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Abstract
Apicomplexan parasites cause severe diseases in human and livestock. Dense granule proteins (GRAs), specific to the Apicomplexa, participate 
in the maintenance of intracellular parasitism of host cells. GRAs have better immunogenicity and they can be emerged as important players 
in vaccine development. Although studies on GRAs have increased gradually in recent years, due to incompleteness and complexity of data 
collection, biologists have difficulty in the comprehensive utilization of information. Thus, there is a desperate need of user-friendly resource to 
integrate with existing GRAs. In this paper, we developed the Dense Granule Protein Database (DGPD), the first knowledge database dedicated 
to the integration and analysis of typical GRAs properties. The current version of DGPD includes annotated GRAs metadata of 245 samples 
derived from multiple web repositories and literature mining, involving five species that cause common diseases (Plasmodium falciparum, 
Toxoplasma gondii, Hammondia hammondi, Neospora caninum and Cystoisospora suis). We explored the baseline characteristics of GRAs and 
found that the number of introns and transmembrane domains in GRAs are markedly different from those of non-GRAs. Furthermore, we utilized 
the data in DGPD to explore the prediction algorithms for GRAs. We hope DGPD will be a good database for researchers to study GRAs.
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Introduction
Apicomplexan parasites include Plasmodium falciparum, 
Toxoplasma gondii, Hammondia hammondi, Neospora can-
inum, Cystoisospora suis, etc., causes diseases not only in 
animals but also in humans (1). Nearly, all creatures can be 
the host of the apicomplexan species (2). P. falciparum and 
T. gondii are the causative agents of two important human 
diseases: malaria and toxoplasmosis, respectively (3, 4). Tox-
oplasmosis, as one of the most important diseases, is also 
related to reproductive failure of sows (5). N. caninum engen-
ders neosporosis causing infectious abortion in cattle world-
wide (6). Thus, apicomplexan parasites have a great influence 
on human health and animal husbandry, resulting in public 
health problems and economic loss (7, 8).

Dense granule proteins (GRAs) are a category of immuno-
competent proteins secreted by the apicomplexan parasites’ 
secretory organelles known as dense granules. Most of the 
GRAs locate within the parasitophorous vacuole (PV) where 
the parasite multiplies and maintains intracellular parasitism 
in nearly all nucleated host cells, mainly by modifying the PV 
at the interface between the host cell and the parasite (9). 
Besides, several members of the GRAs also are secreted to 

nucleus or cytoplasm of infected host cells (10). The functions 
of these GRAs with different localization are also diverse, such 
as participating in the formation of tubular membrane (11), 
regulating signaling pathways in host cells (12) and affecting 
the transport of substances in the vacuolar membrane (13). 
Even so, the exact biological mechanisms of GRAs are not 
fully understood.

The traditional identification methods used to isolate 
parasite’s dense granules were biochemical fractionation 
approaches, but the excessive parasite and/or host contam-
ination limited its application (14). Recently, proximity-
dependent biotin identification (BioID) technique has been 
widely used for GRAs screening, but there is also the 
problem of non-specific protein contamination (15). The 
vast workload has brought inconvenience to the experi-
mental work and caused the waste of resources. The next-
generation sequencing technology provides new ideas for pep-
tide research and bioinformatics methods are commonly used 
by current researchers to discover new functional peptides. 
As a special class of proteins, different GRAs also share a 
few same features, which commonly play a role in GRAs 
identification (6). There are already two genomics resources 
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Figure 1. Workflow for data curation in DGPD database. Experimentally validated GRAs are classified as the group of ‘confirmed GRAs’ (with blue 
arrows). Highly suspected GRAs existing in the main text or attachment of literature are included in the group of ‘likely GRAs’ (with orange arrows). 
Homologous proteins of known dense granule proteins in PlasmoDB and ToxoDB database are included in the group of ‘predicted GRAs’ (with green 
arrows).

(PlasmoDB and ToxoDB) for Plasmodium and Toxoplasma, 
including GRAs of P. falciparum, T. gondii and other species 
(16, 17). However, there is no integrated database for GRAs 
at present, bringing about difficult for researchers to analyze 
functional characteristics of GRAs and to develop prediction
tools.

By the development of modern technologies, many stud-
ies report that GRAs have potential applications in different 
aspects of functions (18, 19). But little has been done to build 
a golden benchmark GRA dataset in this research field, thus 
there is an urgent need for a dedicated database. Here, we 
integrate rich GRAs data to develop Dense Granule Protein 
Database (DGPD) to address these problems. Furthermore, 
we also use the available data to investigate the GRAs predic-
tion algorithms. Comprehensive information about molecular 
weight, intron, signal peptide and signal peptide, etc., are 
available at http://dgpd.tlds.cc/DGPD/index/.

In this study, our main contributions are summarized as 
follows:

• We integrate GRAs about five separate species from Api-
complexans. To the best of our knowledge, this is the first 
time to collect and study biological information for GRAs 
in depth.

• We explore and analyze the baseline characteristics of 
GRAs in DGPD through comparison with non-GRAs, 
finding that GRAs tend to have fewer introns and more 
transmembrane domains.

• This database can be a publicly available gold-standard 
benchmark data set for the development and evaluation 
of methods for predicting novel GRAs.

Material and methods
Design of database
The DGPD construction and analysis include the following 
steps as shown in Figure 1.

(1) Search and collect GRAs related literature from 
PubMed.

(2) Sort out the specific information and relevant features 
of genes in the literature, according to database design and 
requirements.

(3) Manually screen positive and negative samples, follow-
ing by feature engineering.

(4) Develop prediction models for GRAs.
(5) Build the website and complete relevant tests.

Acquisition of protein data
The core idea of this work is to analyze existing data on 
GRAs, and our first task is to collect the biological infor-
mation. Most of the GRAs in the database are acquired in 
relevant literatures, and a small portion come from our previ-
ous study. At first, we searched the scientific literatures about 
GRAs from PubMed with a set of keywords, such as ‘dense 
granule protein’, ‘GRA’, ‘TgGRA’, ‘NcGRA’ and so on. At 
this step, more than 1200 articles were obtained. Then, we 
preferentially selected two model organisms, P. falciparum
and T. gondii, as well as their similar species as literature 
screening strategies. After literatures extracting, we removed 
papers without full-text and others unrelated to GRAs dur-
ing this process. Next, we browsed the articles based on title 
and abstracts, then downloaded the full-text PDF version. 
For each protein, we extracted the corresponding metadata 
including a brief description and correlation property from 
papers. Herein, the detailed protein information were down-
loaded from databases of PlasmoDB, ToxoDB, NCBI, Uniprot 
and PDB by the gene login number in the literature.

Noteworthy, most homologous proteins possess identical 
or similar functions (20). Therefore, we also searched homol-
ogous GRAs of other species in PlasmoDB and ToxoDB by 
experimentally validated GRAs, and then brought them into 
DGPD. The above method was used for data collection of 
other species, except Plasmodium and Toxoplasma. Many 
studies proved that some typical characteristics play a part 
in the biological function of protein, such as the presence 
or absence of signal peptides (21), domains (22), the num-
ber of intron (23), etc. Hence, we focused on collecting the 
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Figure 2. The workflow of prediction models for identifying GRAs.

protein characteristics that contribute to the GRAs research 
for improving the availability of database.

Data integration and processing
GRAs in the DGPD database contain the searchable names 
of gene and species, signal peptide (SignalP), intron, trans-
membrane domains (TMHMM), molecular weight and their 
level of evidence. For sharing information, data standardiza-
tion and annotation are essential. Therefore, the collected data 
need to be processed into format that users can access.

Apart from the data directly mined from the literature, we 
acquired the GRAs in some existing resources. For exam-
ple, ToxoDB is a database closely related to Toxoplasma, 
which has developed into maturity gradually since its initial 
release (24). In the ToxoDB website, the number of exons 
was obtained from the gene Model section and subtracted 
one to get the number of introns. From the Protein Feature 
and Properties section, the molecular weight of protein was 
obtained. Whether the protein contains signal peptides would 
be determined by the ‘yes’ and ‘no’ under the ‘Has SignalP’ col-
umn. For collecting the TMHMM and domain information, 
we need to observe the table from the attributes and pro-
tein browser section, confirming whether the domain exists 
through the descriptions under the track of InterPro Domains: 
one or more bands indicate presence and vice versa. Besides, 
the number of purple band under the track of transmembrane 
domains equals to the TMHMM number of the protein.

Combining information obtained from the related litera-
tures, we divided the data into three evidence levels based on 
their source. The GRAs which has experimentally evidence are 
categorized as the highest level of confidence (Level 1). The 
ones that are documented in the main body or supplemen-
tary materials of the articles are the highly suspected GRAs 
(Level 2). Homologous proteins collected by the identified 
GRAs usually have the same function with them, regarding 
as the predicted GRAs (Level 3). We also added a down-
load function to the DGPD database; biomedical researchers 
could explore, visualize and intuitively analyze these
data.

GRAs prediction
To identify the authenticity of the data and demonstrate the 
usefulness of the DGPD, we constructed a binary-classification 
model to distinguish GRAs. The workflow for developing 

prediction algorithm is shown in Figure 2. We first built the 
training datasets from DGPD and ToxoDB. And, then fea-
ture engineering was performed to extract sequence features. 
Finally, five machine learning models were compared in pre-
dicting GRAs, as elaborated below. We obtained 245 protein 
information from the DGPD database as positive samples for 
the prediction experiment. For negative samples, from the 
ToxoDB database, we retrieved 15 621 proteins in the five par-
asite species as the positive ones. To increase the likelihood 
that proteins are not GRAs and to retain sufficient proteins 
for this dataset, we only used proteins with the description 
‘unspecified product’ or ‘hypothetical protein’ in the ToxoDB 
database. A total of 2826 proteins were collected in this man-
ner. After deduplication, we obtained 1706 proteins as the 
putative non-GRAs. With these constraints, the final dataset 
contained 245 and 1706 proteins. 

iLearn is an integrated platform and meta-learner for mod-
eling of DNA, RNA and protein sequence data (25). And, 
we utilized the protein sequences to extract a variety of 
protein features by ilearn, including CTD (composition/tran-
sition/distribution), CKSAAP (composition of k-spaced amino 
acid pairs), SOCNumber (sequence-order-coupling number), 
CTDD (distribution) and CTDC (composition) (26). In this 
paper, we chose the CTD features, which denoted the distri-
bution pattern of some particular amino acids.

Five classical machine learning algorithms, i.e. decision 
trees, random forest, extremely randomized trees, Gaussian 
naïve Bayes and support vector machine (SVM), were selected 
to develop the classifiers. We adopted two evaluation met-
rics, the area under precision–recall curve (AUPRC) (27) and 
the area under ROC curve (AUC) (28) to evaluate the overall 
performance in the prediction experiment. Furthermore, as 
known GRAs are much less than non-GRAs, we used AUPR 
as the primary metric, which punishes false positive more in 
the evaluation process (29, 30). And, other metrics are also 
calculated, including recall, specificity, precision, ACC and 

Table 1. Statistics in DGPD

Species Level 1 Level 2 Level 3 Total

Toxoplasma gondii 66 26 80 172
Hammondia hammondi 11 0 18 29
Plasmodium falciparum 8 11 0 19
Neospora caninum 16 0 0 16
Cystoisospora suis 9 0 0 9
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F1-score for comparing different machine learning methods 
for constructing prediction models. 

Results and discussion
Statistics of database
Presently, DGPD provides 245 GRAs covering five typical 
species: T. gondii (70.2%), C. suis (3.7%), H. hammondi
(11.8%), N. caninum (6.5%) and P. falciparum (7.8%). Some 
important protein metadata were supplemented in DGPD, 
such as the protein sequences, intron, thnum, etc. In particu-
lar, we labeled each protein with an evidence level based on its 
source to ensure the data credibility, including 110 confirmed 
GRAs (Level 1), 37 likely GRAs (Level 2) and 98 predicted 

GRAs (Level 3). Table 1 shows the detailed database statistics. 
In DGPD, the indistinct GRAs or those whose functions/fea-
tures are unclear exist in the group of ‘likely’ or ‘predicted’. 
We also welcome users to contact us through the Submit Panel 
or email provided at the webpage when finding novel GRAs. 
And, the request will be validated. Additionally, we will con-
stantly collect the experimentally proven GRAs and DGPD 
will be periodic updated.

Implementation of database website
DGPD provides a user-friendly interactive web and users can 
browse, search and download the data. We adopt Django 
frame to coordinate MySql database for back-end setup of 
DGPD. LayUI, an open-source web framework is used to 

Figure 3. A web-interface of DGPD database. (A) Panel of GRA repository. A statistics visualization is displayed on the right. The gene information can be 
viewed by submitting keywords in search bar. (B) Panel of gene information. Detailed information of gene that users search is visualized on this panel. 
(C) Panel of database introduction and help. Users will receive help and brief introduction for database functions. The catalog is displayed on the top left. 
(D) Download panel. All data are available through this panel. (E) Data submission panel. The novel GRAs information is allowed to submit in this panel. 
(F) Contact panel. The different contact ways is provided for user to communicate with us.
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construct the front-end panel. The DGPD homepages consist 
of five panels. And, Figure 3 shows the details of web.

Home Panel to search\browse proteins
In this panel, users can browse the desired proteins by select-
ing the species or gene names. It also allows users to use the 
specified data to search (e.g. organism name) (Figure 3A). 
After submitting specific search criteria, the webpage will redi-
rect to gene browsing page (Figure 3B) with data message 
(e.g. gene sequence). Users could click on the hyperlinks of 
genes or PMIDs to reach the detailed information from the 
corresponding NCBI pages. In addition, we provide a 3D 
graph for each specific protein to help visualize the informa-
tion on the tertiary and secondary structure of GRAs.

About panel to introduce the database
The catalog in the panel makes users utilize DGPD reasonably 
(Figure 3C). We adopted different tabs to facilitate users to 
view helps and messages about the database, such as the brief 
introduction, the web browser requirements and the database 
usages.

Download panel to obtain the protein data
All GRAs data in the DGPD are open-source. Researchers 
can obtain the detailed protein information by clicking the 
download button (Figure 3D).

Submit panel to upload the new data
In recent years, the correlational study of GRAs has devel-
oped rapidly. Many novel GRAs continue to emerge in this 
field. To ensure effectiveness of DGPD, we will update the 
database regularly. Furthermore, we welcome users to provide 
protein information related with new GRAs by submit panel 
(Figure 3E). After information submitting, we will review it, 
and the feedback will be sent to the submitted email address.

Contact panel to stay in touch with us
Address and email of us are listed in this panel (Figure 3F). We 
hope that more researchers will contribute valuable comments 
to our database. We would like to encourage users to commu-
nicate with us on relevant topics and issues.

Exploration of GRAs characteristics
Generally, gene-related attributes can be obtained from some 
dominating characteristics. For instance, the number of intron 
affects the gene expression (31) and the TMHMM number 
influences the transport of proteins (32). Thus, we carried out 
characteristic analysis on the curated dataset. We found that 
the median of intron number closes to 0 in identified GRAs. In 
contrast, for the negative samples, the median of intron num-
ber closes to 3 (Figure 4A). For example, the intron number of 
TGME49_227280 protein (GRA3) is 0 and TGGT1_209200 
protein (non-GRAs) is 11. Excessive introns can cause the 
dysregulation of gene products expression, and GRAs possess-
ing low-level intron number may avoid aberrant expression 
(33). Refer to TMHMM, the median of its quantity in GRAs 
usually close to 2. In contrast, the TMHMM numbers of 
negative samples is usually lower than that of the positive 
ones, and the median of TMHMM number is 0 for nega-
tive samples (Figure 4B). For instance, the TMHMM number 
of TgME49_268900 (GRA10) is 2 and TGME49_208760 
(non-GRAs) is 0. TMHMM is essential for transmembrane 
proteins, mostly composed of hydrophobic amino acids (32). 
As secreted proteins that is mostly the type I transmem-
brane proteins, GRAs usually contain a variable number 
of TMHMM that may affect the structure of intravacuolar 
network membrane (9). Signal peptides play an important 
influence in the protein translocation (34). We also investi-
gate the signal peptide pattern of GRAs by comparing them 
with putative non-GRAs. The bar plots in Figure 4C show 
that GRAs in DGPD are more inclined to contain a signal pep-
tide than non-GRAs (P-values < 2.2e−16, Fisher’s exact test). 
These results may provide new ideas for dense granule protein
discovery.

Development of prediction model for GRAs
Here, to demonstrate how to use the data in DGPD, we 
conduct a case study to develop machine learning-based 
prediction models for GRAs. In this task, after generating the 
dataset containing positive and negative samples depicted in 
the above, the CTD feature descriptors are extracted (35). 
Then, the full dataset and quantified features are used to 
fit the models. We optimize the existing model framework 
and maximize the mean AUC, AUPRC and other evaluation 

Figure 4. Feature analysis between positive and negative samples across species. Orange and blue represent GRAs and non-GRAs, respectively.
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Figure 5. Performance of different machine learning-based models.

metrics by using 5-fold cross-validation (36). SVM, a machine 
learning method based on statistical learning theory for small 
sample set, is a common choice in the binary-classification 
problems (37, 38). Herein, the performance of SVM consis-
tently outperforms other compared models on most metrics 
(Figure 5). The average AUC and AUPRC of the best model 
are 0.9372 and 0.7815, respectively. Thus, we select SVM to 
establish the prediction model and make the source codes with 
training data available in the Download page. In addition, 
we conduct hyperparameter optimization and found it had a 
small influence on the model performance. Figure 5 illustrates 
the performance of different classification algorithms on the 
dataset with 5-fold cross-validation.

In practice, non-GRAs always dominate over true GRAs, 
even a small false positive rate will result in a large number 
of false positive predictions. As can be seen in Figure 5, the 
AUC value is generally higher than AUPRC for each machine 
learning algorithm. This might be partly due to that the data 
imbalance causes the prediction bias to negative samples. This 
bias means more samples are classified into non-GRAs, result-
ing in a higher specificity that leads to a relatively high AUC. 
On the contrary, these false positives further lead to a lower 
precision, which is the crucial factor that makes the AUPRC 
decreases (29).

Conclusion
Dense granule proteins have been demonstrated to play a 
major role in multiple complex diseases caused by apicom-
plexan parasites. Thus, deepening the research on GRAs is 
essential to understand and treat the diseases. However, this 
research field is progressing slowly owing to difficulties in 
GRAs data collection and mining. In this paper, we integrate 
rich existing GRAs data to build the first repository, DGPD. 
It contains abundant proteins across five representative cat-
egories, consisting primarily of the basic information and 
additional annotations. Users can utilize the DGPD database 
information to conduct targeted research on existing GRAs 
and further on understanding the action mechanism.

With the development of science and technology, more 
novel GRAs and efficient prediction algorithms will, respec-
tively, be discovered and developed. Our current work may 
still have flaws, such as the shallow study of machine learn-
ing algorithm in the GRAs prediction. By the advent of deep 
learning, the GRAs prediction capabilities will be strength-
ened. In the future, we will always focus on the latest research 
results in the GRAs field, and incorporate more new GRAs 
and species into DGPD. In view of the exact biological func-
tion of GRAs are still controversial, we will be devoted to 
exploring the biological problems related to GRAs. We hope 
that DGPD would be a unique platform for further investiga-
tion of GRAs function and action mechanism in the disease 
treatment.
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