(u,t):IEe{uLn(t):

IPn(sDt,h)~
({1)s(h=2)s

k!

Lsgn(u,t)

Lus

����
u~h=2

: ð2Þ

Griffiths [2] derived an analytical expression for gn(u,t), but it

can not be easily used to derive expressions for the derivatives of

gn(u,t). In the following lemma, I derive an expression for gn(u,t),
which allows easily to derive analytical expressions for the

derivatives of gn(u,t). Note that this expression also allows to

invert the moment generating function gn(u,t) and to derive an

analytic expression for the density function of Ln(t). The latter

result is presented in the lemma of the Text S1.

Lemma 1 The moment generating function gn(u,t) can be represented as

gn(u,t)~wn(u,t)z
n

2

� �Xn

i~2

Xi{1

j~0
j=1

m
(n)
i,j (izj{1)

{(uz izj{1
2

)
j(i,j,t,u), ð3Þ

where

j(i,j,t,u):exp({ti(uz(i{1)=2)){exp({tj(uz(j{1)=2)):

The coefficients fm(n)
i,j g are determined by the following recurrence relations

with initial conditions:

m(n)
i,j ~

(n{1)(n{2)

(n{j)(n{i)
m(n{1)

i,j , 2ƒiƒn{1,j~0, or 2ƒjƒi{1; ð4Þ

m(n)
n,k~

Xk{1

j~0
j=1

m(n)
k,j{

Xn{1

i~kz1

m(n)
i,k , 2ƒkƒn{1; ð5Þ

m
(2)
2,0~

1

2
, ð6Þ

m(n)
n,0~

({1)n

n(n{1)
: ð7Þ

The prove of Lemma 1 is provided in the Text S1.

Note that the coefficients fm(n)
i,j g satisfy the following identities

1

n(n{1)
~
Xn{1

j~0
j=1

m
(n)
n,j ; ð8Þ

1

n(n{1)
~
Xn

i~2

m
(n)
i,0 ; ð9Þ

m(n)
i,0 ~

({1)i n{2

i{2

� �
n(i{1)

: ð10Þ

The identities are used in the proof of Lemma 1, and also for

identifying numerical instability issues with computation of m(n)
i,j

based on (4)–(7) when using decimal approximations instead of

exact computations. The proof of the identities can be done by

combining mathematical induction with (4)–(7), the details not

shown.

Expression (3) is used to derive expressions for the derivatives of

gn(u,t), but for computational purposes they are modified to derive

numerically stable expressions. The following procedure is applied

Inferring Recent Homogenization Events at Genome
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to the expressions to solve the instability issue: for each i,

i~2, . . . ,n, the terms with factor exp({ti(uz(i{1)=2)) are

combined together and the common term is factored out. For

example, a numerically stable expression for gn(u,t) is

gn(u,t)~{n(n{1)

Y1(n,u)z
Xn

i~2

Y2(i,n,u)exp({it(uz(i{1)=2))

 !

zexp {nt uz
n{1

2

� �� �
,

ð11Þ

where

Y2(i,n,u)~

Pi{1
j~0j=1 m

(n)
i,j D(i,j,u){

Pn
k~iz1 m

(n)
k,i D(i,k,u) if ivnPi{1

j~0j=1 m
(n)
i,j D(i,j,u) i~n,

(

D(i,j,u)~
izj{1

2uzizj{1
;

Y1(n,u)~{
Xn

i~2

m(n)
i,0 D(i,0,u):

The numerical instability of the expression (3) is illustrated in

Figure 1.

To derive a numerically stable expression for IPn(sDt,h) by using

(2), first expressions are derived for the derivatives of gn(u,t) with

respect to u by using Lemma 1 and the identity

Lk exp({bu)

uza
Luk

:({1)kk!exp({bu)
Xk

i~0

bk{i

(k{i)!(azu)iz1
: ð12Þ

After applying the numerical stabilization procedure (described

above) to these expressions, a numerically stable expression for the

probability distribution is

IPn(sjt,h)~
n(n{1)

hXn

i~2
m(n)

i,0

i{1

i{1
h

z1
� �sz1

z
Xn

i~2
B(s,i,n,t,h)exp({i(i{1zh)t=2)

 !

z
(hnt=2)s

s!
exp({nt(n{1zh)=2),

ð13Þ

where

B(k,i,n,t,h)~

Pn
r~iz1 m(n)

r,i C(k,i,r,t,h){
Pi{1

j~0j=1 m(n)
i,j C(k,i,j,t,h)

if 2vn and ivn

{
Pi{1

j~0j=1 m(n)
i,j C(k,i,j,t,h)

if n~2 or i~n;

8>>>><
>>>>:

C(k,i,j,t,h)~
izj{1

izj{1

h
z1

� �kz1

Xk

m~0

it(izj{1zh)

2

� �m

m!
:

I have implemented the formula (13) and all the other formulas in

this paper in a program written in Mathematica [13]. The program

is used to carry out all the calculations and visualizations in this

paper. The program uses Mathematica’s ability of doing exact

computations with fractions, as a result avoiding numerical

instability issues. The program is available from the author on

request.

Note that when h is large, the following approximation holds for

the probability distribution IPn(sDt,h):

IPn(sDt,h)&
(nth=2)s

s!
exp({nth=2): ð14Þ

The right side of the approximation corresponds to the probability

distribution of the number of polymorphic sites in a sample of n
sequences under a ‘‘simple’’ model where the ancestral lineages of

the sample are traced until time t without coalescence. Note that

population size N is not a factor in this model because the right

side of the above approximation can be represented as

(nmT=g)s

s!
exp({nmT=g):

Mean and variance of the number of polymorphic sites in
a sample of DNA sequences

In previous studies [2–4], expressions have been derived for the

mean number of polymorphic sites in a sample of DNA sequences

from a locus affected by a recent homogenization event. An

expression for the variance is also derived in [4], but this

expression is implicit because it includes integral expressions.

Using a similar approach as in the previous section, I derive a

numerically stable expressions for computing the mean and

variance of the number of polymorphic sites in a sample of DNA

sequences from such a locus. The conditional probability

distribution of Sn when Ln(t) is given is Poisson with a mean of

Figure 1. Illustration of numerical instability of the expression

(3). The moment generating function g40(u,
1

2
) is plotted for the same

range of values of u in red and blue dots by using the expressions (11)
and (3), respectively. The numerical instability of the expression (3) is

obvious because the values of g40(u,
1

2
) must be between 0 and 1 for

any positive u.
doi:10.1371/journal.pone.0037588.g001
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hLn(t)=2. The mean and variance of Sn can be expressed as

follows:

IE(Sn)~
h

2
IELn(t)

and

Var Snð Þ~
h

2
IELn(t)z

h2

4
IEL2

n(t){(IELn(t))2
� �

:

Expressions for the first and second moments of Ln(t) are derived

by taking the first and second derivatives of (3) with respect to u
and evaluating them at u~0. After applying the numerical

stabilization procedure (described in the previous section) to these

expressions, the first and second moments of Ln(t) can be

computed using the following formulas:

IELn(t)~
n

2

 ! Xn

i~2

m
(n)
i,0

4

i{1
z
Xn

i~2

A(i,n,t)exp({i(i{1)t=2)

 !
z

nt exp({n(n{1)t=2),

where A(i,n,t) is defined as

A(i,n,t)~

{
Pi{1

j~2 m(n)
i,j Q(i,j,t)z

Pn
k~iz1 m(n)

k,i Q(i,k,t){m(n)
i,0 Q(i,0,t)

if 2vivnPn
k~iz1 m(n)

k,iQ(i,k,t){m(n)
i,0 Q(i,0,t)

if i~2

{
Pi{1

j~2 m(n)
i,j Q(i,j,t){m(n)

i,0 Q(i,0,t)

if i~n;

8>>>>>>>>><
>>>>>>>>>:

Q(i,j,t)~
4

izj{1
z2it;

IEL2
n(t)~

n

2

 ! Xn

i~2

m
(n)
i,0

16

(i{1)2
z
Xn

i~2

H(i,n,t)exp({i(i{1)t=2)

 !
z

4n2t2 exp({n(n{1)t=2),

where H(i,n,t) is

H(i,n,t)~

{
Pi{1

j~2 m(n)
i,j R(i,j,t)z

Pn
k~iz1 m(n)

k,i R(i,k,t){m(n)
i,0 R(i,0,t)

if 2vivn,Pn
k~iz1 m

(n)
k,i R(i,k,t){m

(n)
i,0 R(i,0,t)

if i~2,

{
Pi{1

j~2 m(n)
i,j R(i,j,t){m(n)

i,0 R(i,0,t)

if i~n,

8>>>>>>>>><
>>>>>>>>>:

R(i,j,t)~2i2t2z
8it

izj{1
z

16

(izj{1)2
:

Three tests for identifying and differentiating recent
homogenization events at multiple loci

Using the probabilistic framework developed above, three

likelihood-ratio based tests are considered in this section for

identifying and differentiating recent homogenization events at

independently evolving multiple neutral loci in low recombination

regions.

Test I. To identify a recent homogenization event at a locus

based on the number of polymorphic sites in a sample of DNA

sequences, the hypothesis H0 : T~? versus Ha : Tv? is

considered. The null hypothesis T~? represents a case in which

ancestral population was evolving according to the Wright-Fisher

model with constant population size. The null hypothesis can be

tested by defining minus twice of the log of the likelihood-ratio

statistics as

L?(s):{2 log
IPn(sDt~?,h)

sup
0vtƒ?

IPn(sDt,h)

0
B@

1
CA,

and comparing it with a x2 distribution with d.f.~1.

Note that IPn(sDt~?,h) corresponds to the probability

distribution of the number of polymorphic sites in a sample of

DNA sequences when the genealogy of the sample is modeled by

the standard coalescent and assumed the infinite-sites model for

mutations. Tavaré [14] derived an expression for IPn(sDt~?,h),
which also follows from (13) by taking t to ?:

IPn(sDt~?,h)~ lim
t??

IP(sDt,h)~
n(n{1)

h

Xn

i~2

m
(n)
i,0

i{1

i{1

h
z1

� �sz1

0
BBB@

1
CCCA:ð15Þ

Test II. Suppose we know, for example, from other studies,

that a recent homogenization event occurred at time T0 and we

want to identify if this event had impact on a locus of interest.

Symbolically, the following hypothesis can be stated

H0 : T~T0 versus Ha : T=T0:

The null hypothesis can be tested by comparing minus twice of the

likelihood-ratio statistics

L0(s)~{2 log
IPn(sDt0,h)

sup
0vtƒ?

IPn(sDt,h)

0
B@

1
CA,

with a x2 distribution with d.f.~1, where t0~T0=(gN‘).

Based on this approximation, for each s a (1{a)% confidence

interval

(ta(s), ta(s)),

of t is determined by solving the equation

{2 log
IPn(sDt,h)

IPn(sD̂tt,h)

� �
~x2

a

with respect to t; x2
a is the a critical value of the x2 distribution.

Note that when s is 0, then ta~0 and ta is the solution of the

above equation. A (1{a)% confidence interval of T is

(gN‘(ta(s), gN‘ta(s)). One can use a similar approach to estimate

a (1{a)% confidence interval for T when inferring the elapsed

time of a recent severe bottleneck event based on DNA sequence

Inferring Recent Homogenization Events at Genome
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data from independently evolving multiple neutral loci. Another

approach for this case is described below.

Test III. For a case of m independent neutral loci, let the loci

be labeled from 1 to m, and si be the number of polymorphic sites

in a sample of ni sequences at locus i, s~(s1, . . . ,sm). To test if the

multiple loci are affected by the same recent homogenization

event, the following hypothesis is considered:

H0 : T1~T2~ . . . ~Tm versus Ha : Ti=Tj

for some i=j; i,j~1, . . . ,m,

where Ti is the time elapsed since a recent homogenization event

at locus i. The null hypothesis can be tested by comparing the

statistics

Lm(s)~{2 log
sup Pm

i~1 IPni
(si DT=(gNi),hi) : Tw0

� �
Pm

i~1 sup IPni
(si DT=(gNi),hi) : Tw0

� �
 !

,

with a x2 distribution with d.f.~m{1, where Ni is the scaled

population size at locus i; hi~2Nimi is the scaled mutation rate at

locus i, and mi is the mutation rate per generation per sequence at

locus i.

Inferring the time of a recent severe bottleneck event
based on polymorphism data at multiple loci

The following steps can be taken to infer the time T of a recent

severe bottleneck event from DNA sequence data at independently

evolving multiple neutral loci in low recombination regions. The

likelihood function for such a data set can be computed as a

product of likelihood functions from each locus by using formula

(13). Thus, in case of m independent loci, and si polymorphic sites

in a sample of ni sequences at locus i, i~1, . . . ,m, the maximum

likelihood estimator T̂T of T can be derived by solving the equation

Xm

i~1

_IIPni
si DT̂T=(gNi),hi

� �
IPni

si DT̂T=(gNi),hi

� �~0

with respect to T̂T , where _IIPni
(si Dt,hi) is the derivative of

IPni
(si Dt,hi) with respect to t. It is assumed that the scaled

mutation rate hi and the scaled population size Ni at locus

i, i~1, . . . ,m, are known.

To estimate a (1{a)% confidence interval of T , the Central

Limit Theorem based approximation can be used when the

following conditions hold: (1) The number m of the loci is large; (2)

the loci are on same type of chromosomes (as a result Ni~Nj ); (3)

samples of DNA sequences from each locus have the same size

(ni~nj ); (4) the lengths of the sequences from the loci are equal

(Li~Lj). Thus, the (1{a)% confidence interval of T can be

computed as

T̂T{za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jm T̂T
� �q

, T̂Tzza

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jm T̂T
� �q� �

,

where za is the a critical value from the standard normal

distribution; Jm(:) is observed Fisher information, which can be

computed using the formula

Jm T̂T
� �

:{
Xm

i~1

L2 log(IPn(si DT=(gN‘),h)

LT2
DT~T̂T

~{
Xm

i~1

1

(gN‘)
2

€IIPn(si DT̂T=(gN‘),h)

IPn(si DT̂T=(gN‘),h)
{

_IIP2
n(si DT̂T=(gN‘),h)

IP2
n(si DT̂T=(gN‘),h)

 !
:

For evaluating the above expression, numerically stable expres-

sions for the first and second derivatives of IPn(sDt,h) with respect

to t can be derived by using (13) and the numerical stabilization

procedure.

Application of the method for inferring recent
homogenization events from human genome

Anthropological and archeological data strongly support ‘‘Out

of Africa’’ hypothesis for the origin and evolutionary history of

modern humans [15–19]. The hypothesis underlies two major

events: Homo sapiens (ancestors of modern humans) emerged in

Africa between 150,000 and 200,000 years ago (kya) and dispersed

to other regions of the world sometimes before 50,000 years before

present (yr B.P.). Studies based on mitochondrial and Y-

chromosome support this hypothesis [20–28]. However, studies

based on DNA sequence data from coding and non-coding loci on

autosomal and X-chromosome show that the most recent common

ancestor of b-globin gene [29], the X chromosome gene for the

pyruvate dehydrogenase E1 a-subunit [30], and the non-coding

loci 22q11.2 [31], 17q23 [32], Xq13.3 [33] are much older than

200,000 yr B.P. These inferences are based on the framework of

the standard coalescent, in which the effective human population

size and the mutation rate per nucleotide site per generation are

considered to be &10000 [34] and &2:3|10{8 [35–37],

respectively.

In contrast to this approach, I use the framework developed in

this paper to analyze some of data sets used in the studies

mentioned above. I apply the framework to DNA sequences from

four non-coding loci (22q11.2, 17q23, Xq13.3, YAP) in low

recombination regions on chromosomes 22, 17, X, and Y to

identify and differentiate recent homogenization events associated

Table 1. Summary of the DNA sequence data sets from loci 22q11.2, 17q23, Xq13.3, and YAP.

Locus seq. length (&kb)a Sn(n)b African Sn(n) Non-African Sn(n) Combined

22q11.2 10 54(40) 44(88) 75(128)

17q23 20 57(10) 37(12) 63(22)

Xq13.3 10 24(23) 17(46) 33(69)

YAP 2.6 3(8) 1(7) 3(15)

aSequence length in kilobases.
bThe number of polymorphic sites in a sample of n sequences.
doi:10.1371/journal.pone.0037588.t001
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with the ‘‘Out of Africa’’ hypothesis. The data sets are published in

[25,31–33], respectively, and their summary is in Table 1. First, I

consider commonly accepted estimates for values of the param-

eters in the model: the effective human population size N to be

10000; the mutation rate m̂m per nucleotide site per generation to be

2:3|10{8; the human (effective) generation time g to be 20 years.

Mutation rate m per generation per sequence at each locus is

computed as l|m̂m, where l is the length of the DNA sequences at

the locus. After applying Test I for this set of parameter values to

each of the four data sets, the power of detecting a recent

homogenization event at any of the loci is very weak (the p-values

close to 1, data not shown). In this case the maximum likelihood

estimates for the elapsed times of recent homogenization events at

the loci are much older than 200,000 yr B.P. (Table 2). Thus,

these estimates disagree with the ‘‘Out of Africa’’ hypothesis.

To explore another possibility, I also consider human effective

population size N to be 50000 based on the following observa-

tions: (1) Some studies [38–40] estimated effective human

population size to be a few times larger than 10000. (2) Maximums

of the likelihood functions of the data sets favor the case

N~50000 over the case N~10000 for all the data sets. Thus, I

consider the values of m̂m and g to be the same as above but

N~50000. After applying Test I to the data sets from each locus,

the likelihood-ratio tests rejected the null hypotheses at 5%
significance level, the results are in Table 3. Clearly, the results

suggest that the standard coalescent framework is inadequate to

describe the data sets for this set of parameter values, and recent

homogenization events have impact on the four loci. The

maximum likelihood estimates (see Table 2) of the elapsed times

agree with the times for the two major events.

In this case, the likelihood functions of the data sets would not

change dramatically as N gets larger than 50000 because they

behave in large h regime. The maximum likelihood estimates of T ,

when N~?, are in Table 2. These estimates show that

considering the human effective population size greater than

50,000, the estimates for the elapsed times would not change

dramatically.

For this set of parameter values, I use Test III to differentiate the

recent homogenization events at the four loci. The results of the

tests are in Table 4. These results suggest that the four loci have

not been affected by the same homogenization event, p-values are

less than 0.05 for the data sets from African and Non-African

populations. The locus Xq13.3 is significantly younger than the

locus 17q23, in particular for Non-African population, which

suggest that the locus Xq13.3 has been affected by a recent

positive selection or a recent bottleneck occurred to Non-African

female population. Using Tajima’s test [41] and Fu’s and Li’s tests

[42], Zhao at el. [31] also observed that the diversity at locus

Xq13.3 significantly deviates from the Wright-Fisher neutral

model.

Application of the method for inferring the times of HIV
seroconversions in HIV-1-infected patients

Usually, after few weeks of HIV infection, plasma viraemia in

infected patient declines rapidly as a result of a primary immune

response, which coincides with HIV seroconversion [43], [44]. In

particular, HIV envelop gene at this time point shows no diversity

[45]. To examine the utilities of the framework developed in this

paper, I use DNA sequence data from HIV-1 envelop genes

published in [46] to infer the times of HIV seroconversions in nine

HIV-1-infected patients. The sequences are sampled from the

patients at the first HIV-positive screening tests. The sequences are

&650 nucleotide long; a summary of the data is in Table 5.

For consistency of the data sets with the infinite-sites mutation

model and with no intra-locus recombination, the following

conditions are checked: (a) Each polymorphic site is a result of a

single mutation event, that is only two nucleotide states are

possible at each polymorphic site. (b) All pairs of sites in sample of

DNA sequences pass the four-gamete test [47–49]. Seven of the

nine data sets (except data sets from patients 2 and 5) satisfy

conditions (a) and (b). The data sets from patients 2 and 5 are

inconsistent with the conditions (a) and (b), respectively. However,

the two data sets are not excluded from the analysis because

inconsistencies in these data sets are a result of two mutations and

some recombination events, respectively.

I consider the following values for the parameters in the model:

population size N equal to the viral load at the sampling time

Table 2. Estimates for the elapsed times T since a recent homogenization event for each of the four loci.

Loci T̂Ta (N~104)

T̂T(95%,CI)b (N~5|104)

African T̂TS
c (N~?) T̂Ta (N~104)

T̂T(95% CI)b (N~5|104)

Non-African T̂TS
c (N~?)

22q11.2 1400 220(120, 380) 117 640 72 (44, 116) 43

17q23 800 320 (220, 500) 247 360 160 (105, 260) 134

Xq13.3 525 127 (71, 240) 90 120 41 (22, 75) 32

YAP 350 195(40, ?) 125 94 55(0, 450) 30

Combined 1300 241(183, 316) 145 360 92 (67, 125) 55

aThe estimates of the elapsed times are in 1000 years Before Present. The estimate of T are based on formula (13) when N is equal to 10000.
bThe estimate of T based on formula (13) when N is equal to 50000.
cUnder the ‘‘simple’’ model an estimator for T is denoted as T̂TS . It is equal to Sn|g

n|m based on the data at a single locus; for data sets from m independent loci, it is equal

to T̂TS~
g
Pm

i~1
SniPm

i~1
ni mi

.

doi:10.1371/journal.pone.0037588.t002

Table 3. The values of minus twice of the log of likelihood-
ratio statistics for the data sets from each of the four loci.

Locus D?(:)(p-value) African D?(:)(p-value) Non-African

22q11.2 19.8 (8.5e26) 48.6 (0.3e211)

17q23 11.2 (0.8e23) 19.8 (0.8e25)

Xq13.3 20.3 (7e26) 46.6 (0.8e211)

YAP 2(0.16) 4.6(0.03)

doi:10.1371/journal.pone.0037588.t003
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point, mutation rate m̂m per nucleotide site per generation equal to

3|10{5, the number of nucleotides at the locus l is equal to 650.

All the insertions and deletions are excluded from the analysis. For

this set of parameter values, I applied Test I to the data from each

patient; the null hypotheses are rejected at 5% significance level in

favor of recent homogenisation events. For each patient the

maximum likelihood and 95% confidence interval estimates of T

(in coalescent units) are in Table 6. These estimates can be

converted in years by using the equation T~t|g|N, in which

the effective HIV generation time g is considered to be equal to 1

or 2 days [50–52].

These estimates are contrasted with the estimates provided by

Shankarappa et. al [46]; they estimated the time of HIV

seroconversion for each of the patients as the mid-time point

between the last HIV-negative and first HIV-positive screening

tests. The comparison between the estimates (see Figure 2) shows

that for some of the data sets the estimates are significantly in

disagreement.

The observed disagreements are robust with respect to N (data

not shown): when N is larger than the viral load, the likelihood

functions do not change because of large h regime. I have also

applied the above estimation method by considering N equal to

the one tenth of the viral loads. The result show that the observed

discrepancies also hold for this case. Note that the viral load

represents approximately 1=5000th of the total amount of the

virus in an HIV-infected person since there is a total of 5 liters of

blood in the body of an average adult.

Discussion

The analytical method developed in this paper is a trade-off

between computational efficiency and complexity of the underly-

ing evolutionary model. Using multi-locus DNA sequence data,

the method allows identification and differentiation of the

signatures of recent severe bottleneck and hitchhiking effects in a

computationally efficient way. However, the method uses the

number of polymorphic sites instead of full polymorphism data in

samples of DNA sequences, and it is constrained by the

assumptions of the constant size Wright-Fisher reproduction

model and the infinite-sites model. In contrast, coalescent based

simulation methods can be implemented at the cost of computa-

tional feasibility to include full polymorphism data [7], various

demographic scenarios [6], and finite-sites mutation models [53].

However, before using computationally more expensive methods,

the method could be a helpful guide for analyzing multi-locus

DNA sequences data.

To illustrate the behavior of the likelihood function for small

and large h, I used the program to plot the likelihood function of t
(see Figure 3) for a sample of 15 DNA sequences with 25

polymorphic sites when h~:96 and h~19:2. The behavior of the

likelihood function can be explained based on the process that

traces ancestral lineages of the sample back in time. When tracing

n lineages back in time, coalescent and mutation events occur one

at a time with rates n(n{1)=2 and nh=2, respectively. Thus, when

h is large, mutation events occur more often than coalescent events

back in time, so for a given number of polymorphic sites the recent

homogenization event is more likely to be before the most recent

common ancestor of the sample. This also explains the approx-

imation (14). In opposite to this, when h is small, the sample is

more likely to have the most recent common ancestor before the

recent homogenization event. Similarly, as t gets larger the sample

is more likely to have the most recent common ancestor before the

homogenization event, hence the likelihood function has a limit

(see (15)).

Table 4. The values of minus twice of log of likelihood-ratio
statistics for Test III.

Compared locia
Di () (p-value)
African

Di() (p-value)
Non-African

(22q11.2, Xq13.3) 1.7 (0.19) 2 (0.15)

(17q23, 22q11.2) 1.3 (0.25) 5.6 (0.02)

(Xq13.3, 17q23) 5.8 (0.02) 12.5 (0.0004)

(YAP, 17q23) 0.3 (0.6) 0.9 (0.3)

(YAP, Xq13.3) 0.2 (0.65) 0.08 (0.8)

(YAP, 22q11.2) 0.01 (0.9) 0.06 (0.8)

(Xq13.3, 17q23, 22q11.2) 6 (0.05) 14 (0.001)

(YAP, Xq13.3, 17q23, 22q11.2) 53 (1.8e211) 14 (0.003)

aSets of compared loci.
doi:10.1371/journal.pone.0037588.t004

Table 5. Summary of Shankarappa et al’s [46] data.

Patient numbera seroconverion time (in years)b sample sizec number of polymorphic sitesd viral loade

1 0.28 7 7 6637

2 0.42 21 33 68706

3 0.35 10 9 598

5 0.25 22 41 7798

6 0.21 19 21 4709

7 0.2 19 32 6251

8 0.29 7 5 4045

9 0.25 10 31 145545

11 0.21 8 13 478

aI used the same notation for the patients as in [46].
bIn [46] seroconversion times in the patients are estimated as the mid-time point between the last HIV negative screening test and the first HIV positive screening test.
cFor each patient, the samples of DNA sequences are drawn from HIV populations in HIV patients at the time of the first HIV positive screening test.
dThe number of polymorphic sites in the samples.
eFor each patient viral load per milliliter is measured at the time of the first HIV positive screening test.
doi:10.1371/journal.pone.0037588.t005
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Computational efficiency of the method gives an advantage to

explore various values for the parameters in the model for

assessing the impact of parameter values on the inference. The

application of the method to the human data shows that when the

effective human population size N is equal to 10000 or greater

than 50000, the inferences about evolutionary history of modern

human populations are dramatically different. The HIV data

analysis shows that the observed discrepancies between estimates

for HIV seroconversions in the patients can be a result of the

assumption that the effective HIV generation time is the same for

all the patients. To have a better assessment for this assumption,

frequent HIV screening tests can be used to assess the times of

HIV seroconversion in HIV patients, and then to apply this

method for exploring variability of effective HIV-1 generation

times between HIV patients.

As the analysis of the human DNA sequences data shows the

method developed in this paper does not have enough power to

give an estimate for the effective human population size. Although

the method suggest that very large values of N as maximum

likelihood estimates for some of the human data sets when T and

N are considered unknown, this does not mean that the ‘‘simple’’

model (N~?) is an appropriate model for explaining the data sets

because site frequency spectrum of a sample of DNA sequences

under the simple model consists only singletons, and Zhao et al.

[31] observed excess number of singletons and doubletons for all

the data sets. Note that under the model considered in this paper

the behavior of the expected site frequency spectrum in samples of

DNA sequences changes continuously respect to h, for example

when the effective population size N changes continuously. The

two extreme ends of the expected site frequency spectrum under

this model are described by the standard coalescent and by the

‘‘simple’’ model, respectively for small and very large values of h.

Under the standard coalescent the expected site frequency

spectrum represents a wide range for frequencies of alleles. Thus,

as h (N) increases the expected number of low-frequency alleles

increases.
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Table 6. The estimates of the seroconversion times (̂tt in
coalescence units) in the nine patients.

Patient t̂ta (95%CI ) D?(:) p-value

1 0.008 (0.003, 0.016) 36.6 1.2e29

2 0.0012 (0.0008, 0.0017) 162.1 0

3 0.093 (0.04, 0.21) 13.4 2.5e24

5 0.013 (0.009, 0.018) 75.3 0

6 0.013 (0.008, 0.02) 65.6 5.5e216

7 0.015 (0.01, 0.02) 64.4 9.9e216

8 0.009 (0.003, 0.02) 33.5 7.1e29

9 0.001 (0.00075, 0.0015) 88.9 0

11 0.23 (0.08, 0.58) 6.2 0.012

aThe maximum likelihood estimates of T in coalescent units.
doi:10.1371/journal.pone.0037588.t006

Figure 2. Comparison of two estimates of the seroconversion
time for each of the nine patients. The effective generation time g
in (A) and (B) are considered to be g~1 day and g~2 days, respectively.
Maximum likelihood and 95% confidence interval estimates of the time
of HIV seroconversion in years since the first HIV positive screening test
are shown in full dots and error bars, respectively. Empty circles
represent the mid-point estimates of the seroconversion times [46].
doi:10.1371/journal.pone.0037588.g002

Figure 3. The likelihood function of t for two values of h. For a
sample of 15 DNA sequences with 25 polymorphic sites at a locus, the
likelihood function of the elapsed time (t) is plotted for the values of
h~0:96 and h~19:2 in red and blue, respectively.
doi:10.1371/journal.pone.0037588.g003
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6. Jakobsson M, Hagenblad J, Tavaré S, Säll T, Halldén C, et al. (2006) A unique

recent origin of the allotetraploid species Arabidopsis suecica: Evidence from
nuclear DNA markers. Mol Biol Evol 23: 1217–31.

7. Galtier N, Depaulis F, Barton NH (2000) Detecting bottlenecks and selective
sweeps from DNA sequence polymorphism. Genetics 155: 981–7.

8. Kingman JFC (1982) On the genealogy of large populations. Journal of Applied

Probability 19A: 27–43.

9. Kingman JFC (1982) The coalescent. Stochastic Processes and their Applica-

tions 13: 235–48.

10. Kingman JFC (1982) Exchangeability and the evolution of large populations. In:
Koch G, Spizzichino F, eds. Exchangeability in Probability and Statistics, North

Holland Publishing Company. pp 97–112.

11. Hudson R (1983) Testing the constant-rate neutral allele model with protein
sequence data. Evolution 37: 203–17.

12. Tajima F (1983) Evolutionary relationship of DNA sequences in finite
populations. Genetics 105: 437–60.

13. Wolfram Research, Inc. (2007) Mathematica. Version 6.0, Champaign, IL.
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