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Abstract

Monogenetic diseases provide unique opportunity for studying complex, clinical states that

underlie neurological severity. Loss of glycine decarboxylase (GLDC) can severely impact

neurological development as seen in non-ketotic hyperglycinemia (NKH). NKH is a neuro-

metabolic disorder lacking quantitative predictors of disease states. It is characterized by

elevation of glycine, seizures and failure to thrive, but glycine reduction often fails to confer

neurological benefit, suggesting need for alternate tools to distinguish severe from attenu-

ated disease. A major challenge has been that there are 255 unique disease-causing mis-

sense mutations in GLDC, of which 206 remain entirely uncharacterized. Here we report a

Multiparametric Mutation Score (MMS) developed by combining in silico predictions of sta-

bility, evolutionary conservation and protein interaction models and suitable to assess 251

of 255 mutations. In addition, we created a quantitative scale of clinical disease severity

comprising of four major disease domains (seizure, cognitive failure, muscular and motor

control and brain-malformation) to comprehensively score patient symptoms identified in

131 clinical reports published over the last 15 years. The resulting patient Clinical Outcomes

Scores (COS) were used to optimize the MMS for biological and clinical relevance and yield

a patient Weighted Multiparametric Mutation Score (WMMS) that separates severe from

attenuated neurological disease (p = 1.2 e-5). Our study provides understanding for de-

veloping quantitative tools to predict clinical severity of neurological disease and a clinical

scale that advances monitoring disease progression needed to evaluate new treatments for

NKH.

Author summary

Neurodegenerative disorders frequently have diverse, severe symptoms and health out-

comes that can be difficult to predict. The rare disease non-ketotic hyperglycinemia

(NKH) additionally has a wide range of disease-causing mutations in glycine decarboxyl-

ase (GLDC), a protein that breaks down glycine. But measuring glycine is not sufficient to
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foretell disease outcome. A method to predict whether a mutation will cause severe or

more mild forms of NKH would be very helpful to both understanding the disease as well

as developing treatments for it. We used computation-based approaches to develop a

mutation score that comprehensively predicts how mutations decrease GLDC function.

After training against clinical data, the score was able to predict whether a mutation will

cause severe or attenuated disease. This study utilizes the power of computational and

multidisciplinary analyses to advance understanding and treatment of genetically caused

neurodegenerative diseases.

Introduction

Enzyme dysfunction underlies many pathologies, including a large number of neurological

disorders, the metabolic consequences of which affect the central and/or peripheral nervous

system. Clinical presentations of neuro-metabolic disorders include movement disorders [1],

seizures, childhood epilepsies [2], and/or peripheral neuropathy [3]. Glycine decarboxylase

(GLDC also known as P-protein) is an enzyme that catalyzes the cleavage of glycine, the first

step of the mitochondrial glycine cleavage system (GCS). Other GCS components are amino-

methyl transferase (AMT; T-protein), glycine cleavage system H-protein (GCSH), and dihy-

drolipoyl dehydrogenase (DLD; L-protein). Loss of GLDC-protein activity completely

abrogates GCS function. Catabolism of glycine by the GCS is an essential metabolic process.

Degradation of glycine feeds into one-carbon folate metabolism through the formation of

5,10-methylene THF [4], which in turn is utilized to synthesize nucleotides and proteins. Per-

turbations in the GCS are involved in a number of disease states, including cancer and neural

tube defects (NTDs) [5–7]. Loss of function mutations in GLDC are the primary cause for the

rare neuro-metabolic disorder non-ketotic hyperglycinemia (NKH), accounting for approxi-

mately 85% of NKH cases [8].

NKH affects approximately 1 in 76,000 births [8], although some populations, such as the

Finnish, have a higher rate due to founder mutations and consanguinity [9,10]. A high inci-

dence of NKH has also been reported amongst the Amish [11]. NKH results from loss of

GLDC- or (to a lesser degree) T-protein activity. This causes an acute increase of glycine in

plasma and cerebral spinal fluid (CSF) [12]. But plasma glycine is not predictive of clinical

severity; furthermore, it is a challenge to continuously monitor glycine in the CSF. NKH is typ-

ically characterized as either severe or attenuated type [12,13]. Severe NKH causes intractable

seizures, failure to thrive, lack of developmental milestones and often premature death. Atten-

uated patients are often able to control seizures, go to school, and live into adulthood. But lack

of mutation-based predictors of disease progression and a quantitative scale of disease severity

scale impedes both management of NKH as well as development of therapies to treat and cure

the disease.

In this study, we developed a multi-parametric mutation scale applicable to all but

4 of 255 missense NKH mutations across the GLDC gene and thereby assigned a multi-

parametric mutation score (MMS) to 251 patient mutations. The MMS was further optimized

against a newly developed patient-based clinical outcomes score that was based on major

symptomatic domains extracted from a comprehensive review of clinical cases reported in

the literature. Our findings yield a quantitative tool with high predictive value to support dis-

ease management and emerging treatments associated with >95% of known clinical NKH

mutations.
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Results

Positional distribution of NKH Missense Mutations

The most recently published comprehensive list of NKH missense mutations lists 171 unique

mutations across the length of GLDC [8]. To this, we added 85 missense mutations based on

additional literature and the Clinvar database. This yielded a list of 256 mutations ascribed to

213 unique residues (S1 Table, Fig 1A). NKH missense mutations were found in the C-termi-

nus, which houses most of the GLDC active site, as well as the N-terminus, suggesting substan-

tial distribution throughout the protein. Of the twelve of the most frequently mutated residues

(which give rise to 18 mutations; Fig 1B) five appear in the N-terminus and seven in the C-ter-

minus, and are not concentrated in any specific domains (based on conservation analyses as

well as domains predicted from primary and secondary structure; Fig 1C). One of the 256

mutations is located in the mitochondrial leader sequence (M1I). Of the remaining 255, only

49 mutations have been assessed for loss of enzymatic activity compared to the wild type. Of

these, only 9 have been analyzed for their potential effect on GLDC-protein structure based on

in silico 3D-modeling [14]. Together, the findings summarized in Fig 1A–1C show the overall

lack of annotation for NKH mutations and demonstrate the need for improved tools and anal-

yses to better understand mutations across the gene, how they may cause deficiency in the

encoded protein and thereby impact disease severity.

Structural annotation of GLDC

Comparative structural analyses. Since comparative structural analysis provides a robust

path to understanding functions of conserved domains, we generated a high-confidence

homology model for human P-protein using Synechocystis sp. 6803 PLP-bound glycine decar-

boxylase (PDB: 4LHC) as a template (Fig 2A). The model in Fig 2A shows a global mean qual-

ity estimate (GMQE) of 0.77 (where 1 is the highest possible score). Most of the uncertainty in

this model comes from a flexible loop consisting of amino acids 360–384. This region is miss-

ing in the bacterial orthologue catalogued in the Protein Database because the region can exist

in either a disulfide-bridge or open form, resulting in a low electron density [15]. SWISS-

model predicted this region to be in the open conformation, which is the conformation seen in

the holoenzyme [15].

GLDC’s enzymatic function is dependent on the binding of its cofactor pyridoxal phos-

phate (PLP) at Lys754 (Fig 2B). Active site residues (Fig 2C) were defined as any amino acids

within 5 Angstroms of the PLP-bound Lys754 or substrate glycine. Active site tunnel residues

(Fig 2D) were defined as residues equivalent to those constructing the active site tunnel

observed in the bacterial structure (based on sequence alignment). The dimerization interface

(Fig 2E) was defined as residues predicted to be within 5 Å of the GLDC-protein α’-subunit of

the αα’ dimer (although there is no direct evidence that dimerization is required for enzymatic

function). These three conserved, functional regions provide annotation for much of the C-

terminus and they account for 40 NKH-causing mutations, only seven of which have been pre-

viously characterized.

N-terminal active site function. Although comparisons with the bacterial structure

accounted for mutations at and around the active site, they failed to explain the presence of

high density of pathogenic mutations in N-terminal regions, that appear to be devoid of func-

tional annotation. We undertook additional evolutionary analyses to predict N-terminal

domain function of GLDC. GLDC belongs to the PLP-enzyme Fold Type I family [16]. How-

ever, it is an unusual member as all other PLP Fold Type I enzymes in this family form α2

homodimers (where each α-subunit is ~500 amino acids) while GLDC is either a single
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polypeptide over 1000 amino acids or, in some bacteria and archaea, an αβ heterodimer, with

the α- and β-subunits corresponding to the N- and C-termini respectively (Fig 3A). In these

αβ orthologs, there is structural and sequence similarity between the α and β subunits, leading

to the suggestion that they came from the same evolutionary precursor [17]. We found that in

human GLDC-protein, pBLAST alignment of the N- and C-termini shows a region of similar-

ity (26% identity, 48% positives) between amino acids 238–349 and 572–785 (S1 Fig). Notably,

the C-terminal region contains the active site, Lys754. In addition, large regions of the N-ter-

minus (113–472) and C-terminus (531–906) are significantly structurally similar by rigid FAT-

CAT alignment (p = 3.61e-13, RMSD = 2.59Å; Fig 3B). The structure of the C- and N-termini

also both show similarity to other Fold Type I carboxylases. The defining feature of this fold is

Fig 1. Survey of NKH-causing missense mutations. [A] Summary of NKH mutations. �255 unique missense

mutations (barring the M1I mutation in the leader sequence), were compiled from the published clinical literature and

the ClinVar database. Only 49 mutations have been characterized (to varying degrees), leaving 206 uncharacterized.

[B] The top ten most frequently observed mutated positions in GLDC (that account for 14 unique mutations). [C]

Distribution of NKH-causing missense mutations across the length of the GLDC-protein. Conservation of amino acids

and secondary structure, as well as the positions of the active site, active site-tunnel, and dimerization domains are

shown.

https://doi.org/10.1371/journal.pcbi.1007871.g001
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the 7-stranded β-sheet packed by α-helices [18], which is evident in both N- and C-termini

(Fig 3C).

Taken together, these analyses suggested a conserved PLP-binding fold in the N-terminus.

Accordingly, I-Tasser COFACTOR prediction for P-protein predicts the N-terminus to be a

PLP-binding site based on structural similarity to other PLP-binding enzymes (Fig 3D),

although with a low confidence score of 0.05 (range: 0–1). However, the known C-terminus

PLP-binding site was not predicted by I-Tasser, enabling us to retain the N terminus projec-

tion (despite the low score). Intriguingly, however, the N-terminal PLP Fold is lacking an

active site lysine, having instead a glutamine at that position. However, site-directed mutagen-

esis of another PLP Fold Type I enzyme’s active site lysine showed that lysine, while essential

for catalysis, was not essential for PLP-binding [19]. Thus, we do not predict that this pocket

has enzymatic activity. Rather, we predict that the N-terminus non-covalently binds PLP. It

Fig 2. Human homology model of P-protein. [A]. A crystal structure of Synechocystis sp. PCC 6833 GLDC

holoenzyme (PDB = 4LHC) (LHS) was the template used in SWISS-Model to generate the human homology model

(RHS). Based on homology, human GLDC is predicted to form an α2 homodimer. α-subunit shown in beige. α’ shown

in gray. [B–E] Evolutionary derived, functional regions of human GLDC model with. [B] cofactor PLP (shown in red);

[C] active site pocket (green) defined as residues within 5 Angstroms of PLP containing active site lysine (K754), [D] a

tunnel (shown in yellow) that opens at the surface when PLP is bound making the active site pocket accessible to

lipoylated H-protein; [E] the dimerization interface of GLDC (blue).

https://doi.org/10.1371/journal.pcbi.1007871.g002
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has been observed that PLP is needed for GLDC-protein to fold properly [20], suggesting a

rationale for why 11 clinical NKH-mutations cluster in the fold-predicted PLP-binding region

(Fig 3E; which has no other known function).

Macromolecular interaction of H-Protein with GLDC-protein. The interaction of

GLDC with H-protein is essential for GLDC function, but the molecular coordinates of the

interaction remain unknown. A lipoyllysine group on H-protein accepts the amino-methyl

moiety produced by decarboxylation of glycine by GLDC-protein and transfers the moiety to

T-protein [21]. We predicted that this lipoyllysine accesses the active site through the observed

active site tunnel. To model this interaction, a homology model for H-protein was generated

with SWISS-Model using a published crystal structure for bovine H-protein (98% sequence

similarity to human H-protein) as the template. The ClusPro 2.0 server was used to model the

interaction of H-Protein with the homology model for human GLDC-protein. ClusPro 2.0

produced 101 potential interaction models (S1 Appendix). To select the best model, a novel

scoring system was developed based on conservation of the two proteins’ interacting residues

and proximity of the modified lysine of H-protein to the entry of the active site tunnel in

GLDC-protein. Conservation was chosen to select the best model because highly conserved

protein surfaces are a predictor of a protein binding site [22]. Accordingly, GLDC-protein

contains a highly conserved region at the site where H-protein should bind (Fig 4A). To fur-

ther test our conservation parameters, we scored the interaction between human T-protein

with H-protein (which are expected to interact) and T- and GLDC-protein (not expected to

interact). Like the H-GLDC interaction, the H-T interactions had scores close to the max of 2

while the T-GLDC interaction did not (Fig 4B), confirming the utility of this method. To test

the accuracy of all three scoring parameters, the interaction between E. coli T- and H-protein

Fig 3. GLDC N-terminal Structural Homology and Function. [A] Structurally homologous regions of the N- and C-

termini respectively shown in purple and orange, respectively. [B] Relative alignment of the N- and C-terminal regions

shown in [A]. FATCAT alignment gives an RMSD of 2.59 Å and a p-value of 3.61e-13. [C] Functional regions

predicted based on evolutionary conservation in the N-terminus: tunnel, yellow; active site, green, and the

dimerization interface, blue. [D] I-Tasser COFACTOR predicted PLP binding site in the N-terminus (PLP shown in

red), providing a rationale for the presence of [E] a high incidence of NKH disease mutations in region shown in red.

https://doi.org/10.1371/journal.pcbi.1007871.g003
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was modeled using ClusPro 2.0 (S1 Appendix) and scored (S1 Table). The highest-ranking

computational docking interactions were compared to the previously published crystal struc-

ture of the docking interaction [23], and it was found that the second highest scoring model

(score = 2.84 of 3) was visually similar to the crystal structure (S2 Fig).

We performed two rounds of H- and GLDC-protein scoring to ensure that we obtained the

highest-possible scoring model (S2 Table; Fig 4C and 4D) with a score of 2.81 out of 3 (Fig

4D). This model was selected as our predicted model of the interaction between human

GLDC- and H-protein (Fig 4E). Finally, of seven known NKH-mutations at the predicted

H-GLDC interface, five are predicted by Mutabind to negatively affect the interaction between

H- and GLDC-protein (Fig 4F). These mutations point to the importance of the salt bridges

formed between Arg373 and Lys376 of GLDC-protein and Glu77 and Glu124 of H-protein for

stabilizing the interaction (Fig 4G). Thus, our interaction models provide crucial information

for these six residues with NKH-mutations that were previously not understood.

As summarized in Table 1, the rates of mutation in the N-term PLP binding site (0.3) and

H-GLDC interface (0.35) are higher than the baseline mutation rate in the protein (0.21) and

approach those seen in the active site (0.33) (Table 1), but these increases are not statistically

significant by the hypergeometric test suggesting that mutations throughout the protein have

some capacity to confer defect.

Large-scale analysis of disease mutations. Comparative structural and evolutionary anal-

yses undertaken in i-iii, enabled annotation of 51 previously uncharacterized NKH mutations.

Although this reflects a 100% increase in mutation annotation, a large number of mutations

(~150) remain in need of annotation. Since many missense mutations are expected to impact

protein folding, we initiated large-scale studies that incorporate the assessment of the Gibbs

free energy changes (ΔΔG) that arise as a consequence of mutation, as well as other changes in

intrinsic properties of amino acids. ΔΔG provides a benchmark measure to predict the change

in stability of a monomeric protein caused by a point mutation. Although many predictive

online tools exist [24], we used CUPSAT because it makes fast and accurate ΔΔG predictions

and is thus ideally suited for the large number of missense mutations seen in NKH and GLDC.

We provided the SWISS-Model generated GLDC homology model as the input and defined

destabilizing mutations as those with predicted ΔΔG< -1.5 kcal/mol (see Methods) to yield

stability predictions for 251 of 255 missense mutations (see S3 Table). The remaining four

mutations in a small, uncrystallized region at the beginning of the N-terminus could not be

assessed and were not pursued further.

Fig 5A provides a pictographic representation that suggests that of the 251 mutations, 105

were predicted to be destabilizing (< -1.5 kcal/mol) with 42 being very destabilizing (< -5

kcal/mol). Destabilizing mutations were seen throughout the protein with 44 being found in

the N-terminus and 61 being found in the C-terminus (S3 Table). The two most common

NKH clinical mutations, both of which are known to cause severe disease are predicted to be

destabilizing (R515S ΔΔG = -2.47 kcal/mol; S564I ΔΔG = -3.23 kcal/mol). In total, 4 (R515S,

S564I, G771R, and V905G) of the top 10 most common missense mutations are predicted to

be destabilizing. But the majority of mutations are predicted to have (i) negligible effect (ΔΔG

= -1.5 to 1.5 kcal/mol; N = 96), (ii) stabilizing effect (ΔΔG = 1.5 to 5 kcal/mol; N = 35), or (iii)

very stabilizing effect (ΔΔG> 5 kcal/mol; N = 15). This suggests that while ΔΔG provides valu-

able information on predicted stability for NKH missense mutations, it is not sufficient as a

comprehensive parameter for the impact of these mutations.

Multiparametric mutation scores (MMS) that incorporate ΔΔG and other protein parame-

ters, have previously been successfully used to predict missense mutation effect on protein dys-

function [25]. Therefore, we created an MMS that incorporated four broad categories of 1)

stability effects, 2) conservation of mutated amino acid, 3) position of the mutated amino acid,
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and 4) change in amino acid properties caused by substitution (Fig 5B and 5C). Specifically,

we defined two stability parameters (stabilizing and destabilizing substitutions), two conserva-

tion parameters (conservation of residue and of amino acid substitution), eight location-based

parameters (sheet, helix, c-terminus, active site, active region, N-terminus PLP pocket, H-pro-

tein interface, and dimerization interface mutations), and six parameters based on change in

amino acid properties (change in polarity, charge, aromaticity, codon availability, size, and to/

Fig 4. Model of the interaction between GLDC and H-Protein of the Glycine Cleavage System. [A] Model showing amino acid conservation

scores in GLDC calculated using the Consurf server. Highly conserved amino acids are shown in red, while poorly conserved residues are shown

in blue. The highly conserved surface (deep red) found at the entry of the active site tunnel suggests this region may be a binding site for H-

protein. [B] Scoring of models generated for the GLDC + H interaction (blue), T + H interaction (orange), and the GLDC + T interaction (gray).

Conservation of interacting surfaces was scored from 0–1, with the most conserved surface assigned a score of 1. GLDC and T-protein likely do

not interact, thus their interaction was included as a negative control. Accordingly, the GLDC + T scores were lower than the GLDC + H and H

+ T interaction scores, validating our novel scoring method. [C] Scoring of GLDC + H-protein interaction models scored using the conservation

of interacting amino acids with the distance between the H-protein and the entry to the GLDC-protein active site tunnel as an additional

parameter. H-protein was allowed to bind to any location on the GLDC-protein surface. [D] H-protein was constrained to a region of GLDC

protein based on the highest scoring results of the first round of scoring, and scoring was repeated for the resulting models. [E] The proposed H-

(blue) and GLDC-protein (beige) docking interaction. [F] Seven known NKH mutations were found at the predicted H-GLDC interface. The

ΔΔG caused by the mutation was estimated using Mutabind. 5 of 7 mutations are predicted to caused deleterious effects to the H-GLDC protein

interaction, with 3 being high confidence predictions. [G] Salt bridges between Glu77 and Glu124 of H-protein and Arg373, and Lys376 of

GLDC-protein. These GLDC-protein residues are known to cause NKH when mutated.

https://doi.org/10.1371/journal.pcbi.1007871.g004
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from proline). Together these contributed eighteen distinct parameters which, when applied

to 251 NKH causing-missense mutations, yielded an MMS for each mutation (S2 Table). Phi

correlation analysis of the eighteen parameters demonstrated independence between all

parameters. There were light negative correlations between conservation of amino acid substi-

tution and change in polarity (φ = -0.44, with 1 being perfect correlation) and change in vol-

ume (φ = -0.51) (Fig 5B). However, these correlations are statistically weak and hence both

parameters were retained. The distribution of the scores indicates a lack of distribution bias in

scoring (Fig 5D). Only 4 (R212K, R377Q, E495Q, and N709S) of 251 mutations received a

score of 0, confirming MMS yields value for the vast majority of known mutations. Mutations

with scores of 1–2 were considered mild (N = 58), 3–4, moderate (N = 93), and�5 severe

(N = 99) (S4A Table), consistent with reports that NKH disease in the patient population is

more likely to be moderate to severe (rather than mild) [12,13].

Clinical outcomes score to assess patient disease severity status

NKH is a multi-system neuro-metabolic disorder. Hennermann et al [12] have classified dis-

ease on the basis of presence and absence of neurological/brain features, while Swanson et al

[13] classified disease based on reaching developmental outcomes. But the lack of a disease

severity scale based on a quantitative, dynamic progression of different NKH symptoms across

severe and attenuated disease, has limited linking genotype to phenotype.

To develop such a clinical severity scale, we began by building a comprehensive list of

symptoms associated with NKH. Prior studies utilized a list of 12 NKH symptoms [12]. We

reviewed 131 patient records from 26 publications over the last 15 years, to identify fifty-eight

unique symptoms (Table 2), that were identified and classified into eleven categories of hyper-

glycinemia, cognitive disorders, seizures, muscle/movement control, brain malformations/

injury, respiration, hormonal disorders, hearing, eyesight, immune system and digestion. A

category was considered a major disease domain if it was represented in at least of 30% of

patients with recorded symptoms, with the exception of glycine elevation, because while it pro-

vides a diagnostic criterion, it does not correlate well to the severity of neurobehavioral disease

[13]. As shown in Table 3, four major domains emerged, namely (and in order of frequency)

cognitive disorders (81%), seizures (73%), muscle and movement dysfunctions (35%), and

brain malformations (32%). They encompassed 46 of 58 (79% of) symptoms. Respiratory

defects were seen in 17% of patients, which is likely a result of under-reporting of the symp-

tom. Regardless, respiratory issues usually self-resolve (barring when intubation was removed

because of the overall poor prognosis), and respiration was not included in symptomatic

domains. Hearing, eyesight, immune system, hormonal and digestive disorders were each seen

in less than 3% of cases and therefore not included. A Likert-like scale was used to assign

major domain scores of 0–3 based on severity in each domain (Table 3). Cognitive disorders

and muscle/movement control were assigned linearly from 0–3. The seizure domain was

assigned a non-linear step increase of 1 to 3 corresponding to transition from controlled sei-

zure activity to uncontrolled seizure activity (and capture the severity of intractable seizure

Table 1. Mutation rate in predicted structural regions.

Region Whole Protein Full Active Site N-term PLP H-interface

Total Residues 1020 30 20 17

# Mutated 213 10 6 6

Residue Mutation Rate 0.209 0.333 0.300 0.353

p-value (Region rate > whole protein rate) N/A 0.08 0.22 0.12

https://doi.org/10.1371/journal.pcbi.1007871.t001
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Fig 5. Multiparametric Mutation Score (MMS). [A] Stability effects. CUPSAT-predicted stability effect of NKH mutations on GLDC-protein

assessed by ΔΔG. [B] Phi correlations of 18 parameters predicted to impact protein stability. Most parameters have no correlation with a phi-value of

< |0.3|. Change in proline, size, and polarity have weak negative correlations with the conservation of amino acid change parameter, indicating that

alterations in these amino acid properties are not well-tolerated through evolution. [C] Design for calculating MMS. In total, 18 parameters were used

from 4 general categories of stability effects, mutation position, conservation, and change in amino acid properties (see Methods). [D] MMS was

calculated from a summation of the 18 parameters, each with a weight of 1 except conservation of substitution, which was weighted -1. 3-dimensional

distribution of MMS’s shown for all known NKH missense mutations.

https://doi.org/10.1371/journal.pcbi.1007871.g005
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Table 2. NKH symptoms and disease categories.

Disease Category� Symptom Percent Recorded

Cognitive Disorders Profound mental retardation (PMR) 81%

Cognitive impairment

Speech delay

ADHD

Aggressive behavior

Hyperactivity

Hypoactivity

Sexual impulsivity

Stranger anxiety

Autism

Delirium

Seizure Intractable seizures 72%

Irregular EEG

Hiccups

Automatisms

Eye deviation

Epilepsy

Myoclonic seizures

Multifocal clonus

Muscle/Movement Control Brisk reflexes and clonus 35%

Flexor spasms

Spasticity

Reduced deep tendon reflexes

Inability to walk

Ataxia

Choreoathetosis

Dysdiadochokinesia

Psychomotor delay

Severe spastic diplegia

Global developmental delay

Hemiparesis

Hypotonia

Poor suck/failure to feed

Dysphagia

Weak cry

Lethargy

Brain Malformations / Injury Coma 32%

Hypoplasia of corpus callosum

Thin corpus callosum

Agenesis of corpus callosum

Microcephaly

Simplified gyral pattern

Restricted diffusion

Myelination pattern changes

Hydrocephaly

(Continued)
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compared to controlled seizure). The brain malformation domain was assigned a binary choice

of 0 or 3, because any brain malformation is expected to seriously impact neurological disease.

Summation of all four domains yielded a patient clinical outcome score (COS), with a maximal

score of 12.

In the assessment of patient COS, we removed 45 records where patients had died, because

death can occur due to a single acute event that may not reflect multi-symptom disease sever-

ity. Most of these were predominantly of pediatric patients and associated with a range of

mutations (S4B Table). An additional 12 patient records were also excluded because they con-

tained information in only 1 (of four) major domains. The remaining 74 patient records were

Table 2. (Continued)

Disease Category� Symptom Percent Recorded

Respiration Apnea 17%

Cyanosis

Respiratory distress

Respiratory failure

Respiratory acidosis

Hormonal Disorders Hypothyroidism 2%

Premature adrenarche

Hearing Hypoacusis 1%

Eyesight Optic atrophy 1%

Nystagmus

Immune System Pyrexia 1%

Digestion Hypertrophic pyloric stenosis 1%

�While elevation of glycine is a diagnostic criterion for NKH, blood glycine level is not a good predictor of subsequent disease progression.

https://doi.org/10.1371/journal.pcbi.1007871.t002

Table 3. Quantitative severity scale for major NKH disease domains.

Domain and Associated Scoring Scale

Cognitive Disorders

0 –No disease

1 –Behavioral issues, learning disabilities, speech delay

2 –Mental disability, some words, global delay in developmental markers

3 –Severe mental disability, no cognitive abilities

Seizures

0 –No disease

1 –Hiccups (infants), Abnormal EEG, Seizures controlled by medication

3 –Intractable seizures (> 2 AEDs)

Muscle/Movement Control

0 –No disease

1 –Assisted locomotion

2 –Hypotonia, able to roll over or lift head, low muscle tone

3 –Severe hypotonia, unable to roll over or lift head or severe global developmental delay

Brain malformation

0 –No disease

3 –Present

EEG = electroencephalogram

AEDs = Anti-epileptic drugs

https://doi.org/10.1371/journal.pcbi.1007871.t003
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quantitatively scored for their associated major disease domains (Tables 4 and 5, S2 Table).

The majority of records from patients were scored for 3 out of 4 major disease domains in

both homozygous and compound heterozygotes (Tables 4 and 5). Seizures and cognitive disor-

ders were the two most common disease domains, although muscle/movement control and

brain malformation were also often reported.

As shown in Fig 6A, the majority of patient COS’s ranged from 2–9, with two patients

showing the maximal scores of 12. Severe patients scored above 5 (having a severe score of 3 in

at least one domain and moderate score of 2 in another). In our cohort, there were 29 patients

with severe disease. 43 patient records showed attenuated disease, and two individuals were

asymptomatic (despite being homozygous for the pathogenic A802V mutation; Fig 6A). Of the

74 patients, 40 were male and 34 were female, and both genders showed similar range distribu-

tions of severe and attenuated COS’s (Fig 6B). Analyses for age suggest that severe disease was

more prominent in children < 5 in both genders (Fig 6C).

We examined whether COS could be corroborated with known information about patient

mutations for both homozygous and compound heterozygous mutations. First, for the 24

patients with homozygous mutations, each allele was assigned the same COS (see Table 4),

which also served as the overall patient COS. When multiple patients were homozygous for

the same mutation, an average COS was calculated. As shown in Table 6, four of the 18

Table 4. COS for patients with homozygous mutations.

Patient� Mutation Seizures Cognitive Disorders Brain malformations Muscle/

Movement Control

COS

5 I372F 3 - 3 3 9

8 C291Y 1 1 - - 2

17 R362C 1 1 - - 2

44 A389V - 1 - 2 3

45 A389V 1 2 - 2 5

46 A802V 0 0 - 2 2

47 A802V 0 0 - 0 0

48 A802V 0 0 - 0 0

49 A802V 0 1 - 2 3

50 R739H 1 1 - 2 4

53 Y623H 1 1 - 1 3

58 Y164H 1 2 0 2 5

59 Y164H 1 2 - 1 4

60 Y164H 1 1 - 0 2

62 Y161C 3 3 3 3 12

63 R988Q 1 - 3 3 7

72 P949L 3 3 3 - 9

75 P581R 1 3 3 - 7

77 A202V 1 1 - - 2

78 H950R 3 3 3 - 9

79 Q366R 1 2 - - 3

81 R515S 3 3 3 - 9

83 T269M 1 1 - - 2

130 D198V 3 - 3 3 9

�Number assigned on basis of S4A Table

https://doi.org/10.1371/journal.pcbi.1007871.t004
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Table 5. COS for patients with heterozygous mutations.

Patient� Mutation 1 Mutation 2 Seizures Cognitive Disorders Brain malformation Muscle/

Movement Control

COS

1 P509A E597K 1 - 3 2 6

3 D295Y R536Q 3 - - 3 6

9 A202V IVS22+1G>C 1 1 - - 2

10 A202V IVS22+1G>C 1 1 - - 2

11 A802V IVS22+1G>A 1 1 - - 2

12 A802V IVS22+1G>A 1 1 - - 2

13 A389V IVS12+2T>G 1 1 - - 2

14 A389V IVS12+2T>G 1 1 - - 2

26 P267A K376E 1 2 - - 3

27 R373W intronic 1 1 - - 2

28 R373W M1I 1 1 - - 2

31 H371D del GLDC 1 - 3 3 7

51 N150T R790W 1 3 0 2 6

52 L82W 607fs 1 1 0 2 4

54 C1002W S419X 3 2 - - 5

55 C1002W S419X - 2 - 2 4

56 Q620R del Exon 3–9 3 - 0 3 6

57 S132L S86Vfs_119 3 - 3 2 8

68 T894A del Exon3 3 3 - 2 8

69 Y839C intronic 3 - 3 3 9

73 G771R M552V 1 - - 2 3

74 R739H del Exon 1–2 1 1 0 1 3

76 R461Q del GLDC 1 2 3 2 8

85 G761R Y632X 3 3 3 - 9

86 R515S IVS19-1G>A 1 3 3 - 7

87 S132L E167X 3 3 3 - 9

89 P907L del Exon 1–24 - 3 3 - 6

90 R515S G618R - 3 3 - 6

91 A733V IVS19-1G>A 1 3 - - 4

95 R515S IVS19-1G>A - 3 3 - 6

97 L885P Y637X - 3 3 - 6

98 G771R IVS19-1G>A - 3 3 - 6

100 F334L del GLDC - 3 3 - 6

101 A389V R515S - 3 3 - 6

102 L548V del GLDC 1 2 - - 3

103 A802V IVS22+1G>C 1 2 - - 3

104 A802V R515S 1 2 - - 3

105 A389V R515S 3 1 - - 4

106 I381T R461Q 1 1 - - 2

107 A283P R461Q 3 1 - - 4

108 A283P R461Q 1 1 - - 2

109 R461Q IVS12+2T>G 1 1 - - 2

110 Y161C R347S 1 1 - - 2

111 G156R G728E 1 1 - - 2

112 R630P L548V 1 1 - - 2

113 A802E IVS19+2T>G 1 1 - - 2

114 V905G G728E 1 1 - - 2

115 G652E R373Q 1 1 - - 2

(Continued)
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homozygous mutations (R515S, T269M, A389V, A802V) are amongst the top 10 mutations

found in clinical NKH. R515S received a COS of 9 (out of 12) consistent with its association

with severe disease [26]. T269M, A389V, A802V, received COS’s of lower than 5, in keeping

with their association with attenuated disease [27–29]. Overall, 14 out of 16 attenuated

(COS� 5) cases were associated with low MMS, while 4 of 8 severe cases (COS greater than 5)

were associated with MMS� 5. There was no overt positional bias of COS in GLDC-protein

(Fig 7A).

For compound heterozygotes, since this group had two alleles, the observed patient COS

was considered to be the composite contribution of both alleles without the assumption that

each allele contributes exactly 50% to the clinical outcome. As shown in Table 7, 27 of 29

(93.1%) of patients with attenuated disease (COS<5) showed lower MMS scores (<5). 2 of 21

(9.5%) patients with severe disease (COS>5) showed higher MMS scores (�5). Notably of 11

patients with truncations/deletions and COS>5, all showed MMS scores below 5. Examination

Table 5. (Continued)

Patient� Mutation 1 Mutation 2 Seizures Cognitive Disorders Brain malformation Muscle/

Movement Control

COS

129 L885P W897C 3 3 3 3 12

131 A377V A694Dfs 3 3 0 2 8

�Number assigned on basis of S4A Table

https://doi.org/10.1371/journal.pcbi.1007871.t005

Fig 6. Clinical outcome scores based on symptom analyses of patient case reports. [A] Distribution of Clinical Outcomes

Scores as a measure of disease severity in 74 patients based on quantitative determination of major symptomatic domains of

seizures, muscle/movement control, cognition, and brain malformations as presented in Tables 4 and 5. The bulk of patient scores

ranged from 2–9 although two patients showed scores of 12. Scores above five were designated severe, yielding 29 patients with

severe disease, 43 with attenuated disease, and 2 who were asymptomatic. [B] Gender distribution of COS Scores. Of the 74

patients, 40 were male and 34 were female. Male and female patients had similar distributions of severe and attenuated scores,

suggesting COS reveals no gender preference. [C] Age distribution. Examination of COS scores as a function of age for both males

and females suggests that severe disease is dominant in patients< 5 years old.

https://doi.org/10.1371/journal.pcbi.1007871.g006
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of the location of missense mutation and deletions/truncations in each heterozygote suggested

that deletions or truncations early in the gene maybe associated with severe disease (Fig 7B).

Weighted-Optimization of the MMS by the COS

For both homozygous and compound heterozygous mutations in a patient, the MMS is a bet-

ter predictor of attenuated versus severe disease. This suggested that the MMS needed further

optimization against clinical disease to more accurately capture the determinants of severe dis-

ease. It should also be noted that the MMS does not incorporate human factors such as genetic

background which is known to play a prominent role in disease manifestation in genetic

disorders.

Homozygous mutations. The MMS was first applied to all 18 homozygous mutations

associated with 24 clinical cases (summarized in Fig 8A). As shown in Table 6, every patient

mutation was assigned an MMS score in addition to the previously determined COS. Ten vari-

ants that were found in homozygous form of GLDC in the Exome Aggregation Consortium

(ExAC) database, hosted by the Broad Institute, (Table 8) were also scored. The ExAC database

utilizes genomic data from healthy individuals; thus, homozygosity of these mutations indi-

cates that they are non-pathogenic. They were included therefore as a non-pathogenic control

group and were assigned a COS of zero.

Table 6. MMS for patients with homozygous mutations.

Patient ID� Allele1 Allele2 COS Predicted Severity Allele 1 Functional Region Allele 2 Functional Region MMS

5 I372F I372F 9 S H-interface H-interface 4.0

17 R362C R362C 2 A none none 5.0

32 T187K T187K 3 A none none 5.0

43 A389V A389V 3 A none none 2.0

44 A389V A389V 5 A none none 2.0

45 A802V A802V 2 A N-term PLP N-term PLP 2.0

46 A802V A802V 0 A N-term PLP N-term PLP 2.0

47 A802V A802V 0 A N-term PLP N-term PLP 2.0

48 A802V A802V 3 A N-term PLP N-term PLP 2.0

49 R739H R739H 4 A none none 3.0

52 Y623H Y623H 3 A none none 3.0

57 Y164H Y164H 5 A Active Site Active Site 2.0

58 Y164H Y164H 4 A Active Site Active Site 2.0

59 Y164H Y164H 2 A Active Site Active Site 2.0

60 Y161C Y161C 12 S Active Site Active Site 4.0

62 R988Q R988Q 7 S none none 2.0

71 P949L P949L 9 S none none 5.0

74 P581R P581R 7 S none none 7.0

76 A202V A202V 2 A none none 2.0

77 H950R H950R 9 S none none 4.0

78 Q366R Q366R 3 A H-interface H-interface 2.0

80 R515S R515S 9 S none none 5.0

82 T269M T269M 2 A none none 1.0

129 D198V D198V 9 S N-term PLP N-term PLP 5.0

�Number assigned on basis of S4A Table

“S” = severe

“A” = attenuated

https://doi.org/10.1371/journal.pcbi.1007871.t006
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The COS was applied as a function of the MMS of homozygous mutations (S3 Fig, Fig 8A),

and this correlation was used to optimize parameter weights in order to yield a model with

more biological and clinical value. Weighting was automated using Python. Each parameter

weight was optimized using the linear regression, done with the linear regression class in

Python’s Scikit Learn module. The final correlation between COS and the weighted MMS

(WMMS) yielded an R2-value of 0.79 (Fig 8B). As shown in Fig 8B, R515S, the severe and

dominant NKH mutation, remained predicted to be pathogenic with a WMMS of 4.3. Less

pathogenic but prevalent mutations A389V (WMMS = 1.2), and A802V (WMMS = 0.3) and

T269M (WMMS = -0.8) are predicted to be attenuated.

R515S scored in five parameters. R515 is a highly evolutionary conserved, C-terminal resi-

due, and the substitution to serine is destabilizing and causes a change in charge and volume

(see S5 Table, S6 Table). A389V and A802V each scored in 4 parameters, including the nega-

tively scoring conserved evolutionary substitution parameter. A389 is a conserved residue in

Fig 7. Distribution of mutation and COS for homozygote and heterozygote patients. [A] Distribution of COS vs

mutation position in GLDC-protein of homozygote patients shows no overt positional bias in COS. [B]. Positional

distribution of deletion/truncation vs missense mutations in heterozygote patients is shown. Attenuated patients are in

orange; severe patients in blue.

https://doi.org/10.1371/journal.pcbi.1007871.g007
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Table 7. MMS of patients with heterozygous mutations.

Patient ID Allele1 Allele2 COS Predicted Severity Allele 1

Functional Region
Allele 2

Functional Region
MMS

1 P509A E597K 6 S none none 2.0

3 D295Y R536Q 6 S none dimerization 4.5

26 P267A K376E 3 A N PLP H-interface 3.0

51 N150T R790W 6 S dimerization none 4.5

73 G771R M552V 3 A none dimerization 4.5

90 R515S G618R 6 S none active site 6.0

101 A389V R515S 6 S none none 3.5

104 A802V R515S 3 A N PLP none 3.5

105 A389V R515S 4 A none none 3.5

106 I381T R461Q 2 A none none 3.5

107 A283P R461Q 4 A none none 2.0

108 A283P R461Q 2 A none none 2.0

110 Y161C R347S 2 A active site none 3.5

111 G156R G728E 2 A none none 6.0

112 R630P L548V 2 A none dimerization 4.5

114 V905G G728E 2 A none none 5.5

115 G652E R373Q 2 A none H-interface 3.5

129 L885P W897C 12 S none active site 5.5

9 A202V IVS22+1G>C 2 A none N/A 2.5

10 A202V IVS22+1G>C 2 A none N/A 2.5

11 A802V IVS22+1G>A 2 A N PLP N/A 2.5

12 A802V IVS22+1G>A 2 A N PLP N/A 2.5

13 A389V IVS12+2T>G 2 A none N/A 2.5

14 A389V IVS12+2T>G 2 A none N/A 2.5

27 R373W splice site 2 A H-interface N/A 3

69 Y839C splice site 9 S none N/A 3

86 R515S IVS19-1G>A 7 S none N/A 3

91 A733V IVS19-1G>A 4 A none N/A 3.5

95 R515S IVS19-1G>A 6 S none N/A 3

98 G771R IVS19-1G>A 6 S none N/A 3.5

103 A802V IVS22+1G>C 3 A N PLP N/A 2.5

109 R461Q IVS12+2T>G 2 A none N/A 2.5

113 A802E IVS19+2T>G 2 A N PLP N/A 2.5

31 H371D del GLDC 7 S none N/A 2

56 Q620R del Exon 3–9 6 S none N/A 2.5

68 T894A del Exon 3 8 S active site N/A 2.5

74 R739H del Exon 1–2 3 A none N/A 2.5

76 R461Q del GLDC 8 S none N/A 3

89 P907L del Exon 1–24 6 S none N/A 2.5

100 F334L del GLDC 6 S none N/A 3.5

102 L548V del GLDC 3 A dimerization N/A 3

52 L82W 607fs 4 A none N/A 2.5

54 C1002W S419X 5 A none N/A 3.5

55 C1002W S419X 4 A none N/A 2.5

57 S132L S86Vfs_119 8 S none N/A 2.5

85 G761R Y632X 9 S none N/A 3.5

(Continued)
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an α-helix, while A802 is a C-terminal residue and part of a C-terminal loop that is within 5 Å
of the predicted N-term PLP pocket. Substitution from alanine to valine causes a change in

volume but is a well-tolerated substitution throughout evolution. T269M only scored in one

parameter, as the mutation results in a change in polarity.

Compound heterozygous mutations. The overall strategy for application of COS and

MMS (S3 Fig) for compound heterozygous individuals is summarized in Fig 9A. Compound

heterozygous scoring was complicated by the fact that each individual bears two different

mutations, often with one of the mutations being a deletion, nonsense mutation, intronic

mutation, or a mutation in the mitochondrial signal sequence. Of the 50 compound heterozy-

gous patients in our cohort, 18 patients had two missense mutations and 32 patients had one

mutation that was not a missense mutation. Each pair of missense mutations was assessed

across 18 parameters, described in Methods. MMS parameters were designed specifically for

missense mutations; thus, to facilitate scoring of the 32 patients, deletions, nonsense muta-

tions, intronic mutations, and mutations in mitochondrial signal sequence were added as four

additional parameters. Heterozygous mutations were trained without the assumption that

each allele contributes exactly 50% to the clinical outcome (Methods; Table 7).

We also scored variants from healthy individuals (obtained from dbGaP), which were

included as non-pathogenic controls with a COS of zero (Table 9). MMS parameters and dele-

tion, nonsense, intronic, and mitochondrial signal sequence mutation scores were optimized

using the best fit line of the COS vs the composite score using the linear regression class in

Python’s Scikit Learn module (see Methods). The R2 of resulting best fit of COS vs composite

score fit obtained with heterozygous mutations (Fig 9B) was slightly lower than that observed

with homozygous mutations (0.73 vs 0.79) (Fig 8B). We suggest that with more robust clinical

data, these differences as well as differences in weighting between homozygous and heterozy-

gous-trained parameters (Table 10), would converge. Nonetheless, our analyses informed that

COS is proportional to WMMS.

We further examined cases where both mutations were heterozygous by plotting the score

of one allele as a function of the score of the second allele (Fig 9C). Individuals that were

asymptomatic (COS = 0), attenuated (COS = 1–5), and severe (COS> 5) could be separated

based on gating these populations (Fig 9C). Overall, this plot shows that severe disease requires

two severe mutations, while attenuated disease is often either a mixture of mild and severe or

two moderate mutations. Based on the asymptomatic cohort clustering, healthy individuals

can be compound heterozygous for GLDC variants if one of them is very mild. These results

support the use of WMMS’s as a predictive tool for NKH outcome.

Table 7. (Continued)

Patient ID Allele1 Allele2 COS Predicted Severity Allele 1

Functional Region
Allele 2

Functional Region
MMS

87 S132L E167X 9 S none N/A 2.5

97 L885P Y637X 6 S none N/A 3

131 A377V A694Dfs 8 S none N/A 2

28 R373W M1I 2 A H-interface mito leader seq 3

�Number assigned on basis of S4A Table

“S” = severe

“A” = attenuated

https://doi.org/10.1371/journal.pcbi.1007871.t007
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Disease prediction

As discussed earlier, NKH has been characterized as either severe or attenuated, but predicting

disease state on the basis of mutation has been a challenge. Previous attempts at predicting

severe vs attenuated outcomes for NKH mutations have been based solely on biochemical

activity of recombinant mutant proteins and hindered by technical challenges and low

throughput. Our data indicates that based on the relationship between COS and WMMS in

Figs 8B and 9C, WMMS from both the homozygous and heterozygous datasets can separate

severe and attenuated disease. To test this hypothesis, we determined the average WMMS

value for asymptomatic individuals (COS = 0), attenuated NKH patients (COS = 1–5), and

Fig 8. Weight Multiparametric Score (WMMS) for homozygous mutations. [A] A flowchart of the generation of

weighted multiparametric scores (WMMS’s) for homozygous mutations. Data were assessed from twenty-four NKH

patients with homozygous mutations and at least two score-able major symptomatic domains. Control data was from

ten variants that were found in homozygous form of GLDC in the Exome Aggregation Consortium (ExAC) database

(Broad Institute) and assigned COS of 0. [B] MMS parameters were weighted to maximize the correlation R2-value and

yield the COS vs WMMS plot shown for a test set of 28 mutations (18 pathogenic, 10 nonpathogenic from the ExAC

database).

https://doi.org/10.1371/journal.pcbi.1007871.g008
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severe NKH patients (COS> 5). For both the homozygous-trained (Fig 10A) and heterozy-

gous-trained (Fig 10B) WMMS’s, each disease category shows significant separation. Most

importantly, severe disease can be significantly distinguished (by student’s t-test) from attenu-

ated disease with a p-value of 1.2e-5 for homozygous patients and a p-value of 3.5e-7 for het-

erozygous patients. These data support the use of WMMS’s as a predictive tool for the clinical

outcome of NKH based on retrospective clinical analyses.

Discussion

We used computational approaches to undertake large scale, comparative and evolutionary

analyses to enable multiparametric in silico assessment of 251 (of 255) NKH disease causing

missense mutations based on structure-function properties intrinsic to GLDC protein. Fur-

ther, our data ascribe either conserved, evolutionary function or clinical disease severity to 89

previously uncharacterized mutations. In contrast, prior studies have cumulatively reported

on biochemical characterization of 49 mutations. Our evolutionary analyses support a new

PLP binding function for the N-terminal PLP domain and predict residues that form the junc-

tion for H-GLDC interactions. Four of the top 10 clinical mutations (R515S, S564I G771R,

and V905G) could only be annotated by the MMS.

The development and utilization of COS (rather than a biochemical activity) are particu-

larly advantageous for a large gene like GLDC (1020 aa) with hundreds of disease-causing

mutations. But as with many rare diseases, clinical symptom presentation of NKH disease is

highly heterogeneous. We therefore based our clinical outcomes scale/score on multiple (~50)

symptoms that were, aggregated into four major disease domains. A major limitation of retro-

spective analyses of clinical records, is the variability in the published data content. This vari-

ability was somewhat decreased by excluding records that only contained one (of four) major

symptomatic domains. Removing patients who died may decrease the power of prediction for

severe cases in the WMMS model. Nonetheless the cohort analyzed captured a dynamic range

of disease outcomes, including severe disease in young patients.

In studies with compound heterozygotes, mutations were trained without the assumption

that each allele contributes exactly 50% to the clinical outcome. The extent to which an allele

contributes to clinical disease is poorly understood and may well be affected by the overall

genetic background of the patient. Thus, further adjustments may be needed to optimize the

multi-parametric mutation score of compound heterozygotes. Further optimization is also

Table 8. ExAc Nonpathogenic Mutations.

MUTATION # of ExAc Homozygotes COS MMS

M107V 80 0.0 0.0

R224H 22 0.0 2.0

C291G 6 0.0 2.0

R410K 8 0.0 0.0

L462V 122 0.0 0.0

E503A 14 0.0 2.0

A569T 4 0.0 2.0

V705M 1 0.0 1.0

V735L 8 0.0 2.0

A794T 3 0.0 1.0

COS = Clinical Outcome Score

MMS = Multiparametric Mutation Score

https://doi.org/10.1371/journal.pcbi.1007871.t008
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needed for other non-missense mutations, such as considering the position of a deletion or

premature stop codon in relation to the protein active site. Nonetheless we were able to score

50 compound heterozygotes and 24 homozygotes (total of 74 patient records) based on a com-

prehensive survey of the clinical literature and in future work could be rapidly scaled to all

mutations, missense or otherwise.

In conjunction with pathogenic destabilizing mutations in target proteins, multiple addi-

tional factors influence disease progression in all genetic diseases. A nonsense or deletion early

in the coding region is likely to be very severe, but much milder if located in the C-terminus

after the protein active site. Intronic mutations that are not at the splice site will likely have less

impact while those at the splice site can have differential effects depending on location. Finally,

the overall genetic background has a profound influence on the emergence and progression of

disease. While these parameters cannot be incorporated into the first step of developing a

mutation-based score, weighting the MMS against the COS enables influence of parameters of

‘clinical’ relevance into the weighted MMS (WMMS). The WMMS was particularly important

in analyses of compound heterozygous mutations in cases where the second mutation is a dele-

tion whose location can dramatically alter severity.

Fig 9. WMMS for heterozygous mutations. [A] A flowchart of the process used to generate WMMS’s for heterozygous mutations. Data were assessed from

fifty NKH patients with compound heterozygous mutations and at least two scorable major symptomatic domains. Control data was from twenty healthy

individuals with heterozygous variants obtained from the dbGaP database who were assigned COS of 0. [B] MMS parameters were weighted to maximize the

correlation R2-value and yielded the COS vs WMMS plot shown. [C] Display of WMMS of Allele 1 versus Allele 2 for heterozygous patients yields

characteristic of three different disease states namely asymptomatic/no disease (COS = 0; open dots), attenuated disease (COS = 1–5; blue dots), and severe

disease (COS> 5; red dots) patients. Gating captured 100%, 93.1% and 71.4% of these respective populations, supporting the claim that WMMS scoring can

clearly separate the different disease states.

https://doi.org/10.1371/journal.pcbi.1007871.g009
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In conclusion, our data suggest that WMMS is sufficiently robust to distinguish between

severe and attenuated disease based on optimization using retrospective analyses of patient

records. We therefore suggest that it presents a powerful tool to initiate and refine future anal-

yses in larger prospective studies with active recruitment/review of patients and their medical

records to strengthen management and prediction of disease course.

Methods

Homology modeling of P- and H-proteins

Human homology models were generated for GLDC and H-proteins using the SWISS-model

(Swiss Institute of Bioinformatics), which generates homology models as described previously

[30–32]. Human GLDC was modeled using as the template the solved crystal structure for

Synechocystis sp. PCC 6833 P-protein holoenzyme (PDB ID = 4lhc; sequence identity with

human = 56.8%). Human H-protein was modeled using as the template bovine H-protein

crystal structure (PDB ID = 3wdn, sequence identity with human = 98.0%).

The active site, active site tunnel, and dimerization interface functional regions of human

P-protein were inferred from sequence comparison to the Synechocystis holoenzyme crystal

structure.

Protein imaging

All 3D protein images were generated using the free protein-modeling software Jmol.

NKH mutation analysis

A comprehensive list of NKH-causing missense mutations was compiled through a literature

search of previously published mutations and mining of missense mutations catalogued in the

Table 9. dbGaP Healthy individuals’ mutations and MMS’s.

Allele 1 Allele 2 COS Individual MMS

E503A V233A 0 2.0

E503A T799S 0 2.0

E503A R236Q 0 2.0

E503A V705M 0 1.5

T799S V747I 0 3.0

V800I A414T 0 2.0

E503A N533S 0 2.5

P509A I301M 0 1.0

P509A G137S 0 2.0

E503A R596Q 0 2.0

E503A S814F 0 5.0

V705M A64S 0 1.5

A794T L462V 0 0.5

L207V N193S 0 0.5

E669K N413Y 0 2.5

V735L V233A 0 2.0

V735L R66K 0 2.0

E278K A64T 0 1.5

V735L A569T 0 2.5

A569T Mito Leader Sequence 0 3.0

https://doi.org/10.1371/journal.pcbi.1007871.t009
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ClinVar database hosted by the National Center for Biotechnology Information (NCBI). Mis-

sense mutations in ClinVar reported as “Benign” or “Likely Benign” were excluded. Secondary

structure location of missense mutations was determined using jMol. Allele frequencies, if

reported, were extracted from the Exome Aggregation Consortium (ExAC) database (Broad

Institute) [33].

Ligand prediction

Structure-based ligand predictions were done using the I-Tasser COFACTOR tool provided

by the Zhang Lab [34,35] (University of Michigan).

Protein-protein interaction modeling

The human P- and H-protein docking models were generated using the ClusPro 2.0 server

[36–38] (Boston University). Models were generated as previously described. Briefly, the inter-

acting proteins were docked using the fast-fourier transform (FFT) method. Highly populated

clusters were selected and screened by CHARMM minimization.

Model ranking

ClusPro 2.0 models were ranked using three equally weighted parameters: conservation of P-

protein interacting residues, conservation of H-protein interacting residues, and distance of

the active site lipoylated lysine from H-protein from the active site entry tunnel of P-protein.

Scores were normalized such that the highest scoring model in a particular parameter received

a score of 1, and the lowest scoring model received a score of 0. Interacting residues were

defined as residues within 4 Angstroms from the docking partner. Conservation scores were

generated using the Consurf server [39–41], which assigns a conservation score based on a

multiple sequence alignment (MSA) with 150 unique orthologs. Parameters were tested using

a previously-published crystal structure of the interaction between E. coli T- and H-protein

Table 10. Trained parameter weights.

Parameters Unweighted Homozygous Trained Heterozygous Trained

Stability (Stabilizing) 1.0 -1.20 0.69

Stability (Destabilizing) 1.0 -0.95 0.94

Conservation of Residue 1.0 3.43 1.30

Conservation of Substitution -1.0 -3.97 -2.35

Helix 1.0 2.96 2.78

Sheet 1.0 -0.26 4.18

C-term 1.0 2.56 1.50

Active Site 1.0 2.48 3.92

Active Region 1.0 0.00 -5.74

N-term PLP 1.0 3.00 0.94

H-interface 1.0 2.55 -0.43

Dimerization Interface 1.0 -2.48 -0.62

Δ Polarity 1.0 -0.82 -2.06

Δ Charge 1.0 0.57 1.61

Δ Aromaticity 1.0 4.62 -0.32

Δ Proline 1.0 2.59 2.14

Δ Codon availability 1.0 0.23 0.40

Δ Size 1.0 -1.26 1.34

https://doi.org/10.1371/journal.pcbi.1007871.t010
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(PDB: 3A8K) [23]. The interaction was modeled using ClusPro 2.0, and the models were

scored using the above parameters. Top models were compared to the crystal structure. The

interaction between human T- and H-protein and P- and T-protein (as a negative control)

were also modeled using the above methods. Human T-protein has a previously published

crystal structure (PDB: 1WSV) [42].

Mutation effect on protein stability

Multiple online tools for prediction of ΔΔG caused by point mutations were preliminarily

assessed, including CUPSAT, MuPro, PopMusic, STRUM, mCSM, FoldX, Dynamut, I-Mutant

3.0, SDM, and DeepDDG. CUPSAT uses protein structure to make fast and accurate ΔΔG pre-

dictions from environment-specific atomic and torsion angle potentials. The high speed of

CUPSAT predictions lends itself to analyses of diseases associated with a large number of

Fig 10. WMMS’s as a predictor of severe and attenuated disease. [A] Average homozygous-trained WMMS for

homozygous patients by disease type. [B] Average heterozygous-trained WMMS’s for heterozygous NKH patients by

disease type. The WMMS is a significant predictor of attenuated (ATT) and severe disease type (SEV) for disease

caused by both homozygous and compound heterozygous missense mutations. Healthy controls with COS = 0 are

denoted as NONE.

https://doi.org/10.1371/journal.pcbi.1007871.g010
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missense mutations [43]. CUPSAT was also recently found to be the most accurate predictor

for disease-causing mutations in PIXT2 that were known to be destabilizing [44]. Because of

these considerations and because predictions are based on structural, site-specific information

about the mutated residue, predictions of the stability effects of NKH-causing mutations were

generated using CUPSAT. The SWISS-Model generated GLDC homology model was provided

as the input. We defined destabilizing mutations as mutations with a predicted ΔΔG < -1.5

kcal/mol because a study found that 45 missense mutations associated with protein loss-of-

function with experimentally derived ΔΔG’s had an average value of -1.67 kcal/mol [45].

Multi-Parametric Mutation Score (MMS)

An eighteen-parameter test based on stability effects, conservation, location, and amino acid

properties was used to score each mutation. Parameters were defined as the following: i. Desta-

bilizing ΔΔG as predicted by CUPSAT. ii. Highly stabilizing mutation (positive ΔΔG, because

rigidity in the protein is known to cause a loss of function). iii. Evolutionary conservation of

the mutated amino acid (based on 150 homologs from different species because high conserva-

tion indicates that the residue is vital to the function or fold of the protein) iv. Conservation of

amino acid substitution (based on Blosum62 matrix which indicates how likely it is that one

amino acid will be substituted for another), v. Location in secondary structure domains of α-

helix or vi. β-sheet because secondary structures contribute to fold and function of proteins

vii. location in C-terminus because the catalytic activity is primarily in the C terminus viii.

Residue is part of the active site (directly involved in binding/stabilizing PLP or substrate gly-

cine, because it is essential to the catalytic function of the protein). ix. Mutation is within 7

Angstroms of the active site (because mutations in 3D proximity to the active site can affect its

fold) x. Residue is part of the N-term PLP pocket (this study, because this will affect stability

and/or catalytic activity.) xi. Residue is at P-H interaction interface (because this too can affect

stability and/or catalytic activity). xii. Residue is at the known dimerization interface (because

dimerization may be important to function). Xii-xviii. The mutation results in a change of

amino acid properties, including change in xiii. polarity, xiv. charge, xv. aromaticity, xvi. to/

from proline, xvii. tRNA availability, and xviii. volume.

Phi correlation analysis demonstrated independence between all parameters, except for

slight negative correlations between conservation of amino acid substitution and change in

polarity (φ = -0.44, with 1 being perfect correlation) and change in volume (φ = -0.51) (Fig

5B). However, these correlations are statistically weak and therefore do not negate the validity

of including each of these parameters.

These eighteen parameters were combined to create a multiparametric mutation score

(MMS), which scores mutations based the broad categories 1) stability effects, 2) conservation

of mutation amino acid, 3) position of the mutated amino acid, and 4) change in amino acid

properties caused by substitution. Mutations with scores of 1–2 were considered mild, 3–4,

moderate, and�5 severe.

NKH Patient clinical outcome scoring

Phenotypic data were collected from case studies for 131 patients in the literature where the

genotype was known and the patient had at least one missense mutation [13,14,27–29,46–68].

A comprehensive list of NKH symptoms in the clinical data was created (Table 2), and we

developed a clinical outcome scoring scale based on the four major symptomatic domains of

1) seizures, 2) cognitive disorders, 3) muscle/movement control and 4) brain malformations

(Table 3). The cognitive disorders and muscle/movement control domains were assigned lin-

ear Likert-like scores from 0–3 which represent the observed severity gradation of these
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domains in NKH patients. The seizure domain has a non-linear increase from 1 to 3 for con-

trolled seizure activity and uncontrolled seizure activity, respectively. This increase more accu-

rately captures the severity of the intractable seizure phenotype. The brain malformation

domain is a binary choice of 0 or 3, because unlike the other symptom domains which have

gradations of severity, brain malformations are a presence/absence binary. We concluded that

the seriousness of a structural brain malformations warranted a score of 3. Summation of all

four domains yields a patient clinical outcome score (COS), with a maximal score of 12.

Patients who were deceased at the time of the case report were not scored, leaving 86

patients. Domains that were reported as asymptomatic in the case report were scored 0.

Domains that were not mentioned were left blank. Patients for whom only one major domain

was able to be scored (12 of the 86 patients) were excluded from further analyses, leaving a

74-patient cohort.

Homozygous mutation clinical outcome scores

Twenty-four of the 74 patient cohort were homozygous for 18 NKH-causing missense muta-

tions. In cases where the mutation was present in one individual, the mutation was assigned

the same COS as the individual. In cases where more than one individual was homozygous for

the same mutation, an average COS was taken (Table 4).

Weighted Multiparametric Mutation Score (WMMS)

i. Homozygous Mutations. The MMS was first applied to all 18 homozygous mutations

(listed in S6 Table) associated with 24 clinical cases. Every patient mutation was assigned an

MMS score in addition to the previously determined COS. Ten variants of GLDC were found

in homozygous form in the Exome Aggregation Consortium (ExAC) database, hosted by the

Broad Institute were also scored. The ExAC database utilizes genomic data from healthy indi-

viduals; thus, homozygosity of these mutations indicates that they are non-pathogenic. They

were included therefore as a non-pathogenic control group and were assigned a COS of zero.

ii. Compound heterozygous mutations. For compound heterozygous mutants, both

GLDC mutations were listed in S7 Table. Each set of mutations was assessed across the 18

parameters for missense mutations. If both of the individual’s GLDC mutations met a parame-

ter condition, the individual was assigned a score of 1 for that parameter. If only one mutation

met the parameter condition, the individual was given a score of 0.5. If neither met the condi-

tion, the individual was given a score of 0. Four additional parameters were included to

account for non-missense mutations. These parameters included deletions, frameshift/prema-

ture stop codon mutations, intronic mutations, or mutations in the mitochondrial leader

sequence. The summation across these parameters yielded an MMS.

Variants from healthy individuals (obtained from dbGaP), were included as non-patho-

genic controls with a COS of zero. MMS parameters were optimized as above using the best fit

line of the COS vs the composite score.

dbGaP Data was obtained from the following datasets: ATVB—MIGen Exome Sequencing:

Italian Atherosclerosis Thrombosis and Vascular Biology, phs000814.v1.p1; PROMIS—

MIGen Exome Sequencing: Pakistan Risk Of Myocardial Infarction Study, phs000917.v1.p1;

IBD—Inflammatory Bowel Disease Exome Sequencing Study, phs001076.v1.p1; Ottawa—

MIGen Exome Sequencing: Ottawa Heart, phs000806.v1.p1.

iii. For both homozygous and heterozygous mutations. Ideally, the homozygous-trained

parameters and heterozygous-trained parameters would have approximately equal weights. The

weight of the stabilizing mutations and the change in polarity parameters regressed to 0 for each

dataset, indicating that these parameters have a negligible effect on disease severity. Active site
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mutations in each case were amongst the top weighted parameter with weights of 2.48 for

homozygous and 3.92 for heterozygous mutations (Table 10). This indicates, as would be

expected, that active site mutations severely affect protein function. For both the homozygous-

and heterozygous-trained sets, the parameters helix mutations, change in proline and codon

availability are within weights of +/- 1. For the homozygous mutations, none of the mutations

were in the active region, and thus this parameter could not be optimized and was set to 0. The

other 11 parameters have weight differences larger than +/- 1, indicating either that the parame-

ter weighting for these parameters is biased by the data that it’s trained on, or that these parame-

ters have different degrees of importance for heterozygous and homozygous mutations.

Coefficients for the 18 missense mutation parameters and 4 non-missense mutation param-

eters were calculated by minimizing the sum of squares between the observed clinical outcome

scores and the predicted clinical outcome scores from the MMS using the linear regression,

done with the linear regression class in Python’s Scikit Learn module. We note that heterozy-

gous mutations were trained without the assumption that each allele contributes exactly 50%

to the clinical outcome.
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