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Performance evaluation of a prescription medication image
classification model: an observational cohort
Corey A. Lester 1✉, Jiazhao Li 2, Yuting Ding1, Brigid Rowell1, Jessie ‘Xi’ Yang3 and Raed Al Kontar 3

Technology assistance of pharmacist verification tasks through the use of machine intelligence has the potential to detect
dangerous and costly pharmacy dispensing errors. National Drug Codes (NDC) are unique numeric identifiers of prescription drug
products for the United States Food and Drug Administration. The physical form of the medication, often tablets and capsules,
captures the unique features of the NDC product to help ensure patients receive the same medication product inside their
prescription bottle as is found on the label from a pharmacy. We report and evaluate using an automated check to predict the
shape, color, and NDC for images showing a pile of pills inside a prescription bottle. In a test set containing 65,274 images of 345
NDC classes, overall macro-average precision was 98.5%. Patterns of incorrect NDC predictions based on similar colors, shapes, and
imprints of pills were identified and recommendations to improve the model are provided.
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INTRODUCTION
Medication errors occur when pharmacy staff count out and give
their patient the incorrect medication inside a prescription bottle
labeled for a different medication1–3. These dispensing errors are
potentially harmful to patients, strain the healthcare system, and
lead to costly liability fees for pharmacies. In fact, the two most
common reasons for legal action against licensed pharmacy staff
are the dispensing of the wrong dose and wrong medication with
an average paid out claim of nearly $125,0004. A multi-site study
of dispensing errors in community pharmacies found that
incorrect drug, incorrect strength, and incorrect labeling of the
prescription vial occurred at a rate 278/109,558 (0.25%) prescrip-
tions5. It is critical to provide pharmacy staff with tools to reduce
medication errors thereby improving patient safety and reducing
healthcare spending. In the pharmacy setting, a fundamental task
is to dispense a prescription that ensures the right pill gets to the
right patient. Dispensing errors occur when pharmacy staff select
a stock bottle of medication, count out, and place the incorrect
medication or strength into a prescription vial labeled for a
different medication or dose6–8. National Drug Codes (NDC) are
unique 10-digit, three segment numbers assigned to drugs.
However, only the first identifier segment, the manufacturer, is
assigned by the United States Food and Drug Administration
(FDA). The remaining information on the NDC directory is solely
the responsibility of the manufacturer9. Relying on humans alone
to verify that the physical attributes of medication products for an
NDC are insufficient to overcome high workload, interruptions,
and limitations of human cognition that are common contributing
factors in dispensing errors6–8.
Technological advances such as robots that fill medication

bottles and barcode scanning to promote getting the right pill
into the right vial for the patient are insufficient to eliminate
incorrect medication fills and subject to workarounds10,11. These
technologies are prone to human interaction errors, such as
pharmacy staff counting out and labeling the wrong medication
after scanning the prescription label and stock medication bottle
barcodes. It is difficult to pinpoint the exact number of medication

errors as the last comprehensive report was conducted by the
Institute of Medicine in 200612. Technological solutions such as
barcode scanning do not eliminate errors as a result of human
interaction workarounds11 and do little to address problems with
overburdened pharmacist verifying the prescription. A 2015 study
of hospital barcode scanning technology found that barcode
scanning did not change the number of errors but rather shifted
the types of errors from wrong ingredient to wrong strength and
wrong quantity13.
In an effort to detect and remedy dispensing errors before they

reach the patient, pharmacists perform a verification task by
comparing the contents of the filled prescription with an industry
reference image. The traditional verification process occurs on site
using the physical prescription bottle; however, 24 states currently
allow for remote pharmacies in which a pharmacist performs this
verification task off-site. Instead, verification by a pharmacist using
top-down pictures of the uncapped, filled prescription bottle may
occur. Furthermore, a national chain pharmacy recently piloted
this remote verification process. Error rates for remote verification
are not significantly different from traditional in-person verifica-
tion; however, the types of errors differ5. Remote verification
resulted in fewer errors that reached the patient (a near miss) but
prescriptions were more likely to contain incorrect directions. In
light of the COVID-19 pandemic, further adoption of technology
that enables remote verification may occur. Technology assistance
of the verification task through the use of machine intelligence
(MI) has the potential to detect dangerous and costly pharmacy
dispensing errors3,4,14.
To assist humans in the verification process, MI models could

perform a pill classification task using images taken of medication
filled inside a prescription bottle. Previously published studies of
pill classification tasks, some spurred by the United States National
Library of Medicine’s Pill Image Recognition Challenge, focus on
comparing the front and back of individual pills between
consumer images with different backgrounds and industry
reference images15–17. Another study focused on extracting
higher-level features (e.g., color, shape, and imprint) of reference
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pill images using labeled structured data to predict the medica-
tion18. These previous studies focus on small-scale experimenta-
tion of MI models on individual pills. This is achieved by
segmenting the background an individual pill then comparing
the features to known reference images. In this study, we focus
instead on medication dispensing error detection within a
pharmacy setting. This requires learning models from a pile of
medication inside a prescription vial where image segmentation
from the background is impossible as pills are piled on top of
each other.
In this paper, we report on training a ResNet-18 deep learning

model to predict the labeled features of a medication product
using an image showing oral medication inside of a filled
prescription vial. The training was done in two stages. First,
model fitting occurred by pre-training a ResNet-18 network on the
ImageNet dataset19. Second, the model was fine-tuned on the
dataset showing a pile of pills inside a prescription vial. The
objectives are to (1) evaluate model performance of the image
classification model that predicts the shape, color, and NDC of
prescription medication images, (2) evaluate the reliability of the
model predictions, and (3) determine the features of the
prescription medication images that lead to incorrect predictions
by the model. In doing so, we discuss the implications of utilizing
this technology in practice from a trust and safety perspective.

RESULTS
Description of the dataset
A dataset of medication images showing a top-down view inside a
filled prescription bottle was used to train, test, and validate the
classification task. The images were taken after prescription data
were transmitted to a robot in a mail-order pharmacy that
counted out, weighed, and took a picture of the medication. In
practice, these images are used by a pharmacist to verify that the
medication inside the prescription bottle is the exact same
medication product found on the prescription label for the
patient. A total of 65,274 images for 345 NDC oral medication

products from 73 manufacturers were included in the test set
evaluating the NDC prediction model’s performance. Each NDC
medication product has distinct physical characteristics, such as
shape, color, and imprints. The majority of NDCs were tablets
(80.5%) compared to capsules. The NDC tablets were most often
round (55.4%) and oval (21.5%). White pills made up 38.3% of the
NDCs, followed by yellow (12.8%), pink (8.4%), and blue (7.0%).
NDCs included in the dataset act on the cardiovascular system
(40.9%), nervous system (22.3%), and alimentary tract and
metabolism (8.7%). The number of images for each NDC ranges
from 1 to 1817 with a median of 81.

Medication image classification
We used the neural network called ResNet-18. The ResNet-18 has
experienced success in computer vision for many classification
tasks because it solved the gradient vanishing problem and
handled the increasing depth of neural networks20,21. It consists of
an 18-layer residual neural network model that was pre-trained on
the ImageNet dataset19 and then fine-tuned the parameters using
our prescription medication images dataset. First, three ResNet-18
models were trained to predict the NDC, shape, and color,
separately. Figure 1 shows a precision-recall (PR) curve for the
NDC, shape, and color models. Compared to the traditional
receiver operating characteristics (ROC) curve, the PR curve is
more appropriate for imbalanced datasets22. This curve sum-
marizes the trade-off between the positive predictive value
(precision) and the true-positive rate (recall) for various probability
thresholds. Overall model accuracies were 99.1%, 94.2%, and
83.6%, respectively. Macro-average precisions of these three
models were 0.985, 0.897, and 0.941. As a measure of how well
the classifier distinguishes between classes, area under the PR
curves (AUC-PR) for each of the three models are reported. In our
work, the higher the AUC-PR, the better the models are at
predicting the NDC, color, or shape. The NDC model achieved an
AUC-PR of almost 1.00 indicating that decision thresholds could
be established to minimize both false-positive and false-negative
events. Based on the NDC model’s AUC-PR value, as well as the
accuracy and the macro-average precision values, compared to
the color and shape models, it was selected for further analysis
and reporting in this paper.
The NDC model’s predicted probability distributions for each

image were normalized using a softmax operator, such that the
sum of all the class probabilities for each image was equal to 123.
We used these probability distributions to determine how
“confident” it is in the predicted label for each medication image
in the test data. We further binned the model’s probabilities into
ten probability intervals (i.e., 0.0–0.1, 0.1–0.2, 0.2–0.3, etc.) and
plotted these as a confidence histogram and reliability diagram in
Fig. 2. A confidence histogram shows the distribution of predicted
probabilities across all image observations. In our model, the
confidence histogram shows that 96.20% of the model’s predicted
probability samples were between 0.9 and 1.0. The model’s overall
accuracy and average forecasted probability are also reported to
be 99.13% and 98.39%, respectively. A reliability diagram is used
to diagnose the degree of calibration of the model with respect to
its predicted probability outputs. Calibration error is the difference
in the observed prediction accuracy compared to the expected
prediction accuracy of the model. Model calibration is important
for model interpretation and establishing trustworthiness with
end-users24.

Model reliability
The reliability diagram visualizes the model’s observed accuracy in
each forecasted probability bin (i.e., the blue bars) and its
deviation from perfect calibration (i.e., red bars). The closer the
observed accuracy bar in each bin is to the diagonal line, the more
reliable the probability estimate is. The dotted line in the reliability

Fig. 1 Precision-recall curves for prediction of medication image
components. AUC-PR is used as a measure of how well the classifier
distinguishes between classes. In our work, the higher the AUC, the
better the models are at predicting the NDC, color, or shape. The
NDC and the shape model achieved an AUC-PR of almost 1.00
indicating that decision thresholds could be established to minimize
both false-positive and false-negative events.
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diagram represents perfect calibration. For example, in the model
predicted probability bin of 0.2–0.3, we would expect the NDC
model to be correct in its prediction 25% of the time. The fine-
tuned NDC model we used was correct 36.11% of the time when
the machine’s predicted probabilities were between 0.2 and 0.3,
which is 44.44% higher than expected within this bin. For the NDC
model’s predicted probability bin of 0.7–0.8, we would expect the
model to be correct in its prediction 75% of the time. The fine-
tuned NDC model we used was correct 88.96% of the time at the
predicted probability bin of 75; calibration error of 13.96%.

Comparison of incorrectly predicted medication images
In Fig. 3, we report the proportion of NDC predictions made by the
machine for each reference NDC in a confusion matrix. The blue
diagonal line represents the proportion of correctly predicted
NDCs among each reference NDC. Yellow and blue dots outside
this diagonal line represent the proportion of incorrect predictions
for a given predicted-reference NDC pair. White space indicates
that the corresponding pair of reference and predicted NDC never

occurred. There were 571 out of 65,274 images (0.9%) in the test
dataset that had incorrect NDCs predicted by the NDC model. For
example, images showing the medication Amiodarone hydro-
chloride 200 MG Oral Tablet (NDC= 68382-0227), a medication
used to control heart rhythm, were predicted to be Allopurinol
100 MG Oral Tablet (NDC= 53489-0156), a medication used to
treat gout, 21 out of 31 times (67.7%) by the model. At this point,
we removed 35 images from further analysis as 19 images were
not of a top-down view inside a pill bottle and 16 images captured
the plastic pill bottles only. Among the remaining 536 images
incorrectly predicted, 115 unique NDCs existed and the number of
images for each NDC ranged from 1 to 35 with a median of 2.
We next compared the colors and shapes of the predicted NDCs

to the corresponding reference NDCs. All of the NDCs labeled as
gray and red pills were predicted to be NDCs whose pills are of a
different color. The color of predicted NDCs matches the color of
pills in the original labels at a 93.8% rate (n= 325) for white pill
images. We also compared the shape of the predicted NDCs with
the labeled shape of the reference NDC. All images of medication

Fig. 2 Confidence histogram and reliability diagram for the National Drug Code prediction model on the test dataset. a The confidence
histogram shows the percentage of samples falling into each forecasted probability bin, while (b) the reliability diagram plots the observed
predicted probability accuracy against the expected probability, where the range of forecasted probabilities is divided into ten bins (i.e., 0–0.1,
0.1–0.2, 0.2–0.3, etc.). Error bars in the reliability diagram represent 95% confidence intervals for each bin and the numbers of images in each
bin are 45, 17, 36, 115, 153, 285, 287, 471, 1063, 62,802, respectively.
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in the shape of a triangle (n= 186), hexagon (n= 289), and
trapezoid (n= 71) from the test dataset were predicted correctly
by the NDC model, while 38.5% (n= 169), 30.0% (n= 40), 100% (n
= 1), and 3.4% (n= 326) of pills in the shape of a capsule, oval,
pentagon (5-sided), and round, respectively, were predicted to be
medications of a different shape.
We found that 67.2% (n= 360) of predicted NDCs shared the

same color and shape with NDCs in the label. Moreover, 18.8% (n
= 101) medications were predicted to be another medication that
shares the same color, shape, manufacturer, and similar imprint (at
least 1-character overlap).These medications usually come from
the same manufacturer and are of the same ingredients but in
different strengths. The average prediction accuracy for these
NDCs was 15.8%, which is 87.1% lower than the overall prediction
accuracy. Figure 4 shows examples of these incorrectly predicted
NDC. The images in the second column show the images that
were incorrectly predicted and the right images show an example
image of the NDC predicted by the model. Another pattern we
identified is when the predicted NDC9 and NDC9 in the label
share the same color, shape, similar imprints (at least 1-digit
overlap) but are produced by different manufacturers. Out of 536
incorrectly predicted image dataset, 24.4% (n= 131) images fall
into this category. We also identified similar pairs of color–shape
combinations in these images regardless of their imprints. These
similar color and shape combinations are white capsule and white
oval (n= 25, 4.7%), pink capsule and red oval (n= 16, 3.0%),
brown capsule and gray oval (n= 12, 2.2%).
All images we used in the train, validation, and test data come

from the same mail-order pharmacy image dataset. However,
during the review process, differences in the background of the
images were found. For example, the incorrectly predicted image
of Valsartan 320 MG Oral Tablet shown in Fig. 4 may be due to the

different background of the prescription bottle in the images. We
identified 44 out of the 536 (8.2%) images had a relatively
different background compared to the rest of images in the
incorrectly predicted image set. A randomly selected sample of
536 images from the correctly predicted images set for
comparison and only 2 (0.4 %) of them had this distracting
background.

DISCUSSION
To address the lack of MI assistance for the pharmacist verification
task, we tested a model to predict the medication product NDC
with a macro-average precision of 98.5% and micro-average
precision of 99.1% compared to previously published research
reporting an unaided pharmacist’s mean accuracy rates of
95.7–99.7%25,26. However, more research is needed to determine
the accuracy rate of humans verifying images of medication filled
rather than viewing the physical contents in-person. Compared to
previous work published on identifying prescription medication
from images of the front and back views of a single pill, our model
achieves greater performance; however, the quantity and quality
of images between the different datasets used to train, test, and
validate the models are significantly different15,16,18. In addition,
identifying a medication product by first segmenting out a single
pill when an image contains a pile of medication inside a
prescription bottle may prove difficult due to the various overlap
and postures of the pills.
The NDC model’s AUC-PR of nearly 1.00 compared with a

previous experiment in a simulated prescription verification task
showed unaided human sensitivity (i.e., detecting an incorrectly
filled prescription medication) ranging from 88.2 to 94.2%. Missing
an incorrectly filled medication during the verification step is

Predicted Label:
Furosemide 80 MG
Oral Tablet
NDC: 00378-0232

Reference Label:
Tizanidine 4 MG
Oral Tablet
NDC: 57664-0503

n = 2(9.5%)

Predicted Label:
Tramadol
Hydrochloride 
50 MG Oral Tablet

Reference Label:
Memantine
Hydrochloride 10 MG
Oral Tablet

n = 4(80%)

Predicted Label:
Levothyroxine Sodium
0.1 MG Oral Tablet
NDC: 00378-1809

Reference Label:
Paroxetine Hydrochloride
10 MG Oral Tablet
NDC: 13107-0154

n = 4(100%)

Reference Label:
Amiodarone hydrochloride
200 MG Oral Tablet
NDC: 68382-0227

n = 21(67.7%)

Predicted Label:
Allopurinol 100 MG Oral
Tablet
NDC: 53489-0156

Proportion of reference-predicted NDC pairs
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Fig. 3 Confusion matrix normalized by proportion of all predicted and reference National Drug Code images. Proportion equal to the
predicted National Drug Code (NDC) count for given reference image divided by the count of all reference images of that NDC). 1 = the same
NDC was predicted each time; 0 = no cases of reference image being a particular predicted NDC.
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important because of the unnecessary patient harm that can
result. For example, a patient expecting an anti-anxiety medica-
tion, buspirone, receives a medication for high blood pressure,
metoprolol, when the model makes an incorrect decision to
approve the medication. Wrong drug and dose errors resulting in
professional liability claims against pharmacies result in a nearly
$125,000 settlement each time one is filed4. Due to the high cost
of dispensing errors, technologies should be designed to make

reliable decisions that minimize false negative errors in conjunc-
tion with a human supervisor27. Communicating model uncer-
tainty is a critical factor for improving the trustworthiness of MI
advice28.
Given that humans have a natural intuition for the meaning of

probabilities24,29 (e.g., a predicted probability of 75% = a specified
outcome occurs 3 out of 4 times), machine probabilities that are
discordant with human expectations may impact how a

Medication product on
the prescription label

NDC image incorrectly
predicted

Medication product
predicted by ResNet-
18

Sample NDC predicted Count (%)

Same color, shape, manufacturer & similar imprint (at least 1- digit matching) 101 (18.8%)

Paroxetine Hydrochloride 30
MG Oral Tablet
NDC: 00378-7003
Manufacturer: Mylan
Pharmaceuticals Inc.
Shape: Round
Color: Blue
Imprint: M;N3

Paroxetine Hydrochloride
40 MG Oral Tablet
NDC: 00378-7004
Manufacturer: Mylan
Pharmaceuticals Inc.
Shape: Shape
Color: Blue
Imprint: M;N4

22 (68.8%)

Metoprolol Succinate 50 MG
Extended Release Oral
Tablet
NDC: 62037-0831
Manufacturer: Actavis
Pharma, Inc.
Shape: Round
Color: White
Imprint: 831

Metoprolol Succinate 100
MG Extended Release Oral
NDC: 62037-0832
Manufacturer: Actavis
Pharma, Inc.
Shape: Round
Color: White
Imprint: 832

13 (92.9%)

Valsartan 320 MG Tablet
NDC: 43547-0370
Manufacturer: Solco
Healthcare, LLC
Shape: Capsule
Color: Brown
Imprint: HH; 344

Valsartan 80 MG Tablet
NDC: 43547-0368
Manufacturer: Solco
Healthcare, LLC
Shape: Capsule
Color: Brown
Imprint: HH; 342

9 (60%)

Lyrica Pregabalin 150 MG
Oral Capsule
NDC: 00071-1016
Manufacturer: Parke-Davis
Div of Pfizer Inc
Shape: Capsule
Color: White
Imprint: Pfizer;PGN;150

Lyrica Pregabalin 50 MG
Oral Capsule
NDC: 00071-1013
Manufacturer: Parke-Davis
Div of Pfizer Inc
Shape: Capsule
Color: White
Imprint: Pfizer;PGN;50

2 (66.7%)

Same color, shape, similar imprint (at least 1- digit matching), but different manufacturers 131 (24.4%)

busPIRone HCl Oral Tablet
15 MG
NDC: 00378-1165
Manufacturer: Mylan
Pharmaceuticals, Inc.
Shape: Oval
Color: White
Imprint: M;B3;5;5;5

Metoprolol Succinate 25
mg Sustained Release
Tablet
NDC: 62037-0830
Manufacturer: Actavis
Pharma, Inc.
Shape: Oval
Color: White
Imprint: M

5 (83.3)

Amlodipine 10 MG Oral
Tablet
NDC: 67877-0199
Manufacturer: Ascend
Laboratories, LLC
Shape: Round
Color: White
Imprint: 209

Amlodipine 10 MG Oral
Tablet
NDC: 69097-0838
Manufacturer: Cipla USA
Inc.
Shape: Round
Color: White
Imprint: 239;IG

6 (15%)

Fig. 4 Frequency of the medication National Drug Code incorrectly predicted by the machine sharing similar characteristics. The left-
hand columns show an incorrect National Drug Code (NDC) predicted image along with description of the prescription label. The right-hand
columns show an example image of the NDC predicted by the machine.
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pharmacist interacts with a model’s output to make decisions. In
our study, we found that the image classification model tended to
be over-calibrated since it was more accurate than expected
based on the predicted probabilities produced. When the model is
underconfident, it may cause the pharmacist to over-rely on the
predicted probabilities since the model is “better than expected.”
This can lead the pharmacist to miss an incorrect fill when
supervising a system like this because of too much trust in the
machine’s predicted probability output.
On the other hand, when the model is overconfident, it may

cause the pharmacist to under-rely on the predicted probabilities
since the model is “worse than expected.” This can lead a
pharmacist to spend more time contemplating the correctness of
the medication and increase the cognitive demands of the task
because less trust is placed in the machine’s predicted probability
output. Eventually, pharmacists may abandon the system
altogether because they are skeptical of the machine’s advice.
More research is needed to explore how to safely and effectively
use MI models to alert pharmacists about potential medication
errors, streamline workplace processes, and reduce cognitive
demands.
Although the model performs well, a missed incorrectly filled

medication that is missed by the model is still problematic. In our
review of 571 incorrectly predicted images, we identified pairs of
medications with similar color, shape, and imprints. The United
States FDA requires imprinting of solid oral dosage forms on drug
products for human use30. However, medications that share
similar color, shape, and imprints with at least one common
character accounted for almost 50% of the errors. This problem is
especially important when considering the same medication
manufacturer for different strengths of the same medication
ingredient. For example, Fig. 4 shows that Paroxetine 30MG
Tablets are round, blue tablets with the imprint M on one side and
N3 on the other. Paroxetine 40MG Tablets made by the same
manufacturer are round, blue tablets with the imprint M on one
side and N4 on the other. The only other distinguishing
characteristic to rely on is the size difference of the two tablets
that can be misleading in an image. The error analysis also found
that lower quality images (e.g., blurry) and those with different
backgrounds were not predicted as well. In these cases, it is
reasonable to suspect that humans may have a more difficult time
distinguishing between these similar physical features too. It may
also be prudent for manufacturers to consider diversifying the
physical features of pills in order to help a model, or pharmacist, to
distinguish between correctly and incorrectly filled prescriptions.
Standardizing the background or segmenting out the vial could
be other strategies to improve the model performance.
There are several important limitations to our current analysis.

Despite the large number of images and range of NDC products in
our dataset, all of the images taken were from a single machine.
This decreases the generalizability of the model as performance
may degrade with changes in lighting, background, and resolution
of the images. The use of individual pill segmentation used in
previous research may help15,16,18, or, alternatively, a method for
segmenting out the top of the prescription vial from the
background could be especially helpful31. A second limitation is
the unbalanced number of images for each NDC. This makes it
difficult to determine a cause-and-effect relationship between
higher-level pill features, such as color, shape, and imprint and the
model’s ability to correctly predict the medication inside the vial. A
larger number of samples under more diverse imaging conditions
can help to improve the robustness potential utility of the model.
In this paper, we report on the use of a re-trained ResNet-18

model to classify medication NDC products based on a top-down
view inside a prescription vial showing a pile of pills with unique
colors, shapes, and imprints. Although the model achieves high
performance, incorrect predictions by the model can lead to
patient harm and increased work for pharmacists. Medications

with similar shape, color, and imprints can lead to incorrect model
predictions and increase the risk of patient harm. This is especially
true for different strengths of the same ingredient produced by
the same manufacturer. Manufacturers may consider diversifying
the physical features of medication products to minimize the
extent of the similarities. Future work focused on the mode for
communicating model advice to a human supervisor and
measuring the effect on work effort and error detection are
critical next steps.

METHODS
Overview
This is an observational cohort study, in which we re-train a well-known
neural network model to perform an image classification task where the
contents of the medication inside a prescription bottle prepared by
pharmacy staff are predicted. First, we introduce the dataset used and the
diversity of medications included. We then describe how we evaluated the
model’s performance and how we determined the influence of the
medication’s shape and color on the accuracy of the predictions. An
exemption from the University of Michigan Institutional Review Board was
approved because the study does not meet the definition of research
involving human subjects. A combination of Python and R was used for
model testing and evaluation.

Data collection
The medication images used in this study were captured by a commercial
medication dispensing robot used at a mail-order pharmacy in the United
States. When prescription information is transmitted to the robot for filling,
the robot counts out the number of pills into a vial. The prescription label is
placed on the side of the vial, an image showing top-down inside the vial is
taken, and then it is capped for further order verification by a pharmacist.
In addition, the medication contents are weighed and if the weight of the
filled prescription is out of pre-specified threshold bounds, then an alert is
generated to the pharmacy staff to investigate the medication contents.
The process described to obtain these images helps ensure that we have
high-quality training, validation, and test data.
Within the dataset of 432,974 images (1024 × 960 resolution), each

image is stored with a unique image ID and an 11-digit NDC. The NDC is a
numeric code registered with the United States FDA for all prescription and
non-prescription medications. We truncated the last two digits of the NDC
number as it refers to the quantity of the medication product in the
manufacturer’s packaging rather than representing a distinguishing
physical appearance of a tablet or capsule. The remaining nine digits
represent a unique medication product based on its ingredient, strength,
dosage form, and manufacturer. Each NDC product has a distinct physical
appearance (e.g., a yellow, round tablet with the imprint, M1).
Data were collected on the physical appearance of the NDC medication

for the models using National Institutes of Health PillBox Application
Programming Interface32, including features of color, shape, size (in mm) of
pills, manufacturer, tablet scoring, and imprint. When an NDC reported two
colors (e.g., a white and blue capsule) in the labeled data, we assigned a
label of “multi-color” for the corresponding NDC to simplify the category
labels. We report descriptive statistics of unique NDC in the dataset.

Model development
We performed three supervised image classification tasks upon this
Pharmacy pill Image dataset: 9-digit NDC categories (n= 345), pill color
categories (n= 12), and pill shape categories (n= 7) on full-resolution
images. We used full-resolution images in our experiments because the
contents of the prescription bottle are not segmented from the
background of the image. To do this, we used the ResNet-18 deep neural
network model proposed by He et al.20 for visual recognition-related tasks.
The models were implemented using the PyTorch framework33. ResNet
introduced an additional residual module into traditional deep networks,
which helped solve gradient vanishing problems along with handling the
increasing number of network layers. The deep structure of ResNet creates
a large number of parameters that makes it hard to train a network from
the start for our classification task. As a result, we fine-tuned the ResNet-18
network for the medication image dataset, after pre-training on
ImageNet19. During the modeling prediction process, we used one
softmax layer as the output layer to normalize the predicted probabilities
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and the category corresponding to the maximum probability was selected
as the NDC, shape, or color attribute categories for each image. For the
three models, the image dataset was separated into training, test, and
validation datasets with the same ratio of 7:1.5:1.5 based on the number of
labeled images for each outcome category. All three models were fine-
tuned for ten epoches with an early stop strategy decided by the result of
validation set to prevent overfitting. Other methods including the support
vector machines (SVM) and the optical character recognition (OCR) were
also considered. However, due to the limitation of the real-world image
quality (illumination), image complexity (overlapping pills), and no
annotation to help image segmentation, extracting imprints using the
traditional OCR method was not adopted. An SVM classifier for NDC was
also implemented but was not reported due to low accuracy

Model evaluation
Three models were developed to predict the 9-digit NDC number, color,
and shape of medications inside prescription bottles. The overall accuracy
of the model was computed by dividing the number of incorrectly
predicted NDC by the total number of images predicted in the test set. We
also evaluated the classification results using a PR curve. When the model
predicts the NDC number, color, or shape correctly, we consider it as a
true-positive prediction. Each point on the PR curve represents the positive
predictive value (precision) and the true-positive rate (recall) at a particular
classification threshold. As an alternative to the ROC curve, PR curve is
more appropriate for datasets with uneven class distributions22. The AUC-
PR is a widely used measure of the model performance22,34. The reported
macro-average precision is the average of precision values for each class.
This metric helps check the effectiveness of the classifiers on small
classes35. We conducted additional analyses of the NDC model predictions
because it matches the task of the pharmacist most closely. Data analysis
of model performance was completed with scikit-learn36 and matplotlib37

in Python.
Next, a reliability diagram was used to visualize how well the predicted

probabilities of the NDC model were calibrated24. The diagram shows the
percentage correctly predicted NDC by the model against ten equal-size
bins of the model’s predicted probabilities (i.e., 0.0–0.1, 0.1–0.2, etc.). The
numbers of images in each bin are 45, 17, 36, 115, 153, 285, 287, 471, 1063,
62,802, respectively. Within each bin of predicted probabilities (x-axis), the
percentage of correct predictions was calculated (y-axis). A diagonal
reference line represents perfect calibration, where the percentage of
correct predictions equals its corresponding predicted probability. The
closer the points fall along the diagonal linear line, the better the predicted
probabilities by the MI are calibrated. Points above the diagonal line in the
plot indicate that the predicted probabilities are too small when they fall
into the category, which means the model tends to be correct more often
compared to the expected probability. Likewise, when points are below
the perfect calibration line, it means the given probabilities are too large
and the model tends to be incorrect more often compared to the
predicted probability bin. Included in the curve are 95% confidence
intervals for each bin. The caret38 and tidyverse39 packages in R were used
for this portion of data analysis.
Finally, we conducted an analysis of the images for all incorrectly

predicted NDC, which may have had an impact on the performance of
classifiers, and reported image features. To do this, we manually reviewed
all incorrectly classified images by the ResNet-18 model. In this step, we
removed any inappropriate images (i.e., not an image showing a top-down
view inside a prescription bottle). We then identified and categorized key
features of NDC products, including color, shape, and imprints, which led
to incorrect NDC predictions by comparing those features to the features
of the reference NDC. We also examined the composition of the images for
correctly and incorrectly predicted images for additional features, such as
the number of pills and background setting.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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