
NOF1 Encodes an Arabidopsis Protein Involved in the
Control of rRNA Expression
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Abstract

The control of ribosomal RNA biogenesis is essential for the regulation of protein synthesis in eukaryotic cells. Here, we
report the characterization of NOF1 that encodes a putative nucleolar protein involved in the control of rRNA expression in
Arabidopsis. The gene has been isolated by T-DNA tagging and its function verified by the characterization of a second
allele and genetic complementation of the mutants. The nof1 mutants are affected in female gametogenesis and embryo
development. This result is consistent with the detection of NOF1 mRNA in all tissues throughout plant life’s cycle, and
preferentially in differentiating cells. Interestingly, the closely related proteins from zebra fish and yeast are also necessary
for cell division and differentiation. We showed that the nof1-1 mutant displays higher rRNA expression and
hypomethylation of rRNA promoter. Taken together, the results presented here demonstrated that NOF1 is an Arabidopsis
gene involved in the control of rRNA expression, and suggested that it encodes a putative nucleolar protein, the function of
which may be conserved in eukaryotes.
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Introduction

In order to identify genes involved in seed development or

cellular housekeeping functions, several laboratories have used the

model plant Arabidopsis for performing large-scale genetic screens

[1,2]. From these studies, the number of non-redundant genes

essential for cell growth, division, and differentiation during

gametophytes or/and seed development was estimated above 500

[3,4]. Some of these genes have been shown to encodes for

proteins that are involved in nucleolar functions [5,6,7,8,9,10,11].

The nucleolus is known to be involved in biogenesis of ribosome-

subunits in eukaryotic cells [12,13]. The initial ribosomal RNA

(rRNA) precursor transcript is cleaved to form the mature 28S,

18S, and 5.85S rRNAs that are post-transcriptionally modified,

through interactions with small nucleolar ribonucleoproteins

(snoRNPs) [13,14]. Then, with the help of other processing

factors, rRNAs are assembled and exported into the cytoplasm. In

Human, proteomic approaches have led to the identification of

around 700 nucleolar proteins [15]. In plants, more than 200

nucleolar proteins have been identified [15,16,17]. A comparison

of the nucleolar proteome from humans and yeast showed that

90% of human proteins have yeast homologues, thus demonstrat-

ing the strong conservation of nucleolar proteome through

evolution [15]. However, plant and human nucleoli display some

significant differences [16,17,18] and only 70% of the plant

nucleolar proteins identified have human homologues (http://

bioinf.scri.sari.ac.uk/cgi-bin/atnopdb/home).

Here, we report the isolation and functional characterization of

NOF1 that encodes for a nucleolar protein showing strong

similarities with two proteins of yeast (YIL091C, accession nu
Y21428) and zebra fish (DEF, accession nu Q6PEH4) [19]. The

three conserved proteins appear to be necessary for the control of

cell division or differentiation. Interestingly, the yeast protein

interacts with several nucleolar proteins involved in rRNA

biogenesis. In agreement with this function, we showed that the

nof1 mutants are affected in the methylation of rDNA promoter

and rRNA expression.

Results

Isolation of the two allelic mutants nof1-1 and nof1-2 that
are affected in embryo development

A visual screening for abnormal seed morphologies of the

Versailles’ collection of T-DNA insertion lines was performed

allowing the isolation of about 250 mutants [4]. One of these

mutants, named nucleolar factor 1-1 (nof1-1), was obtained in the

progenies of the ‘‘DKE14’’ primary transformant. Plants hemizy-

gous for the mutation appeared normal, except for the production

of some wrinkled brown seeds (Figure 1a–c). Cytological analyses

showed that the mutant seeds contain abnormal embryos, the

development of which is arrested from early in the phase of pattern

formation, to late in the maturation phase [20] (Figures 1g–k and

S1). Although some of the developed nof1-1 embryos were still

metabolically active (Figure S1-B), the mutant seeds were unable

to germinate. Consistent with this observation, the segregation

analyses suggested that nof1-1 mutation was recessive, monogenic,

and lethal (Table S1). No homozygote plants for the mutation

have been obtained. In addition, a strict co-segregation of the T-

DNA (providing kanamycin resistance) with the abnormal

wrinkled-seed phenotype was observed in the progenies of 110

plants. These results suggested the presence of a single T-DNA
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insertion locus in nof1-1, which was genetically linked to the

mutation. Supporting this conclusion, DNA hybridization exper-

iments with T-DNA specific probes showed that a single T-DNA

was present in the mutant (data not shown). After the molecular

identification of the NOF1 gene, a second T-DNA insertion

mutant named nof1-2 was identified by reverse genetics screening

in the progenies of the EXY42 primary transformant. No genetic

complementation was observed when crossing two hemizygous

lines (NOF1/nof1-1 with NOF1/nof1-2), confirming that both

mutants were allelic. Consistent with the embryo lethal phenotype

of nof1-1, no homozygous plants were obtained with the nof1-2

mutation.

Gametes transmission is affected in the nof1 mutants
Segregation analyses showed that the number of seedlings

resistant to kanamycin was significantly lower than expected for a

dominant marker linked to a lethal mutation (63% for nof1-1/

NOF1 n = 2361 and 29% for nof1-2/NOF1 n = 915, instead of

66,66%. Table S1). These segregations suggested that the mutated

alleles, and more especially nof1-2, were transmitted to the progeny

at a lower frequency than the wild-type allele. These results were

consistent with the molecular analyses demonstrating that nof1-2 is

a null allele (see below) with abnormal ovule development

(Figure 1c). Cytological analysis of cleared ovules showed that

the putative nof1-2 ovules were arrested during the mitotic

divisions of the megagametogenesis (Figure S2). The reciprocal

crosses between wild-type and hemizygous mutants lines con-

firmed that the transmission of nof1-2 alleles was null through the

female gametes and reduced through pollen (Table S2).

The nof1-1 mutant is affected in cellular division pattern
In the wild-type developing embryo cells divide following a

precise pattern [2]. Cytological observations revealed irregular

pattern and/or additional cell divisions in nof1-1 embryos

(Figures 1d–f and S3A and B). The number of cell layers was

sometime locally increased. In addition, lack of cell adhesion was

found in embryos that are bent at the middle of the hypocotyl

(Figure S3B). Although present, both meristems exhibited

abnormalities such as a flat apical meristem or abnormal quiescent

center in the root (Figure S3B). Taken together these data

suggested that nof1-1 embryos are affected in orientation and

number of cell divisions. In addition, NOF1 was preferentially

expressed in differentiating cells (see hereafter and Figure 5A). In

order to test if these phenotypes were associated with auxin

signaling, the expressions of pDR5:GUS marker [21] and the

localization of the auxin transporter PIN1 [22] were monitored in

the mutant background. The reporter construct pDR5:GUS was

introduced by crossing into nof1-1 background and the localization

of PIN1 was carried out by immunolocalization. In both cases, no

striking differences were observed between the developed nof1-1

and wild type embryos (Figure 2). Therefore, the abnormal nof1-1

cellular phenotypes were probably not due to a default in auxin

signaling. Nevertheless, they give an explanation to the abnormal

development of nof1-1 embryos.

Isolation and molecular characterization of NOF1
Isolation of the putative NOF1 gene was performed using the T-

DNA tagged nof1-1 allele. Plant genomic sequences flanking the

left (68 bp) and right (73 bp) T-DNA borders were recovered by

walking PCR and sequenced [23]. The site of integration was

assigned to chromosome 1 in the intergenic region at 195 bp

upstream the ATG initiation codon of At1g17690 (Figure 3A). A

small deletion of 33 bp was found at the insertion locus. A second

allele was isolated by reverse genetic using FlagDB [24].

Localization of the T-DNA insertion (7 kb) in the gene suggested

that nof1-2 is likely a null allele (Figure 3A). In order to confirm the

identity of NOF1, the genetic complementation of both alleles was

obtained with a wild-type genomic clone (see material and

methods and Figure S4). Taken together these data showed that

NOF1 is At1g17960. This gene encodes a putative protein of 754

amino-acid residues of unknown function. Sequencing of a cDNA

and complementation of the nof1-1 mutant with this cDNA fused

to GFP confirmed this prediction (see next paragraph). The

protein contains a potential nucleolar localization signal (NoLS)

[25] and a conserved ‘‘DUF1253’’ domain of unknown function

(Figure 3A). Only one NOF1 gene is found in Arabidopsis and

closely related genes were found in other eukaryotes (Figure 3B).

For instance, DEF from danio [19] and YIL091C from yeast

Figure 2. Auxin signaling in nof1-1. PRODR5: uidA expression in wild type (a) and mutants (b and c) embryos. Immunolocalization of PIN1 in wild
type (d) and nof1-1 mutants (e and f) embryos. Bar = 40 mm (a to c) and 100 mm (d to f).
doi:10.1371/journal.pone.0012829.g002

Figure 1. Phenotypic analyses of wild type and nof1-1 mutant seeds. (a) Mature dry seeds from nof1-1/NOF1-1 hemizygous plants displaying
a few dark brown mutant seeds (indicated with arrows) and (b) Wild-type (Ws) control seeds. (c) representative developping siliques of wild-type
accession (Ws) that displays immature green seeds (top row); nof1-1/NOF1-1 (weak allele) genotype that display white (i.e. lethal) seeds (second row);
and nof1-2/NOF1-2 genotype (third row) that display gaps (i.e. missing seed) and shrunken empty seed coat for the null allele nof1-2. (d) Late
developmental stage in a single silique comparing a nof1-1 mutant embryo (top left) to a wild type embryo (bottom right). Laser scanning confocal
image of Ws embryo (e) compared to nof1-1 globular embryo with abnormal cell divisions (f). Wild type embryo extracted from mature seed (g)
compared to several nof1-1 embryos arrested at different stages of development (h–k). DIC images of nof1-1 embryos with abnormal cell divisions
(arrows). Bars = 600 mM (a, b, c), 10 mM (e, f, l, m, n), 100 mm (g–k).
doi:10.1371/journal.pone.0012829.g001
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display about 50% identities at the amino-acid level (Figure 3C).

This may indicated a conserved function among eukaryotes.

NOF1 is expressed in all tissues, but preferentially in
differentiating cells

The expression of NOF1 was investigated in various tissues by RT-

PCR. NOF1 mRNA was detected in all organs tested (Figure 4A). These

results were fully consistent with transcriptomic data available (Figure S5).

Interestingly, in the weak mutant allele (nof1-1), some NOF1 mRNA was

still detected at 2 days after pollination (Figure 4B), probably due to the

insertion of the T-DNA in the promoter region. This result was consistent

with the weak phenotype of nof1-1 compared to that of the null nof1-2 (the

latter does not produce embryos). However, it is difficult to fully avoid the

hypothesis of a contamination by mRNA from the carpel. The spatio-

temporal activity of the pNOF1 promoter was then investigated in

transgenic plant that express the pNOF1:GUS reporter construct. GUS

activity was mainly detected in cells that undergo cellular differentiation in

young tissues such as floral buds, ovules, embryo, secondary roots, pollen,

young seedlings and vascular bundles (Figure 5A).

NOF1 is a nucleolar protein
In order to investigate intracellular localization of NOF1, a

NOF1:GFP chimeric gene was introduced in a nof1-1 hemizygous

plant. Primary transformants exhibiting complementation of the

nof1-1 phenotype in their progenies were obtained, indicating that

the chimeric construct was functional. By comparison with DAPI

staining of the nucleus, a nucleolar localization of GFP was

observed in young developing ovules (Figure 5B). No GFP was

detected in other tissues suggesting a weak stability of the chimeric

protein. The NOF1:GFP chimeric gene was transiently expressed

in tobacco cells giving a similar result, with a preferential

accumulation in the nucleolus (Figure 5B).

It is known that modifications of nucleolar functions can affect

the size of the nucleolus [10]. Therefore, a cytological analysis of

the nucleus was made. Although no obvious differences were

observed earlier in nucleolus morphology, the nof1-1 cells showed

enlarged nucleoli at the globular and heart stages of embryo

development (Figure 6A). Image analyses, at the globular stage of

embryo development, confirmed that although the size of the

nuclei is not affected in nof1-1 (Figure 6B), the nucleoli are

significantly enlarged (Figure 6C). These data argue in favor of an

important role for NOF1 in the nucleolus.

The accumulation of rRNA increases in nof1-1
The yeast structural ortholog of NOF1 (i.e. YIL091C) has been

recently shown to interact with nucleolar proteins MPP10 and SAS10

[26]. MPP10 and SAS10 are members of the small subunit of the

rRNA processome (SSU) [27,28,29,30]. These data are fully consistent

with the nucleolar localization of NOF1 and the abnormal phenotype

of the nucleoli in nof-1-1 cells. Furthemore in silico analysis of genes

co-expressed with NOF1 revealed a strong bias for ribosome function

as compared with randomly generated lists of genes (Figure S6).

Processing of the pre-rRNA is conserved among eukaryotes and

has been described in details [5,12,14,31,32,33]. The pre-rRNA is

firstly cleaved at the P site located in the 59 external transcript

spacer (ETS) and then in the internal transcript spacers (ITS)

(Figure 7). To confirm the involvement of NOF1 in rRNA

biogenesis, the levels of pre-rRNA and mature 18S, 5.8S, and 25S

rRNAs were monitored by quantitative RT-PCR (Figure 7). RNAs

were extracted from mutant embryos obtained from white seeds

collected in developing siliques at 2 and 11 days after pollination.

In nof1-1, a strong increase in pre-rRNA accumulation was

observed (Figure 7A). Similar increases were found for total

rRNAs (Figure 7B). These results showed that the nof1-1 mutation

triggered a strong increase in rRNA expression.

The methylation of rRNA promoter is affected in nof1-1
In plants, rDNA transcription is regulated by methylation of the

promoter region [34,35]. In Arabidopsis, the transcription start site

(TSS) of the Polymerase I was shown to be methylation sensitive and

to contain specific elements of regulation [36]. Interestingly, it has

been recently shown that YIL091C, the putative yeast homolog of

NOF1, interacts with JHD2, an histone (H3K4) demethylase

[37,38]. The methylation of histone 3 lysine 4 is an epigenetic mark

Figure 4. Analyses of NOF1 mRNA accumulation in wild type and nof1-1. RNA was extracted from various plant organs (A) and seeds (B) at
different stages of development and used for reverse transcription. Primers specific for NOF1 and for EF1aA4 as control were used on the same set of
first strand cDNA templates generated with dT primers. During silique development (B), WS or nof1-1 seeds were manually dissected based on seed
phenotype to produce the NOF1 cDNA template at 2, 11, 16 and 22 days after fertilization. S: seeds, B: buds, cL: cauline leaves, rL: rosette leaves.
doi:10.1371/journal.pone.0012829.g004

Figure 3. Molecular characterization of NOF1. A) Schematic representation of the structure of the NOF1 (At1g17690) locus in wild type and
nof1-1 and nof1-2 mutants. The structure of the gene is deduced from the comparison between genomic and cDNA sequences. In nof 1-1, the T-DNA
was inserted between positions 2195 to 2228 relative to the ATG (first codon), leading to a small deletion of 33 bp. In nof 1-2, a T-DNA is inserted
after nucleotide 2002. Boxes are exons. The 59UTR is predicted according to ESTs sequences. Location of the DUF1253 domain is indicated below the
scheme. B) Unrooted neighbour-Joining tree representing the distance between NOF1 and the most closely related proteins from various organisms
was obtained using the full amino-acid sequences, after clustal W alignment (http://align.genome.jp/). C) Deduced amino acid sequences of NOF1
and closely related proteins are presented (At1g17690: NOF1, Zebrafish (DEF): gi37046654, and yeast YIL091C). Identities between amino acid
residues are shown with dark boxes and similarities with light boxes. The putative NoLS site is boxed.
doi:10.1371/journal.pone.0012829.g003
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that triggers DNA hypomethylation and thus increases transcription

[39]. Therefore, it is tempting to speculate that the strong expression

of rRNA in nof1-1 could be due to the hypomethylation of rDNA

promoter. To test this hypothesis, the level of methylation of rDNA

promoter was investigated by quantitative RT-PCR after restriction

of genomic DNA with a methylation sensitive enzyme (HpaII).

Amplifications were performed with TSS specific primers on DNA

templates extracted from nof1-1 dissected seeds, at 11 days after

pollination (Figure 8). This method was more suitable than

conventional bisulfite conversion for the limited amount of

biological materials available after seed dissection and produced

reproducible results [40,41]. The rDNA promoters were signifi-

cantly less methylated in nof1-1 than in hemizygous embryos

(Figure 8). In addition, the methylation of 25S rDNA region used as

control was not affected in nof1-1. These results suggested that

rDNA promoter is specifically hypomethylated in nof1-1 that is

consistent with higher expression of rRNA.

Discussion

NOF1 is required for embryogenesis and gametogenesis
in Arabidopsis

In this study, we have shown that NOF1 is essential for female

gametogenesis and embryogenesis. The leaky allele nof1-1, that

Figure 5. Cytological analyses of NOF1 expression and intracellular localization of the protein. A The activity of the NOF1 promoter
(pNOF:UidA) was investigated in various plant organs. The result of GUS activity was observed with Nomarski optics, except for (e) where dark field is
used, on flowers (a–b) showing expression in buds and in pollen. Expression was found in the nucellus of developing ovules (c–d) and later in the
embryo sac (e). During embryogenesis, GUS activity is found at the top of the hypocotyl and extends throughout the embryo during maturation (f to
i). After 24 h of imbibition, the expression is found with a patchy pattern in the embryo (l to n) before disappearing. Five days after imbibition’s start,
the expression is found in root apex (k), lateral root initials (j) and around vascular bundles (l). Bars = 10 mm (c to e), 100 mm (f to i) and 50 mm (l to n).
B). Subcellular localization of NOF1:GFP in transgenic Arabidopsis lines expressing 35S:NOF1:GFP. GFP is detected in the nucleoli (a), DAPI staining (b)
and merged image (c). Transient expression in tobacco leaves of 35S:NOF1:GFP showing nucleolar localization of NOF1:GFP (d), transmitted light (e),
and merged pictures (f). Bar = 1 mm (a, b, c) and 10 mm (d, e, f).
doi:10.1371/journal.pone.0012829.g005
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accumulates NOF1 mRNA until a few days after fertilization,

produced embryos exhibiting a broad range of abnormal cellular

phenotypes (e.g. cell division pattern or lack of cell adhesion).

These data are consistent with the expression data demonstrating

that NOF1 is expressed in all tissues, and preferentially in dividing

cells. Since auxin is an important hormone in embryo develop-

ment [42,43,44,45,46], we have investigated whether it may be

involved in these abnormal cellular phenotypes. The immunolo-

calization of the PIN1 auxin transporter as well as the use of

ProDR5:GUS construct in the nof1-1 mutant background did not

reveal any obvious changes in auxin transport and accumulation.

These results indicated that the abnormal cellular phenotypes are

very likely not the consequence of a modified auxin accumulation

or transport. The strongest nof1 allele is impaired very early during

female gametogenesis and the male gametogenesis is slightly

affected. This result is fully consistent with the finding that several

proteins involved in general cell cycle progression, including

nucleolar proteins such as SLOW WALKER 1 (SWA1, At2g47990)

[5], play essential roles during female gametogenesis. Nevertheless,

we cannot rule out the possibility that a redundant function may

exist in pollen. In addition, although NOF1 mRNA was found in

all tissues, we do not know if NOF1 is really necessary for cell

viability in all tissues during the entire plant life cycle. To answer

these questions it would be interesting to build an inducible

dominant negative system (e.g. RNAi) to switch off NOF1

expression in specific tissues and cells.

NOF1 is involved in nucleolar functions
Sequence analysis of the predicted NOF1 protein revealed potential

nucleolus localization signal (NoLS) [47] in the N terminal part of the

protein. In addition, the yeast ortholog (i.e. YIL091C) has been

recently shown to interact with several nucleolar proteins [26]. The

functional data reported here, both in tobacco and in Arabidopsis are

consistent with a nucleolar localization of NOF1. Interestingly, despite

the complementation of nof1-1 abnormal phenotype by the ectopic

expression of NOF1:GFP construct, GFP signal was detected only in

the integuments of developing ovules. This result suggested a post-

translational control of NOF1 in vegetative parts. A putative

sumoylation site on lysine (K205) was also predicted using SUMOsp

program [48]. Sumoylation is a reversible post-translational modifi-

cation that appears to play a crucial role in a variety of biological

processes [49]. It would be interesting to investigate if the putative

sumoylation site is involved in NOF1 functions.

Consistent with the putative nucleolar localization of NOF1, its

mutation affects the size of the nucleoli. A similar increase was

previously reported in other embryo lethal mutants [8,10]. In both

cases, the mutated gene were directly linked to nucleolar functions

and ribosome biogenesis. On this line, a link between rDNA

transcription and the size of the nucleolus was recently reported

using inhibitors of DNA methyl transferases [50]. Taken together

these data showed that NOF1 encodes a putative nucleolar protein,

the function of which is important for the nucleolus, in agreement

with its involvement in rRNA biogenesis.

NOF1 is involved in the control of rRNA expression
In nof1-1, an increase in rRNA expression was observed, in

association with hypomethylation of the rDNA promoter region.

These genetic analyses support the view that NOF1 acts through

rDNA transcription and is fully consistent with the demonstration

that rDNA methylation negatively impacts rDNA transcription by

polymerase I [34,35,36,51,52,53,54]. As NOF1, the closely related

yeast (YIL091C) and danio (DEF) proteins are localized in the

nucleus and are essential for cell viability [19,55] suggesting a

functional conservation of these proteins. Furthermore, DEF was

shown to affects cellular differentiation and division as def mutants

exhibit an arrest of expansion growth of digestive organs [19].

Interestingly, in yeast, YIL091C interacts with a H3K4 demethy-

lase [37,38] and demethylation of H3K4 leads to DNA

methylation and inhibition of rDNA transcription [56]. On the

same line, JHDM1B, a human nucleolar demethylase of the same

family (i.e. containing a JmjC domain), controls the repression of

rDNA gene expression by specific demethylation of trimethylated

H3K4, limiting cell growth and proliferation [57]. Therefore, a

similar mechanism likely occurs in plants supporting the view that

NOF1 is involved in a network of proteins acting through a

chromatin-based regulation of rDNA transcription. In order to

confirm this molecular role, it would be necessary to set up an

inducible system in planta (e.g. RNAi) allowing to test the direct

effect of switching off NOF1 expression on H3K4 methylation and

to search for JmjC demethylase homolog in Arabidopsis.

Interestingly, a related JmjC-domain gene has been recently

characterized, the mutation of which triggers ectopic cytosine

methylation, probably through an increase in H3K9 methylation

levels [58]. Last, it is worth to notice that the loss of JHD2

demethylase in yeast is not lethal, suggesting that the mutation of

YIL091C would affect other nucleolar functions, in agreement

with its interactions with several nucleolar proteins.

A putative network of proteins involved in nucleolar
functions

Among the proteins interacting with YIL091C are SAS10 and

MPP10 [26], both involved in rRNA biogenesis. SAS10 plays a role

in the structure of silenced chromatin [29], likely through H3 and

H4 acetylation [59]. MPP10 is a part of the small subunit

Figure 6. Nucleolus phenotypes. A) Embryo development at the
globular and heart stage of development, Ws (a and b respectively) and
nof1-1 (c and d respectively) after DAPI staining and laser confocal
imaging. Bar = 5 mm. B) Average nucleus diameter was measured in Ws
and nof1-1 embryos after DAPI staining and laser scanning confocal
imaging. C) Average ratio of nucleolus vs nucleus diameters in Ws
compared to nof1-1. A student test was performed to compare both
populations of nucleoli, demonstrating a significant difference with
p,0.0001 (t = 26.26).
doi:10.1371/journal.pone.0012829.g006
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processome (SSU) required for rRNA biogenesis [14,27,28,60].

Comparative genomics between Arabidopsis and yeast [61,62]

revealed a putative network of homologous proteins that could

interact with NOF1 to control rRNA biogenesis (Figure S7). The

genetic and functional characterizations of some of these proteins

strongly support this hypothesis. For instance, SWA1 is a nucleolar

protein, expressed in dividing cells, essential for female gametogen-

esis and involved in rRNA biogenesis [5]. TORMOZ (TOZ,

At5g16750) is a nucleolar protein, required for cell division

patterning, at least during embryo development (no null allele have

been characterized), that may be also involved in rRNA biogenesis

[7]. Therefore, it is tempting to speculate that a similar network of

nucleolar proteins, including NOF1, is involved in the regulation of

rRNA biogenesis in Arabidopsis. As in yeast, NOF1 and interacting

proteins would constitue a molecular link between the regulation of

rDNA gene expression and processing of rRNA, by filling the gap

between the processome and the transcription of rDNA. Neverthe-

less, although coupling of rRNA biogenesis with cell growth has been

established [12,63,64,65], we cannot exclude that other nucleolar

functions are affected by NOF1 mutation (e.g. modification of small

RNAs, assembling of ribonucleoproteins, or cell division). For

instance, YIL091C was shown to interact with several kinases such as

Swe1 that regulates transition from G2/M or Tos3, a tumor

suppressor essential to mammalian embryo development [66].

Materials and Methods

Plant material, growth conditions and seed viability
A. thaliana seeds of the wild-type ecotype Wassilewskija (WS) as well

as the primary transformants DKE14 and EXY42 lines were obtained

from the IJPB seed stock center (INRA, Versailles, France, http://

dbsgap.versailles.inra.fr/agrobactplus/English/Accueil_eng.jsp).

Seeds were surface sterilized and germinated on Murashige and

Skoog (MS) medium (M02 555, pH 5.6; Duchefa, Haarlem, the

Netherlands) solidified with 0.7% (w/v) agar. After a cold treatment

of 48 h at 4uC in the dark, the plates were transferred to a growth

chamber and incubated at 20uC/15uC day/night, under a 16-h/

8-h light/dark regime. Selection of T-DNA-containing seeds was

performed by germination on MS supplemented with kanamycin

(Sigma, Saint-Quentin Fallavier, France) at 50 mg l-1. After 15

days, the plantlets were transferred to sterilized compost in

individual pots, grown under the same conditions as above and

irrigated twice a week with a complete mineral nutrient solution. To

analyze the distribution of seeds with phenotype (white and wrinkled

seeds), hemizygous nof1-1/NOF1-1 siliques at 15 DAF were opened

and observed without disturbing seed positions. For time course

studies, all the developing seeds of one shoot were harvested 3–4

weeks after the onset of flowering: siliques ranging from 3 to 22 DAF

were opened and the corresponding seeds removed and sub-

sampled. Material used for RNA extraction was immediately frozen

in liquid nitrogen and stored at 280uC prior to extraction.

Viability tests were based on the reduction of tetrazolium salts to

highly colored end products called formazans in viable seeds. Teguments

of imbibed mutant and wild-type seeds were torn and embryos

were soaked in a 1% 2,3,5-triphenyl tetrazolium chloride solution

(Sigma, CA). Samples were incubated for 2 days in the dark at 30uC.

DNA extraction and PCR analysis
RT–PCR experiments were performed as previously described

[67]. All the oligonucleotides used in this study are described in

Figure 7. Expression and processing of the 45S rRNA. Accumulation of rRNA was monitored by qRT-PCR using specific primers for
unprocessed (U1/U2, U3/U4) (A) and processed forms (i.e. 18S f/r, U5/U4 for 5.8S and U7/U8 for 25S) (B) of the 45S rRNA transcript. The cDNA
templates were been obtained after manual seeds dissection from a hemizygous plants for the nof1-1 mutation or wild-type (Ws), at 2 or 11 days after
fertilization. One representative experiment of three independent biological repeat is shown.
doi:10.1371/journal.pone.0012829.g007
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table S3. Briefly, total RNA was extracted from different tissues

using an RNA extraction kit (Mammalian total RNA extraction

kit, SIGMA) supplemented with RNase-free Dnase (Qiagen,

Germany) during the extraction. cDNAs were synthesized using

the Superscript II (INVITROGEN) with (dT)22 according to the

manufacturer’s instructions. NOF1 cDNA was amplified using

Stock center cDNA C104805 with the primers B1dke14ATGgate

and B1dke14STOPgate located at the start codon and 39-end of

the cDNA, respectively. For gene expression analysis, a 1449 bp

fragment of the At1g17690 cDNA was amplified with the primers

cDNA dkeUp (59-GCACAGGTCCCATGAGAAATT-39) and

cDNA dkeLow (59-TGTCAAAGGCAGGTGATTCCCA-39).

Controls were carried out with primers that amplify a constitu-

tively expressed elongation factor ‘EF-1alpha’ cDNA as previously

described [68].

Intracellular localization of NOF1
The NOF1 cDNA was amplified with the proofreading Pfu Ultra

DNA polymerase (STRATAGENE, La Jolla, CA, USA) from

cDNA obtained after reverse transcription of whole silique-

extracted mRNAs using the B1DKE14ATGgate and B2DKE14STP-

gate oligonucleotides. The PCR product was introduced by a BP

recombination into pDONR207 entry vector (INVITROGEN,

Carlsbad, CA, USA) and transferred into the binary vector

pMDC83 vector [69] by a LR recombination reaction, to obtain a

translational fusion between the NOF1 and the GFP (C-terminal)

reporter gene. This plasmid was used for stable as well as transient

expression of NOF1:GFP.

Genetic complementation of the nof1 mutants
The NOF1 genomic sequence (7218 bp length, containing

1500 bp of promoter sequence and 500 pb of 39 sequence) was

PCR amplified from DNA of the BAC F11A6 and blunt cloned

into TOPOblunt vector (Invitrogen Carlsbad, California, USA). A

XhoI/KpnI fragment was then subcloned into the KpnI/SalI

restricted pBIB-HYG vector [70]. The resulting plasmid was

introduced into Agrobacterium tumefaciens strain C58C1 pMP90

[71] by electroporation. Hemizygous plant NOF1/nof1-1 were

transformed by infiltration [72], using surfactant Silwet L-77.

Transformants were selected by growing seedlings on hygromycin

(50 mg/ml). On the 123 primary transformants obtained, 18 were

homozygous for the mutation (nof1-1) as suggested by the

resistance of their progenies to kanamycin and confirmed by

genotyping by PCR (data not shown). The complementation of

nof1-2 allele was obtained by crossing hemizygous plants with

complemented homozygous nof1-1 plants and selecting for

homozygous nof1-2/nof1-2 in their progenies.

Functional analysis of the NOF1 promoter
The NOF1 promoter used (ProAtNOF:uidA) corresponds to region

21500 to 21 bp relative to the translational start codon and was

amplified with the proofreading Pfu Ultra DNA polymerase

(STRATAGENE, La Jolla, CA, USA) from BACF11A6 using

B1DKE14up and B2DKE14low, attB1 and attB2 referring to the

corresponding Gateway recombination sequences. The PCR

product was introduced by a BP recombination into pDONR207

entry vector (INVITROGEN, Carlsbad, CA, USA) and trans-

Figure 8. Quantification of DNA methylation at the 45S rDNA locus. The level of methylation of the promoter region was estimated by qPCR.
Genomic DNA was PCR amplified directly or after restriction with a methylation sensitive enzyme (HpaII) using specific primers (p2f and p2r). The
amplification of the 25 s rDNA was used as internal control. Results are the means of 3 measurements (+/2 standard deviation). Experiments have
been made on two independent biological replicates showing similar results. TSS: transcription start site.
doi:10.1371/journal.pone.0012829.g008
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ferred to the binary vector pBI101-R1R2-GUS (F. Divol, J.-C.

Palauqui, and B. Dubreucq, unpublished data) by a LR

recombination reaction, to obtain a transcriptional fusion between

the NOF1 promoter (pNOF1) and the uidA reporter gene.

Arabidopsis transformation was carried out as described above.

Ten transformants were selected on MS medium containing

kanamycin (50 mg.l21) and then transferred to soil for further

characterization.

Immunolocalization
For immunolocalizations, samples were fixed for 1 h in 4% (w/v)

paraformaldehyde embedded, sectioned and treated as previously

described [73]. Epitope demasking was carried out by incubating

the slides in buffer citrate 10 mM, PH 6 (0.1 M sodium citrate,

0.1 M citric acid) in EZ- RETRIEVER (Biogenex, San Ramon

USA). A commercial goat antibody against PIN1 (aP-20, Santa

Cruz Biotechnology, ref sc-276163) was used at 1:100. Secondary

antibodies were purchased from Molecular Probe (Alexa-conjugat-

ed donkey anti goat).

Imaging and pictures measurements
Light microscopy was carried out as previously described [74].

Briefly, samples were fixed with 4% paraformaldehyde and 5%

dimethyl sulfoxide in 0.1 M phosphate buffer pH 7, dehydrated in

acetone and included in resin (Technovit 7100 kit, Heraus Kulzer,

Germany), following the manufacturer’s instructions. Semi-thin

sections (4–8 mum) were performed with a Jung RM 2055

microtome (Leica), stained with toluidin blue (1% w/v in 0.1 M

phosphate buffer pH 7.2; Sigma, CA). For analyses using

Nomarski optics, seeds were removed from siliques and cleared

for 1 to 24 h in a chloralhydrate solution (chloralhydrate-H2O-

glycerol, 8:2:1, w:v:v) on a microscope glass slide. Samples were

examined using an Axioplan II microscope (Zeiss, Jena, Germany)

microscope with or without Nomarski optics. Photographs were

taken using a progressC10 digital camera (Jenoptik, Jena,

Germany). For confocal microscopy, A Leica TCS-SP2-AOBS

spectral confocal lazer-scanning microscope (Leica Microsystems,

Mannheim, Germany) was used. The excitation wavelength for

DAPI, GFP and Alexa488 stained samples was 405, 488 nm,

respectively emission was collected at 420 to 470 nm and 500–

550 nm respectively. Samples for modified pseudo-Schiff propi-

dium iodide staining procedure were prepared and imaged as

recently described [75]. Data were processed for 3D volume

rendering or 2D orthogonal sections using the open source soft-

ware Osirix (http://homepage.mac.com/rossetantoine/osirix/) on

a quadxeon 2,66 Ghz 2 GB RAM Apple Mac pro workstation.

RGB stacks of confocal images were imported as DICOm files into

Osirix prior to treatments.

DNA methylation experiments
Genomic DNA was extracted from dissected seeds exhibiting in

the same silique either the ‘‘white seed’’ mutant phenotype (nof1-1)

or wild-type green seeds, using DNA extraction columns (DNeasy

plant mini, Qiagen, Courtaboeuf, France). Thus the green seeds

are called ‘‘hemi’’ since they contain 2/3 of heterozygous seeds (nof

1-1/NOF1) and 1/3 of WT seeds. DNA was PCR amplified using

specific primers (p2f GCATGCAAAAAGAATTTTCA and p2r

CTGGAAAAAGGCAACAAAAC) directly or after restriction

with a methylation sensitive enzyme (HpaII NEB Ipswich USA),

following the manufacturer’s instructions. The oligonucleotides

were designed to amplify a genomic fragment including the

transcription start signal and containing 6 HpaII restriction sites.

The amplification of the 25S rDNA using oligo nucleotides u7 and

u8 was used as internal control on both genomic DNA templates

since this fragment does not contain any HpaII restriction site. The

level of amplification is presented as a percentage of the internal

standard EF1alpha gene (that contains no HpaII site), to normalize

genomic DNA variations between samples. Then a ratio between

digested versus non-digested genomic DNA samples is calculated.

Data presented are representative of 2 independent biological

repeats and the error bars show the variations of three technical

repeats).

Supporting Information

Figure S1 Embryo phenotypes. A) Phenotypes of nof1-1

embryos. Seeds were dissected after 1 hour of imbibition on

whatman paper. Development ranges from globular (1) to almost

fully shaped (2) embryos. B) Embryo viability using tetrazolium test

(Boisson et al. 2001). Results shown are obtained with WT embryo

(b) nof1-1 embryo (c and d) and wild type embryo boiled for 30 min

as negative control (a). Bar = 100 mM.

Found at: doi:10.1371/journal.pone.0012829.s001 (2.77 MB

PDF)

Figure S2 Phenotypes of nof1-2 ovules. Siliques were dissected

and cleared for DIC observations. A) row of developing ovules and

B) an enlargement of the nuclei. Nuclei c–d and e exhibit typical

figures of fertilized ovules whereas ovules a and b are blocked at

the 4 nuclei stage of the megagametogenesis. Bar = 10 mm.

Found at: doi:10.1371/journal.pone.0012829.s002 (2.35 MB

PDF)

Figure S3 Cytological analysis of nof 1-1 embryos. A) 3D

reconstructions of young embryos show defaults in cell divisions as

figured onto (c) when compared to WT (a). Globular embryos

show division abnormalities in the hypophysis (d,e, f) as well as in

the suspensor cells, both in transverse and lengthways orientations.

Bar = 10 mM B) Mature dry seeds observed using confocal

scanning microscopy after modified pseudo-Shiff propidium iodide

staining (a–h). Several defects are typically found in almost fully

shaped nof 1-1 embryos when compared to WT (a): apical

meristem is abnormal (d, arrow), ectopic divisions are found in the

hypocotyl (e, f) or in the meristematic region (b) as well as defaults

in cell adhesion (c). The quiecent center in the root meristem

(arrow) display ectopic divisions and abnormal cellular organisa-

tion (g, WT and h, nof 1-1). Bars = 20 mM (a, d, e, f), 15 mM (b, g,

h), and 5 mM (c).

Found at: doi:10.1371/journal.pone.0012829.s003 (5.06 MB

PDF)

Figure S4 Complementation of the nof1 mutations. The

presence of the nof1-1 or nof1-2 T-DNA insertions was demon-

strated in the progenies of transgenic seedlings by PCR using

specific primers for nof1-1 or nof1-2 insertions (Up/RB and 2821/

LB3, respectively). Kanamycin resistance of the seedlings is

provided by the nof1 mutations (see table S4) and hygromycin

resistance by the new T-DNA carrying a functional copy of NOF1

(see material and methods). Plant 6A2 is homozygous for nof1-1,

10B1 is homozygous for nof1-2 and 17B3 carries both alleles. The

complementation of homozygous plants for nof1 mutations

confirmed that NOF1 mutations are responsible for the abnormal

nof1-1 and nof1-2 phenotypes.

Found at: doi:10.1371/journal.pone.0012829.s004 (0.03 MB

PDF)

Figure S5 NOF1 expression pattern. Electronic pictographic

representations of NOF1 expression patterns. Data analysis was

performed using the the tools of the Bio-Array Resource at http://

bar.utoronto.ca. (Winter et al., 2007).
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Found at: doi:10.1371/journal.pone.0012829.s005 (0.16 MB

PDF)

Figure S6 Co-expression Analyses. Functional classification of genes

according to MIPS database. A) best 100 genes co-expressed with

NOF1 (input set N = 102, classified set N = 99, Atgene express tissue set)

B) random list of Arabidopsis genes (input set N = 100, classified set

N = 99) C) random list of Arabidopsis genes (input set N = 1000,

classified set N = 976) Data analysis was performed using the tools of

the Bio-Array Resource at http://bar.utoronto.ca. (Provart and Zhu,

2003) and the Classification superviewer software (http://bbc.botany.

utoronto.ca/ntools/cgi-bin/ntools classification_superviewer.cgi).

Found at: doi:10.1371/journal.pone.0012829.s006 (0.06 MB

PDF)

Figure S7 Predicted network of NOF1 (At1g17690) partners.

The network was build using the interaction viewer program http://

bar.utoronto.ca/interactions/cgi-bin/arabidopsis_interactions_viewer.

cgi. (Toufighi et al., 2005). At5g16750 Toz (TORMOZ), At2g43650

EMB2777(SAS10), At2G47990 EDA13 (SWA1 Slow Walker,

UTP15), At5g66540 AtMPP10, At5g15750 AtIMP4, At4g25630

FIB2 (Fibrillarin 2), At2g41500 Emb2776 (LIS Lachesis, a WD 40

small nuclear ribonucleoprotein).

Found at: doi:10.1371/journal.pone.0012829.s007 (0.21 MB

PDF)

Table S1 Segregation of the Kanamycin marker in the

progenies of nof mutants. Cytological analyses suggesting that the

mutations are embryo lethal, this hypothesis has been tested (H0 =

the segregation is 2Kr/1Ks). In both cases, the observed X2. X2

theoritical at 5% (3,84). The data showed that the number of

resistant seedlings is lower than expected for embryo lethal

mutations (more especially for the null allele nof1-2). This

suggested that the transmission of the mutated gametes was

affected. Therefore, the hypothesis of a gametophityc lethal

mutation has been tested for the null allele nof1-2 (expected ratio of

1Kr/1Ks). Again the hypothesis is rejected, the observed X2 was

higher than expected. The data suggested in this case that

probably the two type of gametes were affected. This hypothesis

was confirmed by the analyses of reciprocal crosses (see Table S2).

Found at: doi:10.1371/journal.pone.0012829.s008 (0.03 MB

PDF)

Table S2 Reciprocal crosses between hemizygous nof1 and WT

plants: occurrence of embryo lethal phenotype and segregation of

the Kanamycin resistance marker. A–B–C–D: Controls. Crossing

hemizygous mutants with the wild type plants, no embryo

phenotypes are expected. The observed dead seeds are naturally

aborted seeds usually found in wild-type siliques and/or due to

manual fertilization. E–F–G–H We wished to test if the

transmission of the mutated gametes is affected or not. The

hypothesis Ho = the transmission is not affected or the

segregation ration is 1Kr/1 Ks’ was tested. X2 cut off value is

3,84 at 5% risk. For nof1-1 (E–F), the hypothesis is accepted at 5%

risk, suggesting that there was no significant effect of the

transmission of nof1-1 gametes. For the null allele, nof1-2, the

hypothesis is clearly rejected in both cases (G and H), suggesting

that both types of gametes were affected. In addition, the lack of

female gamete transmission demonstrated that the mutation is

female gametophytic lethal.

Found at: doi:10.1371/journal.pone.0012829.s009 (0.06 MB

PDF)

Table S3 Oligonucleotides.

Found at: doi:10.1371/journal.pone.0012829.s010 (0.02 MB

PDF)
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