

Mixed response and mechanisms of resistance to larotrectinib in metastatic carcinoma ex pleomorphic adenoma of the parotid harboring an *NTRK2* fusion

A case report

Magdalena Pircher, MD^a, Hans Rudolf Briner, MD^b, Marco Bonomo, MD^c, Milo Horcic, MD^d, Ulf Petrausch, MD^a, Daniel Helbling, MD^a, Thomas Winder, MD^{e,*}

Abstract

Introduction: Standardized systemic treatment options are lacking for carcinoma ex pleomorphic adenoma, which is a rare and aggressive tumor primarily found in salivary glands.

Here we report the case of a 63-year-old male with carcinoma ex pleomorphic adenoma of the left parotid and parapharyngeal space harboring a neurotrophic receptor tyrosine kinase (*NTRK*) 2 fusion who was treated with a small molecule inhibitor that targets the tropomyosin receptor kinase (TRK) proteins. To the best of our knowledge, no similar case has been described in the literature so far.

Patient concerns: After multiple surgical resections and radiotherapy for localized cancer disease over several years, our patient again developed an increasing swelling and pain around the left ear and numbress of the left half of the face.

Diagnosis: Magnetic resonance imaging and positron emission tomography/computed tomography scans showed tumor recurrence in the left parotid, below the left ear, and in the parapharyngeal space, as well as metastases of the lungs and cervical lymph nodes. As data on the efficacy of systemic therapies for inoperable carcinoma ex pleomorphic adenoma are scarce, we performed a next-generation sequencing that revealed the presence of a hitherto unknown *NTRK2* fusion.

Interventions: Treatment with the TRK inhibitor larotrectinib was initiated, which induced rapid symptom improvement. However, part of the tumor had to be removed shortly afterwards due to local progression. Molecular testing did not demonstrate any alterations accounting for resistance to larotrectinib, with maintenance of the *NTRK2* fusion.

Outcomes: Three months later, imaging confirmed mixed response. While the reason for this remains unknown, the patient is in good condition and continues to receive larotrectinib.

Conclusion: It remains unclear why our patient showed mixed response to larotrectinib and further studies are needed to explore other possible mechanisms of resistance.

Abbreviations: CXPA = carcinoma ex pleomorphic adenoma, NGS = next-generation sequencing, NTRK = neurotrophic receptor tyrosine kinase, TRK = tropomyosin receptor kinase.

Keywords: carcinoma ex pleomorphic adenoma, larotrectinib, NTRK2 fusion

Editor: Maya Saranathan.

Consent was provided by the patient for publication of this case.

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

The authors have no conflicts of interests to disclose.

Supplemental Digital Content is available for this article.

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Copyright © 2021 the Author(s). Published by Wolters Kluwer Health, Inc.

Received: 29 October 2020 / Received in final form: 28 December 2020 / Accepted: 6 January 2021

http://dx.doi.org/10.1097/MD.00000000024463

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Samples were obtained in accordance with the principles of the Declaration of Helsinki. Informed consent was obtained from the patient.

^a Onkozentrum Zürich, ^b ORL-Zentrum Klinik Hirslanden, Zurich, ^c Clinica Luganese Moncucco, Lugano, ^d Institut für Histologische und Zytologische Diagnostik AG, Aarau, ^e Swiss Tumor Molecular Institute, Zurich, Switzerland.

^{*} Correspondence: Thomas Winder, Swiss Tumor Molecular Institute, Seestrasse 259, Zurich 8038, Switzerland (e-mail: thomas.winder@hin.ch).

This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Pircher M, Briner HR, Bonomo M, Horcic M, Petrausch U, Helbling D, Winder T. Mixed response and mechanisms of resistance to larotrectinib in metastatic carcinoma ex pleomorphic adenoma of the parotid harboring an NTRK2 fusion: a case report. Medicine 2021;100:4(e24463).

1. Introduction

Carcinoma ex pleomorphic adenoma (CXPA) is a rare tumor of the salivary glands and is histologically defined as an epithelial malignancy associated with a primary or recurrent benign pleomorphic adenoma. Prognosis is generally poor, with 5-year overall survival ranging from 30% to 50%.^[1]

Due to the rarity of CXPA, no standardized treatment recommendations are available for the metastatic setting. Various chemotherapeutic regimens and androgen deprivation therapies have shown some benefits as palliative treatments, but generally based on data derived from series with few patients. Targeted therapies to date have not shown any relevant antitumor activity.^[2,3] To the best of our knowledge, no case has been published to date that describes treatment of CXPA harboring a neurotrophic receptor tyrosine kinase (*NTRK*) 2 fusion using a small molecule inhibitor that targets the tropomyosin receptor kinase (TRK) proteins.

Larotrectinib is an orally available, first-in-class, highly specific TRK inhibitor. The 3 TRKs TRKA, TRKB, and TRKC are encoded by the *NTRK* genes (*NTRK1*, *NTRK2*, *NTRK3*). Oncogenic translocations of these genes produce fusions that link the NTRK kinase domain to the transcriptional regulatory elements and upstream coding regions of many different genes. These lead to constitutive TRK activity that drives oncogenesis.^[4] Larotrectinib was approved by the U.S. Food and Drug Administration based on a primary analysis set of 55 patients who achieved a mean response rate of 75% with larotrectinib treatment.^[5,6] More recently, it was also approved by the European Medicine Agency for treatment of patients with advanced *TRK*-fusion–positive solid tumors.

2. Case presentation

A 63-year-old male journalist was diagnosed with CXPA of the left parotid and parapharyngeal space. He underwent tumor excision, but after 1.5 years, he experienced parapharyngeal recurrence. The tumor was again resected, and local brachytherapy was administered (32 Gy). Over the next 5 years, 3 more surgical interventions followed because of local recurrence in the left parotid, parapharyngeal space and/ or the left ear, until further operations were not feasible, and systemic therapy was required.

As data on the efficacy of systemic therapies for inoperable CXPA are scarce,^[2] we performed molecular and immunohistochemical characterization of the tumor tissue. Next-generation sequencing (NGS) using the OncomineTM Focus Assay Panel showed no relevant mutations, although immunohistochemistry revealed high androgen receptor expression (80%). Androgen deprivation therapy was discussed with the patient, but he rejected this and requested a watch-and-wait strategy.

Within 1 year, the patient developed increasing swelling and pain around the left ear and numbness of the left half of the face. Magnetic resonance imaging and positron emission tomography/computed tomography scans showed tumor progression in the left parotid, below the left ear, and in the parapharyngeal space, as well as metastases of the lungs and cervical lymph nodes.

Androgen deprivation therapy was still not an option according to the patient wishes. Another NGS assessment that focused particularly on *NTRK* fusions (Archer FusionFlex Panel) was performed based on his archival tumor tissue. This revealed an *NTRK2* fusion (ZCCHC7 [Exon 2]/ *NTRK2* [Exon 16]), which to the best of our knowledge has not been described to date. These fusions can be targeted with TRK inhibitors, such as larotrectinib.^[4] After the patient had given consent, treatment was initiated with oral larotrectinib 100 mg twice daily.

The symptoms of the patient regressed within the first 2 weeks of treatment. He discontinued his pain medication, and the numbness of his face was regressing. However, after one month, the swelling around his ear had increased again.

Positron emission tomography/computed tomography assessment conducted 2 months after the initiation of therapy showed stable disease, although magnetic resonance imaging confirmed a mixed response with a growing mass around the left ear. The locally progressive part of the tumor was removed surgically and was analyzed for clonal loss of the *ZCCHC7-NTRK2* fusion gene and other alterations that might explain the resistance to larotrectinib treatment. However, NGS (OncomineTM Comprehensive Assay v3/Archer FusionPlex Salv GlandDx Panel) performed on the fresh tumor tissue still showed the known *NTRK2* fusion, no mutation in the kinase domain, and no other alterations, particularly for genes in the mitogen-activated protein kinase pathway (Table 1). Meanwhile, larotrectinib treatment was suspended to avoid complications during surgery. The treatment was then resumed after 30 days, and tolerance has been good to date.

A positron emission tomography/computed tomography scan conducted 3 months later revealed an overall stable situation (i.e., progression of the cervical lymph node metastases, but stable disease in the remaining tumor sites), and therefore the larotrectinib treatment continues.

3. Discussion and conclusions

Therapy with larotrectinib initially led to rapid regression of the symptoms of the patient caused by metastatic CXPA of the parotid that harbored an *NTRK2* fusion. However, a mixed tumor response was observed clinically after only 1 month, which was confirmed radiologically. The site of focal progression was resected. NGS performed on this tissue detected no changes in the molecular signature that might account for resistance to larotrectinib.

This case thus raises various questions regarding the possible reasons for the mixed tumor response, including tumor heterogeneity, resistance mechanisms, and the therapeutic significance of the hitherto unknown *NTRK2* fusion (*ZCCHC7* [Exon 2]/ *NTRK2* [Exon 16]). Heterogeneity is an important mechanism of resistance to tumor therapy and can be caused by genomic instability and clonal evolution/selection.^[7]

Cancers generally become more heterogeneous over time, which can result in regionally or temporally diverse collections of cells that have distinct molecular signatures, and thus variable sensitivity to treatment. We looked for such heterogeneity in the locally progressive part of the tumor, but NGS did not reveal any changes in the molecular signature, and in particular, the *NTRK2* fusion remained.

NTRK fusions are characteristic of rare cancer types and various pediatric cancers. Only a few common cancers in adults carry *NTRK* fusions, which include those of the salivary glands.^[8,9] Across the *NTRK* genes, *NTRK2* is infrequently involved in *TRK* fusions (3%), whereas *NTRK3* is most frequently affected (55%), followed by *NTRK1* (40%).^[6,9] However, a recent pooled analysis by Hong et al (2020) revealed efficacy of larotrectinib independent of the *NTRK* gene involved, with objective responses in 79% of patients with TRK-fusion–positive solid tumors.^[6] Also, in a large cohort of 11,502 solid

Table 1
Genes analyzed using the Oncomine [™] Comprehensive Assay v3, Archer FusionPlex SalvGlandDx Panel, and Archer FusionPlex Panel.
Analyzed genes

Hotspot genes				Full-length genes			Copy number genes		Gene fusions inter- and intragenic			
AKT1	ESR1	KIT	PDGFRA	ARID1A	FBXW7	PTEN	AKT1	FGFR4	AKT2	EWSR1	MYB	PRKD3
AKT2	EZH2	KNS	PDGFRB	ATM	MLH1	RAD50	AKT2	FLT3	ALK	FGFR1	MYBL1	PTEN
AKT3	FGFR1	TRN	<i>РІКЗСВ</i>	ATR	MRE11	RAD51	AKT3	IGF1R	ARAXL	FGFR2	NCOA2	PPARG
ALK	FGFR2	KRAS	<i>РІКЗСА</i>	ATRX	MSH6	RAD51B	ALK	KIT	BCOR	FGFR3	NF1	RAD51
ARA	FGFR3	MAGOH	PPP2R1A	BAP1	MSH2	RAD51C	AXLA	KRAS	BRCA1	FGR	NOTCH1	BRAF1
AXL	FGFR4	MAP2K1	PTPN11	BRCA1	NBN	RAD51	RBRAF	MDM2	BRCA2	FLT3	NOTCH4	RAF1
BRAF	FLT3	MAP2K2	RAC1	BRCA2	NF1	DRNF43	CCND1	MDM4	BRAF	FN1	NR4A3	RB1
BTK	FOXL2	MAP2K4	RAF1	CDK12	NF2	RB1	CCND2	MET	CAMTA1	FOS	NRG1	RELA
CBL	GATA2	MAPK1	RET	CDKN1B	NOTCH1	SETD2	CCND3	MYC	CCNB3	FOSB	NTRK1	RET
CCND1	GNA11	MAX	RHEB	CDKN2A	NOTCH2	SLX4	CCNE1	MYCL	CDKN2A	FOX01	NTRK2	ROS1
CDK4	GNAQ	MDM4	RHOA	CDKN2B	NOTCH3	SMARCA4	CDK2	MYCN	CIC	FUS	NTRK3	RSP02
RAF	GNAS	MED12	ROS1	CHEK1	PALB2	SMARCB1	CDK4	NTRK1	CSF1	GLI1	NUTM1	RSP03
CDK6	H3F3A	MET	SF3B1	CREBBP	PIK3R1	STK11	CDK6	NTRK2	EGFR	HMGA2	PDGFB	SFR
CHEK2	HIST1H3B	MTOR	SMAD4	FANCA	PMS2	TP53	EGFR	NTRK3	EPC1	JAK2	PDGFRA	SS18
CSF1R	HNF1A	MYC	SMO	FANCD2	POLE	TSC1	ERBB2	PDGFRA	ERBB2	JAZF1	PDGFRB	STAT6
CTNNB1	HRAS	MYCN	SPOP	FANCI	PTCH1	TSC2	ESR1	PDGFRB	ERBB4	KRAS	PHF1	TAF15
DDR2	IDH1	MYD88	SRC				FGF19	<i>РІКЗСВ</i>	ERG	MAML2	<i>РІКЗСА</i>	TCF12
EGFR	IDH2	NFE2L2	STAT3				FGF3	PIK3CA	ESR1	MDM4	PLAG1	TERTT
ERBB2	JAK1	NRAS	TERT				FGFR1	PPARG	ETV1	MEAF6	PRKACA	TFE3
ERBB3	JAK2	NTRK1	TOP1				FGFR2	RICTOR	ETV4	MET	PRKACB	TFG
ERBB4	JAK3	NTRK2	U2AF1				FGFR3	TERT	ETV5	MGEA5	PRKD1	USP6
ERCC2	KDR	NTRK3 PDGFRA	XP01						ETV6	MLK2 MSANTD3	PRKD2	YWHAE

malignancies, 31 had NTRK fusions, where the most common were ETV6:NTRK3 (n=10) and TPM3:NTRK1 (n=6).^[8]

To the best of our knowledge, the *NTRK2* fusion of our patient (*ZCCHC7* [Exon 2]/ *NTRK2* [Exon 16]) has never been described before, which thus also applies to the efficacy of larotrectinib treatment in this setting.^[8] Furthermore, different mechanisms of resistance to larotrectinib have been described. The reasons for primary resistance have not been well explained, and it remains unclear if simultaneous presence of other molecular alterations can influence the efficacy of larotrectinib. *NTRK* fusions are usually mutually exclusive, but rare co-occurrences of the biomarkers *ALK*, *BRAF*, *ERBB2*, *EGFR*, *ROS1*, and *KRAS* have been reported recently.^[9,10]

Acquired resistance arises from secondary mutations within the ATP binding pocket of the TRK kinase domain, which can include solvent-front substitutions, gatekeeper mutations, and xDFG-motif substitutions in the activation loop. Further "bypass" resistance can develop; that is, genomic alterations of other receptor tyrosine kinases or downstream pathway mediators. Specifically, *MET* amplification, *BRAFV600E* mutation and hotspot mutations involving *KRAS* have been shown in tumor and/or plasma samples from patients that have shown disease progression on TRK inhibitors.^[4,5] In our patient, the short duration of treatment suggests primary rather than acquired resistance. However, the patient had no other oncogenic mutations or alterations, such as those described above.

In conclusion, it remains unclear why our patient showed mixed response to larotrectinib, and further studies are needed to explore other possible mechanisms of resistance. Supplemental Digital Content: "Case V Timeline": http://links.lww.com/MD/F604.

Acknowledgments

The authors thank Bayer Healthcare for providing the medication as part of an early access program and for the medical review of the manuscript (without influencing the content). A special thanks goes to Bayer (Switzerland) AG for financing the editorial support by J. Moser and the journal submission fees.

Author contributions

HB, MB and TW followed the patient. TW performed the molecular advising. MH provided pathological support. MP, DH, UP and TW wrote the paper. All of the authors have reviewed and approved the final manuscript.

Conceptualization: Thomas Winder.

Methodology: Milo Horcic.

Supervision: Thomas Winder.

Writing - original draft: Magdalena Pircher.

Writing – review & editing: Hans Rudolf Briner, Marco Bonomo, Ulf Petrausch, Daniel Helbling, Thomas Winder.

References

- Olsen KD, Lewis JE. Carcinoma ex pleomorphic adenoma: a clinicopathologic review. Head Neck 2001;23:705–12. doi:10.1002/ hed.1100.
- [2] Wang X, Luo Y, Li M, et al. Management of salivary gland carcinomas a review. Oncotarget 2017;8:3946–56.
- [3] Boon E, van Boxtel W, Buter J, et al. Androgen deprivation therapy for androgen receptor-positive advanced salivary duct carcinoma: a nationwide case series of 35 patients in the Netherlands. Head Neck 2018;40:605–13.

- [4] Hemming ML, Nathenson MJ, Lin JR, et al. Response and mechanisms of resistance to larotrectinib and selitrectinib in metastatic undifferentiated sarcoma harboring oncogenic fusion of NTRK1. JCO Precis Oncol 2020;4:79–90.
- [5] Drilon A, Laetsch TW, Kummar S, et al. Efficacy of larotrectinib in trk fusionpositive cancers in adults and children. N Engl J Med 2018;378:731–9.
- [6] Hong DS, DuBois SG, Kummar S, et al. Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials. Lancet Oncol 2020;21:531–40.
- [7] Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol 2018;15:81–94.
- [8] Gatalica Z, Xiu J, Swensen J, et al. Molecular characterization of cancers with NTRK gene fusions. Mod Pathol 2019;32:147–53.
- [9] Solomon JP, Linkov I, Rosado A, et al. NTRK fusion detection across multiple assays and 33,997 cases: diagnostic implications and pitfalls. Mod Pathol 2020;33:38–46.
- [10] Jiao X. Co-occurrence of NTRK fusions with other genomic biomarkers in cancer patients. Ann Oncol 2019;30:v25–54.