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The lung organ of human anatomy captured by a medical device reveals inhalation and exhalation information for treatment and
monitoring. Given a large number of slices covering an area of the lung, we have a set of three-dimensional lung data. And then,
by combining additionally with breath-hold measurements, we have a dataset of multigroup CT images (called 4DCT image set)
that could show the lung motion and deformation over time. Up to now, it has still been a challenging problem to model a
respiratory signal representing patients’ breathing motion as well as simulating inhalation and exhalation process from 4DCT
lung images because of its complexity. In this paper, we propose a promising hybrid approach incorporating the local binary
pattern (LBP) histogram with entropy comparison to register the lung images. The segmentation process of the left and right
lung is completely overcome by the minimum variance quantization and within class variance techniques which help the
registration stage. The experiments are conducted on the 4DCT deformable image registration (DIR) public database giving us
the overall evaluation on each stage: segmentation, registration, and modeling, to validate the effectiveness of the approach.

1. Introduction

Nowadays, diseases of the respiratory system have been
increasing because of more and more pollution in many cit-
ies. Besides, smoking cigarettes or aging also affects the
respiratory tract of people. An approach to model or visual-
ize a respiratory cycling process from 4DCT images for diag-
nosis is highly encouraged but still has a lot of challenges.
Although researchers in this field try to investigate and solve
the problem, the results are still rather limited and unsatis-
fied. To develop a treatment plan by the way of modeling
lung movements, registration methods must be taken into
account carefully.

There are many conventional approaches in 4DCT lung
images, but generally, we can classify them into three types:
segmentation, registration, and modeling. In lung segmenta-
tion, in 2019, Pang et al. suggested a novel automatic seg-

mentation model using a combination of handcrafted
features (gray-level cooccurrence matrix) and deep features
(U-Net) [1]. In the paper [2], in 2020, Peng et al. applied
two processes to extract coarse lung contours first and then
refine the segmentation depending on the basis of the prin-
cipal curve model. This approach is rather complicated and
requires a model initialization for the process. For registra-
tion, some researchers use deep learning approaches based
on the displacement field to obtain the optimal parameters
[3], which must be trained with big data until reaching the
optimization. Some other approaches require a landmark
tracking process [4], which must be determined by
specialists.

In respiratory modeling, a question in regard to per-
forming the registration using only the lung images still
needs more researches. There are only a few papers men-
tioned about lung modeling in computer vision fields such
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Figure 1: The representation of 4DCT DIR database from slides 1 to 15 in phase T00.

Image 16 Image 17 Image 18 Image 19 Image 20

Image 21 Image 22 Image 23 Image 24 Image 25

Image 26 Image 27 Image 28 Image 29 Image 30

Figure 2: The representation of 4DCT DIR database from slides 16 to 30 in phase T00.
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Figure 3: The before and after resultant of lung image in artifact removal.
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as the paper of Yang et al. [5] proposed using optical flow to
model the motion of the lung. The registration is applied
using a multigrid approach and a feature-preserving image
downsampling max filter to achieve higher computational
speed and registration accuracy. Ehrhardt et al. [6] suggested
using the statistical modeling which gives good model result
but still depends on landmarks.

In this paper, we suggest an approach using local binary
pattern (LBP) and entropy error evaluation (EEE) for regis-

tration and modeling 4DCT images into a breathing signal
without using any landmark. LBP descriptor is a grayscale
and rotation-invariant operator. It is not affected by rotation
and variation of the images. The 4DCT lung images have
dark and light areas that look like grayscale images. LBP
can run faster than other descriptors and extract relevant
features for the lung [7]. Then, we make a visualization of
the output signal. It will help a doctor easily track or monitor
a patient respiratory process for an accurate treatment plan.

(b) (c) (d)

(a)

Remove artifacts

(e)

Figure 4: (a) Original image with artifacts. (b) Image after filling holes. (c) Image with three indexes after applying minimum variance
quantization. (d) Select the maximum index region, and fill holes. (e) Segmented image with only the index region from the previous step.

1. Input the Matrix SliceIM (One lung slice image in each phase)
2. Find the Dark and Light Area in an image

LightArea = find(image, ‘light’);
DarkArea = find(image, ‘dark’);

3. Fill the DarkArea within a LightArea
SliceIM = floodfill(SliceIM, LightArea, DarkArea);

4. Quantitate SliceIM into three indexed images using the Minimum Variance Quantization
IndexIM = Quantization(SliceIM, 3)

5. Select the index partition in which it is the largest area
MaxPartitionIM = MaxArea(IndexIM)

6. Fill the holes in MaxPartionIM to get the whole lung partition without artifacts
OutputIM = FillHoles(MaxPartitionIM)

7. End
8. Result in the Matrix OutputIM (The lung slice image without artifacts, have only lung and body area)
Appendix
FillHoles method
1. Find the Dark and Light Area in an image

LightArea = find(image, ‘light’);
DarkArea = find(image, ‘dark’);

2. Fill the DarkArea within a LightArea by floodfill
image = floodfill(image, LightArea, DarkArea);

Algorithm 1: Remove artifacts.
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The segmentation, registration, and modeling stages will be
described in detail. Firstly, the 4DCT images include inhale
and exhale states. The images for the exhale state are seg-
mented and served as the reference model. Secondly, images
that belong to different respiratory phases from a given ana-
tomical position are aligned with each other. The accuracy of
lung segmentation is very important for registration and
modeling. Minimum variance quantization (MVQ) and

within class variance (WCV) methods are applied for seg-
mentation effectively and precisely.

2. 4DCT Data Structure Exploratory

Generally, in a single scan, a 4DCT dataset includes about
700 to 1500 computer tomography (CT) images. Each image
has two dimensions corresponding to the width and height

Foreground

Background

(a) (b) (c)

Figure 5: (a) Original image. (b) Foreground and background separation by Otsu threshold. (c) The complement of the (b) result.

(a) (b) (c)

Figure 6: (a) The complemented binary image. (b) The body binary image. (c) The result after multiplication of two binary images (a) and
(b).
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Figure 7: (a) Center line based on the center point of the body. (b) The left lung is the largest region on the left. (c) The right lung is the
largest region on the right.

(a) (b) (c)

Figure 8: (a) Original image. (b) The binary image of two lungs. (c) The segmented two lungs.
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of the image. The third dimension is the order number of
slices, which is scanned at a certain defined interval along
the patient’s body. The last dimension is phases of scanning
time.

Deformable image registration (DIR) is an emerging
technology with diagnostic and therapeutic medical applica-
tions. DIR algorithms were first developed in computer
vision research to estimate motion by warping a source
image onto a target, producing an estimated image that visu-
ally appeared like the target image.

In this research, the 4DCT dataset was acquired as a part
of the standard planning process for the treatment of tho-
racic malignancies at The University of Texas M. D. Ander-
son Cancer Center in Houston and offered by DIR-LAB [3].
In 4DCT imaging, thoracic movements are monitored by a
Varian Real-time Position Management (RPM) system dur-
ing the CT scan. The RPM system divides the complete
respiratory cycle into ten phases, from 0% (phase T00) to
90% (T90) at 10% intervals, where 0% corresponds to the
end inspiration [8]. Then, the reconstructed CT images are
sorted into the ten phases based on the temporal correlation

between the RPM respiration data and the CT data acquisi-
tion time of each image. The dataset has the following
structure:

(i) First and second dimensions: 256 × 256 images

(ii) Third dimension: 92 slices from the top to the bot-
tom of a lung with 2.5mm slice spacing

(iii) Fourth dimension: phases of time from T00 to T90

Figures 1 and 2 demonstrate a part of the dataset along
the third dimension from slice 1 to slice 30 in phase T00.

3. Lung Segmentation and Artifact Removal

The process of segmentation has two steps. The first one is
artifact removal, and the second one is lung segmentation.

Step 1 (artifact removal): because the outside area of the
lung and body region contains some artifacts that might
affect segmentation result, the body and the lung area from
the image should be extracted. To enhance the virtualization

(a) (b)

Figure 9: Left and right lung segmentation and highlight.

1. Input the SliceIM (One lung slice image in a phase without artifacts)
2. Within Class Variance approach to binarize an image

BinaryIM = WithinClassVariance(SliceIM)
3. Complement of the BinaryIM to change the area of interest into 1 and background into
0 with BinaryIM =1 – BinaryIM;
4. Fill all holes in BinaryIM and keep these large areas (in this case the large area is greater than 30)

BinaryIM = FillHoles(BinaryIM)
BinaryIM = LargeArea(BinaryIM, 30)

5. Store the result as a Candidate Lung partition
CandidateIM = BinaryIM

6. End
7. Result in CandidateIM (The candidate lung partitions)
Appendix
WithinClassVariance method
1. Compute histograms and probabilities of each intensity level
2. Set up initial ωi(0) and μi(0)
3. Step through all possible thresholds t =1, .. maximum intensity

a. Update ωi(0) and μi(0)
b. Compute σ2b(t)

4. Desired threshold corresponds to the maximum σ2b(t)

Algorithm 2: Candidate lung partition segmentation.
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1. Input the LungIM (the binary image containing all candidate lung partitions)
2. Find the vertical line in the image

Height = Height(LungIM);
CenterX = CenterPoint(LungIM,’X’);
VerticalLine = (CenterX, 1) to (CenterX, Height)

3. Get a List of Candidate Partitions on the left and right side of VerticalLine
CandidateList = GetListPartition(LungIM);
LeftCandidateList = CandidateList ? CandidateList on left of VerticalLine : null;
RightCandidateList = CandidateList ? CandidateList on right of VerticalLine : null;

4. Find the largest Candidates on the left and the right
LeftLungIM = LeftCandidateList (Index(LeftCandidateList,’largest’))
RightLungIM = RightCandidateList (Index(RightCandidateList,’largest’))

5. End
6. Result in LeftLungIM (the left lung partition) and RightLungIM (the right lung partition)
Appendix
GetListPartition method
1. Set label to each unconnected partition from 1 … number of partitions
2. Initiate a list
3. Step through all possible idx =1, .. number of partitions

a. Extract the partition in index = idx
b. Store it to the list

4. Finish
Index method
1. Sort the list from the largest area to the smallest one
2. Take the first element in the list if the input is ‘largest’
3. Take the last element in the list if the input is ‘smallest’

Algorithm 3: Left and right lung segmentation.
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Figure 10: (a) The lung presentation in slices 20th, 25th, and 70th. (b) The squared error of LBP (formula in Appendix in Algorithm 4)
between slices. Slices 20th and 70th have lower squared error than slices 20th and 25th in all bins. This means that the slices 20th and
25th are in the same respiratory stage, while the slices 20th and 70th are not in the same stage.
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of the artifacts, the original 4DCT images are converted
from grayscale to color as shown in Figure 3. Then, the min-
imum variance quantization method [9] is applied to cluster
image pixels.

Minimum variance quantization associates pixels into
groups based on the variance between their pixel values.
For example, a set of blue pixels might be grouped together
because they have a small variance from the mean pixel
value of the group. In the lung image, the region of interest
is the group of pixels at the center of the image, which con-
tains those representing the lung. By focusing on this group,
all artifacts outside the body part could be removed. These

artifacts come from the lighting of background objects out-
side the patient’s body in a scan.

In general, minimum variance quantization can be
replaced by other clustering methods such as K-means, K
-nearest-neighbor (KNN), and expectation maximization
(EM). By comparing their results, we decide to use the min-
imum variance quantization for artifact removal. The details
of this step are demonstrated in Figure 4 and described in
Algorithm 1.

Step 2 (lung segmentation): after removing artifacts, we
need to segment two lungs from the image. The seg-
mented result allows a comparison between phases and

1. Input the source slice: SrcSliceIM (contains only the left and right lungs) and the target slice: TarSliceIM (contains only the left and
right lungs)
2. Extract the LBP features of the source and target slices

SrcLBPFeatures = ExtractLBPFeatures(SrcSliceIM)
TarLBPFeatures = ExtractLBPFeatures(TarSliceIM)

3. Gauge the similarity between the LBP features by computing the squared error between them
Similarity = square(TarLBPFeatures – SrcLBPFeatures)

4. Local Binary Pattern Error Rate
LBPErrorRate = sum(Similarity)

5. End
6. Result in LBPErrorRate
Appendix
ExtractLBPFeatures method
1. The texture T as the joint distribution of the gray levels of P +1 image pixel

T = tðgc, g0 ⋯ gp−1Þ,
where gc is the gray level value of the center pixel, surrounded by P equally spaces pixels of gray levels gp, located on a circle of radius R.
2. Define the Local Binary Pattern (LBP), a grayscale invariant and rotation invariant operator:

LBPriu2
P,R =

∑
P−1

i=0
σðgp − gcÞ if UðLBPP,RÞ ≤ 2

P + 1 otherwise

8
><

>:

Where

UðLBPP,RÞ = jσðgp−1 − gcÞ − σðg0 − gcÞj + ∑
P−1

i=1
jσðgi − gcÞ − σðgi−1 − gcÞj

and σð:Þis the sign function. The uniformity functionUðLBPp,RÞ corresponds to the number of spatial transitions in the neighbor-
hood: the larger it is, the more likely a spatial transition occurs in the local pattern.

Algorithm 4: Local binary pattern error rate.

1. Input the source slice: SrcSliceIM (contains only the left and right lungs) and the target slice: TarSliceIM (contains only the left and
right lungs)
2. Compute the entropy of each source and target slices

SrcEntropyFeatures = ExtractEntropyFeatures(SrcSliceIM)
TarEntropyFeatures = ExtractEntropyFeatures(TarSliceIM)

3. Entropy Error Rate
EntropyErrorRate = abs(TarEntropyFeatures - SrcEntropyFeatures)

4. End
5. Result in EntropyErrorRate
Appendix
ExtractEntropyFeatures method
1. Calculated p contains the normalized histogram counts returned from the image
2. Entropy is defined as -sum(p.∗log2(p))

Algorithm 5: Entropy error rate.
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determining the inhalation and exhalation phases in a
breathing cycle.

Within class variance method by Otsu [10] was applied
to separate the foreground and background regions from
the input image. Otsu’s thresholding method involves iterat-
ing through all the possible threshold values and calculating
a measure of spread for pixel values from each side of the
threshold. The aim is to find the threshold value where the
sum of foreground and background spreads is at the
minimum.

We perform the following steps to segment left and right
lung areas. First, we make the complement of the binary
image. Two lungs will be represented in the complemented
image (in Figure 5). Second, the body region (i.e., the outline
of the patient’s body) is multiplied with the complemented
image to obtain the regions of two lungs (in Figure 6). Note
that there remain some unexpected regions besides lung
areas. Third, the center point of the body image is used to
segment the two lungs exactly. The left and right lungs are
now on the opposite sides of the center point and repre-

sented by the largest white regions in the multiplied image
(Figures 7–9). Detailed calculation steps are described in
Algorithms 2 and 3.

4. Deformable Image Registration

In this step, we need to locate the position of a slice belong-
ing to one phase to match with another slice in a different
phase. By matching the slice of two phases, we can register
these slices and reconstruct the exhalation and inhalation
phases.

4.1. Texture Matching by Local Binary Pattern. Before apply-
ing local binary pattern (LBP) [11] to the lung image, a LBP
descriptor should be determined. First, we convert the input
color image to grayscales, since LBP works only on grayscale
images. For each pixel, we calculate the LBP value using its
neighborhood. After calculating the LBP value of the pixel,
we update the corresponding pixel location in the LBP mask,
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Figure 11: The registration from one image with the whole phase using LBP and entropy error metric.
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Slice : 60 Slice : 61

Figure 12: The registration from one image with the whole phase in visualization.
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which has the same matrix dimension as the input image,
with the calculated LBP value.

Around each pixel, there are 8 neighboring ones. If the
central pixel value is greater or equal to the value of a
given neighboring pixel, the corresponding value in the
binary array is set to 1, otherwise is set to 0. After calcu-
lating the LBP mask, we construct the LBP histogram. The
LBP mask values range from 0 to 255, giving the LBP
descriptor size of 1 × 256. Then, the LBP histograms are
normalized for comparison. Figure 10 illustrates the appli-
cation of LBP in comparing two contexts from two
images.

Next, we apply the LBP to create a metric for a com-
parison of slices in different phases. LBP will return a
pair of slices with the most similarity in texture. By sub-
tracting the LBP of two slices, we can extract the LBP
error metric for the registration process. Algorithm 4
describes the method of calculating local binary pattern
error rate.

4.2. Registration Decision by Entropy Error Measurement.
Entropy is a measure of the disorder level of a system [12].
The more the disorder, the higher the entropy of the system.
Two slices with the same entropy will have a high probability
to be in the same registered position. Although the LBP
helps us to make the texture matching between slices, in
some specific cases, we can get wrong results or are unable
to decide which slice in two or three slices having the similar
LBP metrics. Therefore, entropy can support our decision in
registration. By subtracting the entropy of two slices, we can
get the entropy error metric for our registration process.
Algorithm 5 shows the steps to calculate the entropy error
rate of the images.

5. Modeling Respiratory Signals of Inhalation
and Exhalation

In the process of modeling the respiratory of signals of inha-
lation and exhalation, we apply LBP and entropy methods in

1. Input the phase T00, T10, T90 are the checking phases. All SliceIM(i,j) is the SliceIM in the phase i and in the index j. And SliceIM
must contain only the left and right lung partitions. Slices with valid lung segmentation are selected for modeling.
2. Registration

a) Step through all possible phases = T10, .. T90
b) Step through all possible slices =1, .. number of slice in the considered phase
c) Calculate LBPErrorRate(i,j,phase) = CalcLBPErrorRate(Slice(slice,phase), Slice(slice-5:slice+5,T00)
d) Calculate EntropyErrorRate(i,j,phase) = CalcEntropyErrorRate(Slice(slice,phase), Slice(slice-5:slice+5,T00)
e) Find the index of slice with minimum LBP and Entropy Error Rate RegisterIdx = Index(LBPErrorRate(i,j,m), 2, ‘smallest’)
UNION Index(EntropyErrorRate(i,j,m), 2, ‘smallest’)
f) Store EntropyErrorRate and LBPErrorRate LBPErrorRateRegistrationResult(slice,phase) = LBPErrorRate(i, RegisterIdx,

phase) and EntropyErrorRateRegistrationResult(slice,phase) = EntropyErrorRate(i, RegisterIdx, phase)
3. Signal Modeling

a) Step through all possible phases = T10, .. T90
b) Calculate the standard deviation of LBP Error Rate and Entropy Error Rate for each phase from slices STD_LBPErrorRa-

te(phase) = StandardDeviation(LBPErrorRateRegistrationResult(:,phase)) and STD_EntropyErrorRate(phase) =
StandardDeviation(EntropyErrorRateRegistrationResult(:,phase))

c) Take the sum of error rates on each phase in registration to phase T00 ErrorRate(phase) = STD_LBPErrorRate(phase) +
STD_EntropyErrorRate(phase)

d) Signal Model by plotting the variation of error rates from phases T10, …, T90
e) Evaluation If the signal increases, it represents the inhalation process and If the signal decreases, it represents the exhalation

process
4. End
5. Result in Respiratory signal
Appendix
StandardDeviation method
1. Calculate Mean

FOR i =0 to N
sum = sum + X[i]
next i
ENDLOOP
M = sum / N // Divides the sum by the total number, N, to get Mean

2. Calculate Variance
FOR j =0 to N
sumOfSquares = sumOfSquares + ((X[j] - M)^2) // etc...
next j
ENDLOOP

3. Standard Deviation
stdDev = sqrt(sumOfSquares / (N -1))

Algorithm 6: Respiratory signal modeling.
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Section 4. The following is an example of registering phase
T30 to phase T00 and decide if the checking image belongs
to inhaling or exhaling stages.

For example, for slide 60 in phase T30, we need to find
the most similar slice in phase T00. Three steps are per-
formed as follows (Figures 11 and 12 and Algorithm 6):

(i) Considering only the slices from 55 to 65 in T00
(the margin is 5 slices)

(ii) Comparing the LBP error metrics, there are two
slices 57 and 58 with minimum LBP error metrics.
We need to determine which one could be regis-
tered for slice 60 in phase T30

(iii) Comparing the entropy error metrics of the slices 57
and 58, we see that the slice 60 in T30 can be regis-

tered to the slice 57 in T00 because the entropy
error metric of slice 57 is less than that of slice 58

(iv) After registration, we notice that the process from
phases T00 to T30 is the inhalation stage of the
breathing process of a patient

6. Evaluation of Experimental Results

6.1. Ground Truth Lung Segmentation Determination. The
DIR database provides 4DCT lung image datasets from the
phase indexes T00 to T90. In each phase, a 4DCT dataset
contains 94 images which are scanned from the top to the
bottom of a patient lung. However, there is no ground truth
lung segmentation that is specified by a specialist. To solve
this problem, the ground truth segmentation is determined

Table 1: The ground truth lung segmentation from phase T20.

Pixel boundary specification Threshold Ground truth segmentation

Slice 30
Phase T20

42

Slice 40
Phase T20

51

Slice 50
Phase T20

48

Slice 60
Phase T20

65

Slice 70
Phase T20

76
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based on grayscale pixel values on the boundary between the
lung and body partitions.

Table 1 shows the ground truth segmentation method of
some slices in phase T20. The ground truth lung segmenta-
tion has an important role in the next processes of registra-
tion and modeling. If the segmentation is not close to the
real lung partition, all following calculated comparison met-
rics in the registration will give unexpected results.

6.2. Lung Segmentation Evaluation. To evaluate the quality
of lung segmentation for the left and right partitions, we
use Dice’s similarity coefficient (DSC), which measures the
volume overlap percentage. The DSC is described as

DSC = Vs ∩Vt

Vs +Vtð Þ/2 :100, ð1Þ

where Vs is the volume of the left (or right) experimental
segmentation and Vt is the volume of the corresponding
ground truth segmentation. The closer to 100% DSC is, the
better confident and efficient the segmentation is. Table 2
shows that the result of DSC is from 96% to 99%. The slices

from 30 to 70, which are the major slices in a phase dataset,
have especially high DSC values.

6.3. Deformable Lung Registration Evaluation. For evalua-
tion of registration, we apply the coefficient of variation
(CVar) to compare with the registration for other datasets.
The formula for CVar is

CVar = s
�X
:100, ð2Þ

where s and �X are the standard deviation and the mean of all
registration results, respectively.

In a 4DCT dataset, not all slices contribute to the regis-
tration or modeling the respiratory phase. In general, only
the slices from 30 to 70 are significant in the comparison
because they have clear lung segmentation information.
Table 3 shows that lung information is trivial or undeter-
minable for images outside that range.

Table 4 demonstrates the coefficient of variation from
the phases T10 to T90. In this experiment, the source
phase is T00 and the target phase is T10 to T90. The

Table 2: The DSC measurement to evaluate the lung segmentation on ground truth in phase T20.

Slide Original slice Ground truth Segmentation DSC

Slice 30, phase T20 98.08%

Slice 40, phase T20 98.54%

Slice 50, phase T20 96.13%

Slice 60, phase T20 99.61%

Slice 70, phase T20 97.68%
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CVars are small enough to indicate high confidence. The
registration of phases T10 and T90 is more confident.
The registration of T20, T60, T70, and T80 has acceptable
CVars. The CVars for T30 and T40 are high but are still
controllable.

6.4. Respiratory Signal Evaluation. Inhalation (exhalation) is
a process of inbreathing (breathing). The lung becomes
small (large) in the inhalation (exhalation) stage. If phase
T00 is the starting of the inhalation process, the error rate
of LBP and entropy will be small in the registration for
T10 and T00. On the contrary, if any phase in registration
to T00 has a high error rate LBP and entropy, that phase is
in the exhalation stage.

In Table 5, the sum of standard deviations of LBP and
entropy error rate on each slice from 30 to 70 in each phase
is calculated. LBP and entropy error rate are the appropriate
metrics to represent the inhalation and exhalation of a lung.
Starting from phase T00, the error rate summation increases
in phase T50 and decreases in phase T90. Figure 13, which
illustrates the values in Table 5, shows that registration and
modeling are successful.

Figure 14 describes the overall framework for this regis-
tration step. In this workflow, the artifact removal and lung
segmentation are applied for testing images and reference
images. The registration process with LBP and entropy mea-
surements is the key for checking the best candidate before
giving the final decision in choosing one of the two states,

Table 3: The slices from 1 to 30 and 70 to 94 are unused and insignificant for registration because of little lung information.

Slice index Slice lung information Remark

01 No lung information

15 Too little lung information

80 The undetermined shape of the lung

90 No left lung information

Table 4: The CVar measurement of the registration process from target phases T10 to T90 in registration to the phase T00.

Registration of the target phase
to the source phase T00

Slice index range in calculation CVar measurements Remark

T10 Index from 30 to 70 1.6117 Confident

T20 Index from 30 to 70 1.9134 Acceptable

T30 Index from 30 to 70 2.0173 Relatively high

T40 Index from 30 to 70 2.1167 Relatively high

T50 Index from 30 to 70 1.9572 Acceptable

T60 Index from 30 to 70 1.9207 Acceptable

T70 Index from 30 to 70 1.9559 Acceptable

T80 Index from 30 to 70 1.8909 Acceptable

T90 Index from 30 to 70 1.2455 Confident
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inhalation or exhalation. The reference model lung images
are used from the source phase T00, and the testing lung
images are used from the target phases T10-T90. In each
phase, the images with indexes from 30 to 70 are used
because there are available lung segments in this index
range.

In comparison with the learning-based approach in
registration problem VoxelMorph (Balakrishnan et al.)
[13, 14], diffeomorphic (Mok and Chung) [15], and
DeepFLASH (Wang and Zhang) [16] registration, we
have the following conclusion about advantages and
disadvantages.

Table 5: The sum of LBP and entropy error rate represents the respiratory signal for slides from 30 to 70.

Registration of target phase to
the source phase T00

Slice index
Sum of standard deviation of LBP

and entropy error rate
Remark

T10 Index from 30 to 70 0.1370 Start inhalation

T20 Index from 30 to 70 0.3220 Inhalation

T30 Index from 30 to 70 0.4321 Inhalation

T40 Index from 30 to 70 0.5655 Inhalation

T50 Index from 30 to 70 0.7124 Start exhalation

T60 Index from 30 to 70 0.6361 Exhalation

T70 Index from 30 to 70 0.4863 Exhalation

T80 Index from 30 to 70 0.4721 Exhalation

T90 Index from 30 to 70 0.1552 Finish

1
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Start inhalation

Inhalation

Start exhalation
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T20
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Figure 13: The demonstration of respiratory signal from phases T10 to T90 in registration to phase T00.

T10 − T90
(index 30 − 70)

4DCT dataset

T00
(Index 30 − 70 ) Reference model

lung images Artifact removal

Artifact removal

The best candidate slice with the
margin of 5 slices befor and after

Entropy metric
comparison

Left and right lung
segmentation

Left and right lung
segmentationTesting lung images

Registration process

LBP metric
comparisonExhalation

Inhalation

Figure 14: The overall framework of the proposed registration process with LBP and entropy measurements.
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These approaches are applied mainly to the MRI brain
images, which are more complicated with at least five seg-
ments: background, skull, white matter, gray matter, and
cerebrospinal fluid. Moreover, the movements of these seg-
ments are also too difficult to track. Therefore, the authors
Balakrishnan et al. and Mok and Chung propose the
learning-based approach using a feature map from U-Net
to minimize the loss function. Their approaches require
large amounts of data for feeding and tracking in the train-
ing process.

Because we only want to model the respiratory signals,
using U-Net is more complicated than necessary in the lung
registration step. This is the main point of using a hybrid
LBP descriptor with entropy registration in our approach.
We do experiments for VoxelMorph and diffeomorphic
methods with our data. The Dice measurements of Voxel-
Morph and diffeomorphic methods are 90% and 97%,
respectively, in comparison with 96% of our proposed
method. If we feed more training data, the result of Voxel-
Morph and DeepFLASH would be higher. Another compar-
ison is with the DeepFLASH method, which applies the duel
net with frequency spectrum domain. The Dice measure-
ment for the DeepFLASH method is 91%. Similarly, if we
continue training, the result might be improved. The advan-
tage of our approach is that it is a fast and effective method
for modeling respiratory. This method does not require
more data for feeding training. We only need the reference
model lung images to control the modeling.

7. Conclusion

There are two stages in the process of registration and respi-
ratory modeling for the 4DCT image. The first stage, which
is essential to the whole process, is lung segmentation, and
the second stage is registration and modeling. If the artifacts
are not removed completely, the subsequent metrics used in
the registration and modeling give incorrect results. The
more accurate segmentation is performed, the more accurate
registration is obtained. Therefore, the minimum variance
quantization and within class variance are combined for a
good segmentation.

After segmentation, the LBP and entropy are applied in
sequence to perform the registration. LBP can be used to
find near context information between two images in differ-
ent phases. Then, the entropy verifies and decides the correct
registered image. If LBP and entropy are applied indepen-
dently, the result becomes incorrect. Because all images in
neighbor slices are similar in visualization, our method
enhances efficiency of the automatic process in registration
and respiratory modeling for the 4DCT datasets.

In summary, our proposed approach in modeling respi-
ratory signals by deformable image registration on 4DCT
lung images has some discriminant and promising features
in comparison to conventional and deep learning
approaches as follows:

(i) We construct a complete process from segmenta-
tion, registration, and modeling with careful selec-
tions from the minimum variance quantization

method, LBP feature descriptor to entropy measure-
ment to minimize the complexity of the process

(ii) We still ensure the high accuracy in segmentation
via DSC measurement and in registration via CVar
measurement, as well as in modeling via LBP and
entropy error rate

(iii) We do not need too many images like other deep
learning approaches for training data

(iv) We can have a comparative and robust result in
comparison to other traditional computer vision
approaches

(v) The results of DSC, CVar, and entropy in segmenta-
tion, registration, and modeling can be applied as
parameters for constructing loss function in deep
learning approaches

Besides the above advantages, the only limitation is that
our approach cannot work well if the background illumina-
tion is quite different between the reference and test images.

Data Availability

This research uses public data offered by DIR-LAB.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research is funded by Vietnam National University Ho
Chi Minh City under grant number C2017-18-08.

References

[1] T. Pang, S. Guo, X. Zhang, and L. Zhao, “Automatic lung seg-
mentation based on texture and deep features of HRCT images
with interstitial lung disease,” BioMed Research International,
vol. 2019, Article ID 2045432, 8 pages, 2019.

[2] T. Peng, T. C. Xu, Y. Wang et al., “Hybrid automatic lung seg-
mentation on chest CT scans,” IEEE Access, vol. 8, pp. 73293–
73306, 2020.

[3] X. Hu, J. Yang, and J. Yang, “A CNN-based approach for lung
3D-CT registration,” IEEE Access, vol. 8, pp. 192835–192843,
2020.

[4] J. Wu, B. Hu, and X. Yang, “Deformable registration of 4D-CT
lung image using landmark tracking,” Biomedical Research,
vol. 27, no. 3, 2016.

[5] D. Yang, W. Lu, D. A. Low, J. O. Deasy, A. J. Hope, and I. el
Naqa, “4D-CTmotion estimation using deformable image reg-
istration and 5D respiratory motion modeling,”Medical Phys-
ics, vol. 35, no. 10, pp. 4577–4590, 2008.

[6] J. Ehrhardt, R. Werner, A. Schmidt-Richberg, and H. Handels,
“Statistical modeling of 4D respiratory lung motion using dif-
feomorphic image registration,” IEEE Transactions on Medical
Imaging, vol. 30, no. 2, pp. 251–265, 2011.

14 BioMed Research International



[7] M. George and R. Zwiggelaar, “Comparative study on local
binary patterns for mammographic density and risk scoring,”
Journal of Imaging, vol. 5, no. 2, p. 24, 2019.

[8] J. Ehrhardt and C. Lorenz, Eds., “4D modeling and estimation
of respiratory motion for radiation therapy,” in Biological and
Medical Physics, Biomedical Engineering, vol. 10, pp. 27–32,
Springer, Berlin, 2013.

[9] P. Rambabu and C. Nagaraju, “The optimal thresholding tech-
nique for image segmentation using fuzzy ostu method,” Inter-
national Journal of Applied Engineering Research, vol. 10,
no. 13, pp. 33842–33846, 2015.

[10] N. Otsu, “A threshold selection method from gray-level histo-
grams,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 9, no. 1, pp. 62–66, 1979.

[11] B. Xiao, K. Wang, X. Bi, W. Li, and J. Han, “2D-LBP: an
enhanced local binary feature for texture image classification,”
IEEE Transactions on Circuits and Systems for Video Technol-
ogy, vol. 29, no. 9, pp. 2796–2808, 2019.

[12] M.-H. Lim and P. C. Yuen, “Entropy measurement for biomet-
ric verification systems,” IEEE transactions on cybernetics,
vol. 46, no. 5, pp. 1065–1077, 2016.

[13] Y. Sugawara, H. Tachibana, S. Moriya, and A. Sawant, “SU-E-
J-266: a pitfall of a deformable image registration in lung can-
cer,” Medical Physics, vol. 41, no. 6Part10, 2014.

[14] G. Balakrishnan, A. Zhao, M. R. Sabuncu, J. Guttag, and A. V.
Dalca, “VoxelMorph: a learning Framework for deformable
medical image registration,” IEEE transactions on medical
imaging, vol. 38, no. 8, pp. 1788–1800, 2019.

[15] T. C. W. Mok and A. C. S. Chung, “Fast symmetric diffeo-
morphic image registration with convolutional neural net-
works,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 4644–4653, Seat-
tle, WA, USA, 2020.

[16] J. Wang and M. Zhang, “DeepFLASH: an efficient network for
learning-based medical image registration,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern rec-
ognition, pp. 4444–4452, Seattle, WA, USA, 2020.

15BioMed Research International


	Modeling Respiratory Signals by Deformable Image Registration on 4DCT Lung Images
	1. Introduction
	2. 4DCT Data Structure Exploratory
	3. Lung Segmentation and Artifact Removal
	4. Deformable Image Registration
	4.1. Texture Matching by Local Binary Pattern
	4.2. Registration Decision by Entropy Error Measurement

	5. Modeling Respiratory Signals of Inhalation and Exhalation
	6. Evaluation of Experimental Results
	6.1. Ground Truth Lung Segmentation Determination
	6.2. Lung Segmentation Evaluation
	6.3. Deformable Lung Registration Evaluation
	6.4. Respiratory Signal Evaluation

	7. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

