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Abstract: Oligostilbenoid compounds, a group of resveratrol multimers, display several anti-microbial
activities through the neutralization of cytotoxic oxidants, and by inhibiting essential host and viral
enzymes. In our previous study, we identified a series of oligostilbenoid compounds as potent
hepatitis C virus (HCV) replication inhibitors. In particular, vitisin B, a resveratrol tetramer, exhibited
the most dramatic anti-HCV activity (EC50 = 6 nM and CC50 > 10 µM) via the disruption of the viral
helicase NS3 (IC50 = 3 nM). However, its further development as an HCV drug candidate was halted
due to its intrinsic drawbacks, such as poor stability, low water solubility, and restricted in vivo
absorption. In order to overcome these limitations, we focused on (+)-ε-viniferin, a resveratrol dimer,
as an alternative. We prepared three different versions of (+)-ε-viniferin, including one which was
extracted from the grapevine root (EVF) and two which were chemically synthesized with either
penta-acetylation (SVF-5Ac) or no acetylation (SVF) using a newly established synthesis method.
We confirmed their anti-HCV replication activities and minimal cytotoxicity by using genotype
1b and 2a HCV replicon cells. Their anti-HCV replication action also translated into a significant
reduction of viral protein expression. Anti-HCV NS3 helicase activity by EVF was also verified
in vitro. Finally, we demonstrated that SVF has improved pharmacokinetic properties over vitisin B.
Overall, the favorable antiviral and pharmacokinetic properties of these three versions of viniferin
warrant their further study as members of a promising new class of anti-HCV therapeutics.

Keywords: hepatitis C virus (HCV); viniferin; antiviral activity; NS3 helicase inhibitor; pharmacokinetics

1. Introduction

Hepatitis C virus (HCV) is a member of the Flaviviridae family of viruses and contains a
single-stranded positive RNA genome. Following the entry into a host hepatocyte, an IRES (internal
ribosome entry site)-dependent translation of its RNA genome results in a long polyprotein (~3000 amino
acids), which is subsequently cleaved into 10 individual viral proteins by host and virus proteases [1,2].
The E1, E2, and core viral structural proteins constitute a mature virion—however several nonstructural
(NS) proteins, including NS2, NS3, NS4A, NS4B, NS5A, and NS5B, are necessary to build a functional
replication complex in the endoplasmic reticulum as a self RNA copy machine [3–5]. Particularly,
the HCV NS3 protein plays two essential roles in the viral life cycle. First, coordination between its
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N-terminally encoded protease activity and a viral scaffold protein (NS4A) is required for the efficient
cleavage of a viral polyprotein. Second, its C-terminally encoded helicase activity plays an essential role
in the HCV life cycle. The NS3 helicase assists in HCV RNA replication by resolving double-stranded
RNA intermediates formed during viral RNA replication [6]. However, the development of HCV NS3
helicase inhibitors has been difficult due to their homology with host helicase proteins.

Approximately 170 million people are estimated to be infected with HCV worldwide [7].
Once infected, ~70–80% of HCV-positive carriers develop a chronic infection with a high chance
of developing chronic liver diseases (e.g., liver cirrhosis and hepatocellular carcinoma) ~ 20 years
after infection [8,9]. HCV infection is the primary cause of liver transplantation in the United States,
accounting for approximately 40~45% of all liver transplants [10]. Traditionally, the treatment
for HCV infection has relied on a combination of pegylated interferon-α and ribavirin. Recently,
different combinations of direct-acting antiviral drugs with improved antiviral efficacy have
emerged. They include glecaprevir (NS3/4A protease inhibitor)/pibrentasvir (NS5A inhibitor),
sofosbuvir (NS5B RNA polymerase inhibitor)/ledipasvir (NS5A inhibitor), sofosbuvir/daclatasvir
(NA5A inhibitor), sofosbuvir/simeprevir (NS3/4A protease inhibitor), sofosbuvir/velpatasvir (NS5A
inhibitor), and elbasvir (NS5A inhibitor)/grazoprevir (NS3/4A protease inhibitor) [11]. Depending
on the HCV genotype, the liver condition of the patient (cirrhosis), HIV coinfection status, and the
patient’s ethnicity, a specific type and duration of anti-HCV treatment regimens can be customized [12].
This leads to remarkable clearance rate of approximately 90% among all chronic HCV cases with
the new combination treatment regimen [13]. However, in spite of this progress, morbidity and
mortality associated with HCV infection still constitute a large burden on the health care system of
affected countries.

In our previous study, we observed the inhibitory activity of grapevine root extract against HCV
replication through cell-based screening of the Asian herbal plants extract library [14]. Especially,
a group of oligostilbenoid compounds such as ampelopsin A, (+)-ε-vinifirin, wilsonol C, vitisin A,
and vitisin B were purified from grapevine root. Among them, we identified vitisin B as the most potent
HCV replication suppressor, and its mechanism of action relies on inhibiting the HCV NS3 helicase.
However, an undesirable pharmacokinetic property of vitisin, and the difficulties associated with
synthesizing a compound of its size (molecular weight 906), precluded its further development. Instead,
we pursued one of our previously identified anti-HCV replication inhibitors, (+)-ε-viniferin (Figure 1A),
as an alternative candidate, and established a new synthesis methodology. In this study, we prepared
three versions of viniferin—one was a plant extract (EVF) and two were chemically synthesized with
either penta-acetylations (SVF-5Ac) or no acetylation (SVF) (Figure 1B). Their anti-HCV replication
activities in HCV genotype 1b and 2a replicons were compared in parallel. The suppression of HCV
NS3 helicase activity by EVF was further studied. Finally, the pharmacokinetic properties of SVF upon
oral and intraperitoneal administration were examined in a mouse model.

2. Materials and Methods

2.1. Preparation of EVF from Vitis Vinifera

The roots of Vitis vinifera (600 g) were pulverized, mixed with ethanol (5 L), and evaporated under
reduced pressure to create an ethanol extract (43 g). The ethanol extract was suspended in water and
successively partitioned with n-hexane, ethyl acetate, and n-butanol. The ethyl acetate soluble extract
(EA, 14.1 g) was subjected to silica gel column chromatography (CC) where a chloroform–methanol
mixture [chloroform–methanol; 50:1 (Fr. EA-A), 20:1 (Fr. EA-B), 10:1 (Fr. EA-C), 5:1 (Fr. EA-D),
2:1 (Fr. EA-E), and 1:1 (Fr. EA-F)] was used during elution. Fr. EA-B (6.3 g) was chromatographed on a
silica gel CC [chloroform-methanol, 25:1 (v/v)] to give Fr. EA-Ba – EA-Bh. The Fr. EA-Bd (150 mg) was
subjected to flow-rate gradient HPCCC using a two-phase solvent system composed of n-hexane-ethyl
acetate-methanol-water [4:8:4:10 (v/v), reversed-phase mode, mobile phase flow rate: 4 mL/min in



Viruses 2019, 11, 890 3 of 18

0–70 min, 8 mL/min in 70–250 min] to yield 8.9 mg of EVF. The structure of EVF was identified by
comparing its 1H NMR, 13C NMR, and Q-TOF MS spectroscopic data [15–18].

2.2. Organic Synthesis of SVF-5Ac and SVF

All chemicals were purchased from commercial sources and were used without further purification.
Product purification occurred via flash column chromatography, and a TLC analysis was performed
on commercial plates coated with silica gel 60 F254. Spots on the TLC plates were visualized by
UV radiation. HRMS was recorded on a Water’s Q-TOF mass spectrometer. 1H and 13C NMR
spectral analyses were performed on a Varian spectrometer at 400 MHz using TMS as an internal
standard. Coupling constants (J) are reported in Hz. Standard abbreviations s, d, t, and m refer
to singlet, doublet, triplet, and multiplet, respectively. The purity of the products was analyzed by
reversed-phase high-pressure liquid chromatography (RP-HPLC), which was performed on a Waters
Corp. HPLC system equipped with a UV detector set at 254 nm. The mobile phases consisted of A)
H2O containing 0.05% TFA and B) CH3CN. The HPLC employed a YMC Hydrosphere C18 (HS-302)
column (5µ particle size, 12 nM pore size), 4.6 mm dia. × 150 mm with a flow rate of 1.0 mL/min.
Compound purity was assessed using a gradient of 25 % B to 100 % B in 35 min.

To synthesise SVF-5Ac, a stirred solution of resveratrol (1.0 g, 4.38 mmol) in methanol/water
(10:1, 11 mL) and ruthenium (III) chloride hydrate (1.09 g, 5.26 mmol) was added at 0 ◦C. The reaction
mass was stirred at 35 ◦C for 3 h. After the removal of volatiles in a vacuum, the crude residue
was dissolved in ethyl acetate (200 mL) and washed with sat. brine. The organic layer was dried
over anhydrous MgSO4, filtered, and evaporated. The residue was purified by silica gel column
chromatography (0–20% acetone in methylene chloride) to give an SVF-5Ac-enriched product (340 mg)
and unreacted resveratrol (350 mg, 1.53 mmol). The SVF-5Ac-enriched product was dissolved in
dichloromethane (20 mL) and DMSO (1 mL). Triethylamine (2.8 mL, 17.8 mmol) and Ac2O (1.36 mL,
14.4 mmol) were added at 0 ◦C and then stirred at room temperature for 5 h. The reaction mixture
was diluted with dichloromethane (100 mL) and then washed with sat. NaHCO3 and sat. brine,
sequentially. The organic layer was dried over anhydrous MgSO4, filtered, and evaporated. The crude
product was purified by silica gel column chromatography (15%–25% ethyl acetate in hexanes) to
render SVF-5Ac (0.18 g, 18% in two steps) as an off-white solid: 1H NMR (400 MHz, CDCl3) δ 7.3 (d,
J = 8.8 Hz, 2 H), 7.18 (d, J = 8.4 Hz, 2 H), 7.1 (d, J = 8.4 Hz, 2 H), 6.99 (d, J = 8.4 Hz, 2 H), 6.94 (s, 1 H),
6.9 (s, 1 H), 6.89 (d, J = 16.8 Hz, 1 H), 6.85 (s, 2 H), 6.64 (s, 1 H), 6.55 (d, J = 16 Hz, 1 H), 5.6 (d, J = 6.8 Hz,
1 H), 4.6 (d, J = 6.4 Hz, 1 H), 2.33 (s, 3 H), 2.29 (s, 3 H), and 2.26 (bs, 9 H); 13C NMR (100 MHz, CD3OD)
δ 169.4-168.7, 160.8, 152-150.3, 144.3, 138, 135.2, 134.3, 130.3, 127.7, 126.6, 123.9, 123.8, 121.9, 121.7, 118.5,
114.8, 110.6, 102.8, 92.6, 56.6, and 21.2-21; IR (neat) 1741.5, 1588.1, 1369.8, 1185.3, 1122.9, and 1013.7
cm-1; HPLC: 97.9% (retention time, 21.5 min); HRMS (ESI) m/z calcd for C38H33O11 [M+H]+: 665.2023,
found: 665.2023.

For the synthesis of SVF, KOH (25 mg, 0.44 mmol) was added at room temperature to a stirred
solution of SVF-5Ac 1 (50 mg, 0.075 mmol) in methanol (6 mL). The mixture was stirred for 30 min.
After the methanol was removed under a vacuum, the crude residue was dissolved in ethyl acetate
(25 mL) and 1 N HCl (10 mL). The partitioned organic layer was dried over anhydrous MgSO4, filtered,
and evaporated. The crude residue was purified by recrystallization (acetone/dichloromethane/hexanes
to remove non-polar impurities and then acetone/dichloromethane to remove polar impurities) to yield
SVF (30 mg, 88%) as a pale yellow solid: 1H NMR (400 MHz, CD3OD) δ 7.14 (d, J = 8.8 Hz, 2 H), 7.04
(d, J = 8 Hz, 2 H), 6.83 (d, J = 16.4 Hz, 1 H), 6.75 (d, J = 8.4 Hz, 2 H), 6.65 (d, J = 8.4 Hz, 2 H), 6.62 (d,
J = 1.6 Hz, 1 H), 6.58 (d, J = 16.4 Hz, 1 H), 6.24 (d, J = 1.6 Hz, 1 H), 6.17 (d, J = 2 Hz, 1 H), 6.16 (bs, 2 H),
5.37 (d, J = 6.8 Hz, 1 H), and 4.35 (d, J = 6.8 Hz, 1 H); 13C NMR (100 MHz, CD3OD) δ 161.3, 158.3-156.9,
145.9, 135.5, 132.4, 128.9, 127.3, 126.7, 122.2, 118.6, 114.9, 106, 102.9, 100.7, 95.4, 93.4, and 56.8; IR (neat)
3311.3, 1590.7, 1510.1, 1440, 1237.2, 1148.9, and 1115.1 cm-1; HPLC: 95.13 (retention time, 9.1 min);
HRMS (ESI) m/z calcd for C28H23O6 [M+H]+: 455.1495, found: 455.1487.
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2.3. Cell Culture

Huh7.5-based HCV replicon cells were maintained in Dulbecco’s modified Eagle’s medium
(DMEM, Hyclone) supplemented with 1% L-glutamine (Hyclone, Logan, UT, USA), 1% penicillin-
streptomycin (Hyclone, Logan, UT, USA), 1% non-essential amino acid (Hyclone, Logan, UT, USA),
and 10% fetal bovine serum (JR Scientific, Woodland, CA, USA).

2.4. Plasmids

Rluc-J6/JFH1 (FL-J6/JFH-5′C19Rluc2AUbi) [19] is a monocistronic, full-length HCV genome
that expresses a renilla luciferase and infectious genotype 2a HCV genome J6/JFH1 [20]. Bart79I
is a high-efficiency bicistronic subgenomic replicon of HCV derived from an HCV genotype 1b
Con1 sequence that harbors the neomycin phosphotransferase gene in the first cistron and the HCV
nonstructural proteins in the second cistron under the translational control of an EMCV internal
ribosome entry site (IRES) [21]. This plasmid also has an adaptive mutation (S2204I) in NS5A,
which increases replication efficiency. Bart79I-YFP was made by the removal of amino acids 2209 to
2254 in Bart79I and the insertion of a PCR-amplified YFP sequence from pEFYP-C1 (Clonetech, Mountain
View, USA) using a flanking NotI site for direct cloning into NS5A of Bart79I. FL-J6/JFH-5′C19Rluc2AUbi
and Bart79I were gifts from Dr. Charles Rice at Rockefeller University. Cell-culture produced infectious
HCV (HCVcc) expressing an HCV NS5A-GFP fusion protein [22].

2.5. In Vitro Transcription for the Production of HCV RNA Genomes

HCV RNA genomes were produced via in vitro transcription. [23]. Briefly, wild type Bart79I,
J6/JFH1, or RLuc-J6/JFH1 plasmids were linearized by ScaI (NEB) digestion for Bart79I or XbaI (NEB)
digestion for J6/JFH1. The T7 promoter-driven in vitro transcription was performed on the digested
plasmid to produce the wild type HCV RNA genomes using a MEGAscript kit (Ambion, Waltham,
MA, USA).

2.6. Western Blot Analysis

Either Huh7.5-J6/JFH1 or Bart79I replicon cells were plated onto a six well plate (Costar) and
supplemented with DMSO, EVF, SVF, or SVF-5Ac at indicated concentrations. At 120 h after incubation,
whole-cell extracts were prepared in RIPA buffer (150 mM NaCl, 1% Triton X-100, 1% deoxycholic acid
sodium salt, 0.1% sodium dodecyl sulfate, 50 mM Tris-HCl, 2 mM EDTA, pH 7.5; genDEPOT, Katy, TX,
USA) containing a cocktail of Complete protease inhibitors (Roche, Basel, Switerland) and quantitated
by the Bradford assay (Bio-Rad, Hercules, CA, USA). Equal amounts of protein were electrophoresed
on an SDS–polyacrylamide gel, subsequently transferred to a polyvinylidene difluoride membrane
(Immobilon-P; Millipore, Burlington, VT, USA), and probed with a mouse anti-Core antibody or an
anti-NS5A monoclonal antibody (1:1000, 1868 for Core, 1:1000, 1847 for NS3 1:1000, and 1877 for
NS5A; Virostat, Westbrook, ME, USA). A time response curve was also produced by performing
similar Western blot analyses at 24, 48, and 72 h after treating cells with DMSO and 10 µM of EVF, SVF,
or SVF-5Ac.

2.7. Quantitative Real-Time RT-PCR (qRT-PCR) Analysis

Either Huh7.5-J6/JFH1 or Bart79I replicon cells were plated onto a six well plate (Costar, New York,
NY, USA) and supplemented with DMSO, EVF, SVF, or SVF-5Ac with indicated concentrations.
Three days after incubation, total cellular RNA was extracted using the RNeasy® mini kit (Qiagen,
Venlo, The Netherlands) in accordance with the manufacturer’s instructions. The yield of the extracted
RNA was assessed spectrophotometrically. The expression of HCV subgenomic RNA and cellular RNA
was measured by quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR)
analysis. The qRT-PCR analysis was performed using a CFX384 qRT-PCR system (Bio-Red, Hercules,
CA, USA), and the amplification program included 40 cycles at 94◦C for 10 s (denaturing), 55 ◦C for 15 s
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(annealing), and 72 ◦C for 30 s (extension). Each sample was normalized by the endogenous reference
gene glyceraldehydes-3-phosphate dehydrogenase (GAPDH). The cDNA quantification was performed
using the CFX384 real-time PCR detection system (Bio-Rad). The primers used in the qRT-PCR reactions
were as follows. FW-J6/JFH1-CTCCGCCATGAATCACTC, RV-J6/JFH1-ACGACACTCATACTAACGC,
FW-Bart79I-AGAGCCATAGTGGTCT, RV-Bart79I-CCAAATCTCCAGGCATTGAGC, FW-GAPDH-
TGGTCTCCTCTGACTTCA, and RV-GAPDH-CGTTGTCATACCAGGAAATG. A time response curve
was also produced by measuring renilla luciferase activity, as well as cell viability at 24, 48, and 72 h
after treating HCV RNA-transfected cells with DMSO and 10 µM of VF.

2.8. Graphene Oxide (GO)-Based NS3 Helicase Inhibition Assay

The helicase assay was performed using a graphene oxide-based NS3 helicase inhibition assay. [24].
Briefly, a double-stranded DNA substrate of the HCV NS3 helicase was prepared by mixing 2 µL of
a 10 µM Cy5-labeled DNA strand (5′-Cy5-TGG CGA CGG CAG CGA GGC AGA GGA GCA GAG
GGA GCA-3′ Genotech, Daejeon, Korea) with a two-fold excess of the complementary DNA strand
(5′-GCC TCG CTG CCG TCG CCA-3′, Genotech, Daejeon, Korea) with a subsequent annealing process
at 95 °C for 5 min in annealing buffer solution (50 mM Tris-HCl, pH 8.0, Fischer) and 50 mM NaCl
(Junsei, Tokyo, Japan)]. A helicase substrate cocktail was prepared in a 96 well, black-walled plate by
mixing 20 nM annealed Cy5-labeled dsDNA substrate with a 0.3 M EDTA (pH 8.0) solution (Bio-Rad)
and 20 mM ATP (Sigma, St.Lous, USA) in a 1× reaction buffer [50 mM Tris-HCl (pH 8.0), 50 mM NaCl,
10% glycerol (Bio Basic Inc., ON, Canada), and 0.65 mM MgCl2 (Junsei)] in total volume of 30 µL. To the
prepared substrate cocktail, 15 µL of GO solution (20 µg/mL in 1× reaction buffer) was added, and the
mixture was incubated for 10 min at room temperature. Then, 5 µL of HCV NS3 helicase in 1× reaction
buffer with various concentrations of EVF were added to the mixture of substrate cocktail and GO
solution after 10 min of pre-incubation. The final concentrations of the key components in the reaction
mixture were 10 nM (Cy5-dsDNA substrate), 5 µg/mL of GO, and 2 nM of HCV NS3 helicase in a total
volume of 60 µL with 1× reaction buffer. Finally, the unwinding activity and inhibition efficiency of the
helicase was measured via fluorescence intensity at Ex/Em = 650/675 nm using a SynergyMx (BioTek,
Winooski, VT, USA) fluorometer.

2.9. In Vivo Pharmacokinetic Study of SVF

Institute of Cancer Research (ICR) mice (male, 9 weeks of age, 35-40 g) were obtained from Orient
Bio (Sungnam, Korea), and were acclimatized in the animal research facility of the Catholic University
of Korea (CUK) for at least one week. All animal experiments were performed in accordance with the
protocols approved by the Institutional Animal Care and Use Committee of CUK. SVF was administered
orally (50 mg/kg, n = 4) or intraperitoneally (7.5 mg/kg, n = 4). SVF was dissolved with 1.5% (v/v)
dimethylsulfoxide in distilled water and each mouse was administered a volume of 0.7 mL/100 g.
Blood samples (approximately 20 µL) were serially collected using 20 µL heparinized microcapillaries
and a micropipette after a slight incision of the lateral tail vein, as previously described [25] at 5, 15,
30, 60, 120, 240, 360, and 480 min after SVF dosing. The blood samples were transferred into 0.2 mL
microcentrifuge tubes and immediately centrifuged at 15,000× g for 5 min at 4 ◦C to separate the
plasma (8 µL), which was stored at –80 ◦C until analysis. The detailed analytical conditions and assay
validation parameters were previously reported [25]. The pharmacokinetic parameters of SVF were
calculated by the non-compartmental method using WinNonlin software (Pharsight Corp., Version
5.0.1).

2.10. Statistical Analysis

Values in the graphs represent the mean and standard deviations of representative experiments
performed in triplicate or quadruplicate using Prism v5.0c software. Calculated p-values from the
Student’s t-test less than 0.05, when compared with a control, were considered statistically significant.
A single asterisk (*) indicates that the p-value is between 0.1 and 0.5. A double asterisk (**) indicates
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that a p-value is between 0.1 and 0.01. A triple asterisk (***) indicates that the p-value is less than 0.01.
The resulting data were fit to the Hill equation using the Prism v5.0c software to calculate EC50 and
CC50 values. We recalculated all the half-life values (T1/2) by using the following equation for one
phase decay: Y = (Y0 - Plateau)*exp(-K*X) + Plateau, where X = Time, Y = RNA levels, starting at
Y0 and decaying (with one phase) down to plateau; Y0 and plateau have same units as Y; K = Rate
constant equal to the reciprocal of the X-axis units [26].

3. Results

3.1. Isolation of Plant-Derived EVF and Organic Synthesis of SVF-5Ac and SVF

In previous studies, we isolated five resveratrol oligomers, such as ampelopsin A, (+)-ε-viniferin,
wilsonol C, vitisin A, and vitisin B from grapevine roots and confirmed their inhibitory action against
HCV replication. Furthermore, we chose vitisin B since it was the most potent inhibitor of HCV
replication. However, despite its significant ability to prevent HCV replication in vitro, it showed low
bioavailability due to its relatively large molecular size and low water solubility [14]. Although EVF
exhibited approximately 30-fold less antiviral activity than vitisin B, its smaller size (half of vitisin B)
was expected to show better pharmacokinetic properties when compared with vitisin B.Viruses 2019, xx, x FOR PEER REVIEW  7 of 18 
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Figure 1. (A) The chemical structure of (+)-ε-viniferin (B) three different versions of (+)-ε-viniferin,
including one which was extracted from the grapevine root (EVF) and two which were chemically
synthesized with either penta-acetylation (SVF-5Ac) or no acetylation (SVF) (C) The organic synthesis
process of SVF-5Ac and SVF from resveratrol.

First, we isolated pure (+)-ε-vinifirin from grapevine roots using a previously published
purification protocol and named this compound as plant-extracted (+)-ε-viniferin (EVF) (Figure 1A) [14].
However, scaling-up the purification of EVF was impossible due to the scarcity of the plant source. Thus,
we decided to perform a chemical synthesis of vinifirin instead. According to the literature, the synthesis
of (+)-ε-viniferin can be performed through an oxidative coupling reaction of resveratrol [27]. However,
reacting resveratrol with FeCl3·6H2O as the oxidizing agent produced a very low and inconsistent yield
of product, as well as a large quantity of inseparable adducts (data not shown). To overcome these
drawbacks, we employed diverse oxidizing agents and obtained improved results when ruthenium
chloride (RuCl3·H2O) was used as the oxidant (Figure 1C). Even though the reaction yield was only
21% of the starting material, the formation of (±)- -viniferin (SVF) was sufficient and reproducible.
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The isolation of the product in a pure state was problematic because of the polarity caused by the
presence of many free hydroxyl groups. Hence, impure SVF resulting from oxidative dimerization
was acetylated to yield penta-acetylated (±)- -viniferin (SVF-5Ac) [28], which was easily purified by
flash column chromatography. Subsequent deacetylation of SVF-5Ac with KOH in methanol yielded
the final product [27] without column chromatography purification and with excellent yield (88%)
(Figure 1C). The newly developed method was suitable for the large scale synthesis of SVF [27].

3.2. Inhibition of HCV Replication by EVF, SVF-5Ac, and SVF

In order to study the effects of EVF, SVF-5Ac, and SVF on HCV replication, we transfected huh7.5
hepatocarcinoma cells with in vitro transcribed renilla luciferase-linked genotype 2a J6/JFH1 RNAs [19]
and treated HCV RNA-transfected Huh7.5 cells with either EVF, SVF-5Ac, or SVF for 72 h. Then,
the luciferase activity was measured as a surrogate for HCV RNA replication together with cell viability.
EVF exhibited the most potent antiviral activity with little cytotoxicity (EC50 = 0.1 µM and CC50 > 10
µM) followed by SVF-5Ac (EC50 = 2.37 µM and CC50 > 10 µM) and SVF (EC50 = 0.2 µM and CC50 > 10
µM) (Figure 2). A time-dependent reduction in HCV RNA genome replication was also confirmed
with the application of 10 µM of either EVF, SVF-5Ac, or SVF (Figure 2). Their half-life (T1/2) values
(i.e., the time required for a 50% reduction of HCV RNA genome replication in the presence of the
compound at 10 µM) were comparable to each other (15.5 h for EVF, 12.6 h for SVF-5Ac, and 21.9 h
for SVF).

To rule out the possibility of an artificial effect of the inserted renilla luciferase on HCV replication,
we tested its impact on HCV replication with real-time RT-PCR analysis. We first transfected Huh7.5
cells with full-length infectious J6/JFH1 RNAs (Huh7.5-J6/JFH1) (genotype 2a) [20], and then we
treated the transfected cells with an increasing concentration of either EVF, SVF-5Ac, or SVF for 72 h.
In addition, we also treated the transfected cells with 10 µM of either EVF, SVF-5Ac, or SVF for an
increasing period of time to study any time-dependent effects on HCV replication. As shown in
Figure 3, real-time RT-PCR analyses confirmed that the three versions of vinifirin exhibited dose- and
time-dependent inhibition of HCV replication. Their EC50 and T1/2 values were: EVF (EC50 = 2.9 µM
and T1/2 = 10.0 h) (Figure 3A), SVF-5Ac (EC50 = 4.7 µM and T1/2 = 11.1 h) (Figure 3B), and SVF
(EC50 = 9.3 µM and T1/2 = 62.5 h) (Figure 3C). Their overall antiviral potency was reduced in Huh7.5
cells maintaining a genotype 2a HCV replicon without a renilla luciferase. When we performed a
similar experiment using sub-genomic genotype 1b HCV replicon cells (Huh7.5-Bart79I) harboring
a neomycin-resistant gene, we also confirmed their anti-HCV replication activities in a dose- and
time-dependent fashion (Figure 4). In particular, SVF displayed the most potent antiviral activity in
genotype 1b HCV replicon cells with an EC50 value of 1.7 µM (Figure 4C). The EC50 and T1/2 values for
EVF and SVF-5As were: EVF (EC50 = 7.0 µM and T1/2 = 10.9 h) (Figure 4A), SVF-5Ac (EC50 = 10.4 µM
and T1/2 = 18.1 h) (Figure 4B). These data indicate an efficient inhibition of genotype 2a and 1b HCV
replication by all three versions of viniferin with minimal cytotoxicity.
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Figure 2. The concentration and time-dependent effects of (A) EVF, (B) SVF-5Ac, and (C) SVF
on genotype 2a HCV replication and cell viability in Rluc-J6/JFH1 RNA-transfected Huh7.5 cells.
HCV replication and cell viability were measured by luciferase and MTT assays in renilla luciferase-
J6/JFH1 RNA-transfected Huh7.5 cells after treating them with an indicated compound for 72 h. EC50

is the concentration required for 50% inhibition of HCV replication. CC50 is the concentration required
for 50% inhibition of cell viability. T1/2 is the time required for 50% inhibition of HCV replication at
10 µM of the indicated compound. A single asterisk (*) indicates that the p-value is between 0.1 and 0.5.
A double asterisk (**) indicates that a p-value is between 0.1 and 0.01. A triple asterisk (***) indicates
that the p-value is less than 0.01.
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Figure 3. The concentration- and time-dependent effects of (A) EVF, (B) SVF-5Ac, and (C) SVF on
genotype 2a HCV replication and cell viability in J6/JFH1 RNA-transfected Huh7.5 cells. Their impacts
on HCV replication and cell viability were measured with real-time RT-PCR and MTT assays in J6/JFH1
RNA-transfected Huh7.5 cells. EC50 is the concentration required for 50% inhibition of HCV replication.
T1/2 is the time required for 50% inhibition of HCV replication at the concentration of 10 µM. 1 nM of
daclatasvir, an NS5A inhibitor, was used as a positive control. A single asterisk (*) indicates that the
p-value is between 0.1 and 0.5. A double asterisk (**) indicates that a p-value is between 0.1 and 0.01.
A triple asterisk (***) indicates that the p-value is less than 0.01.



Viruses 2019, 11, 890 10 of 18
Viruses 2019, xx, x FOR PEER REVIEW  10 of 18 

 

 
Figure 4. The concentration- and time-dependent effects of (A) EVF, (B) SVF-5Ac, and (C) SVF on 
genotype 1b HCV replication and cell viability in Bart79I RNA-transfected Huh7.5 cells. Their impacts 
on HCV replication and cell viability were measured with real-time RT-PCR and MTT assays in 
Bart79I RNA-transfected Huh7.5 cells. EC50 is the concentration required for 50% inhibition of HCV 
replication. T1/2 is the time required for 50% inhibition of HCV replication at the concentration of 10 
μM. 1 nM of daclatasvir, an NS5A inhibitor, was used as a positive control. A single asterisk (*) 
indicates that the p-value is between 0.1 and 0.5. A double asterisk (**) indicates that a p-value is 
between 0.1 and 0.01. A triple asterisk (***) indicates that the p-value is less than 0.01. 

3.3. Inhibition of HCV Protein Expression by EVF, SVF-5Ac, and SVF  

The inhibition of RNA virus genome replication results in the suppression of viral protein 
expression. Thus, we wanted to determine whether a decrease in viral protein expression occurs as a 
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protein production in a dose-dependent manner. The concentrations required for a 50% reduction of 
the NS3 protein (EC50) were: 1.23 μM for EVF, 1.0 μM for SVF-5Ac, and 6.4 μM for SVF. Furthermore, 
using a fixed concentration (10 μM) of each compound for a different incubation time allowed us to 
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Figure 4. The concentration- and time-dependent effects of (A) EVF, (B) SVF-5Ac, and (C) SVF on
genotype 1b HCV replication and cell viability in Bart79I RNA-transfected Huh7.5 cells. Their impacts
on HCV replication and cell viability were measured with real-time RT-PCR and MTT assays in Bart79I
RNA-transfected Huh7.5 cells. EC50 is the concentration required for 50% inhibition of HCV replication.
T1/2 is the time required for 50% inhibition of HCV replication at the concentration of 10 µM. 1 nM of
daclatasvir, an NS5A inhibitor, was used as a positive control. A single asterisk (*) indicates that the
p-value is between 0.1 and 0.5. A double asterisk (**) indicates that a p-value is between 0.1 and 0.01.
A triple asterisk (***) indicates that the p-value is less than 0.01.

3.3. Inhibition of HCV Protein Expression by EVF, SVF-5Ac, and SVF

The inhibition of RNA virus genome replication results in the suppression of viral protein
expression. Thus, we wanted to determine whether a decrease in viral protein expression occurs as
a result of the inhibitory effects of EVF, SVF-5Ac, and SVF on HCV replication. For this purpose,
we treated J6/JFH1 RNA-transfected Huh7.5 cells with an increasing concentration of either EVF,
SVF-5Ac, or SVF for 120 h. As shown in Figure 5, all three compounds were able to reduce HCV NS3
protein production in a dose-dependent manner. The concentrations required for a 50% reduction of
the NS3 protein (EC50) were: 1.23 µM for EVF, 1.0 µM for SVF-5Ac, and 6.4 µM for SVF. Furthermore,
using a fixed concentration (10 µM) of each compound for a different incubation time allowed us to
calculate the half-life (T1/2) required for a 50% reduction of the HCV NS3 protein. Their T1/2 values were:
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35.1 h for EVF, >72 h for SVF-5Ac, and 37.1 h by SVF (Figure 5). In addition, genotype 1b subgenomic
Bart79I cells were also used to evaluate the dose- and time-dependent effects of EVF, SVF-5Ac, and SVF
on viral protein levels. EVF, SFV-5Ac, and SVF all showed a more dramatic reduction in the HCV
NS5A protein level in Bart79I RNA-transfected cells than J6/JFH1-transfected cells (Figure 6). EC50 and
T1/2 values, determined by measuring the NS3 protein level in Bart79I-transfected Huh7.5 cells,
were: EVF (EC50 = 0.9 µM and T1/2 = 58.2 h) (Figure 6A), SVF-5Ac (EC50 = 0.8 µM and T1/2 = 29.6 h)
(Figure 6B), and SVF (EC50 = 0.9 µM and T1/2 = 13.1 h) (Figure 6C). Collectively, these data suggest
that all three versions of vinifirin can reduce HCV protein production by inhibiting viral genome
replication. All the EC50 values for EVF, SVF-5Ac, and SVF, which were determined by using genotype
2a and 1b luciferase reporter assay, RT-PCR, and Western blot analyses are summarized in Table 1.
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Figure 5. The concentration- and time-dependent inhibitory effects of (A) EVF, (B) SVF-5Ac, and (C) SVF
on genotype 2a HCV protein expression in J6/JFH1 RNA-transfected Huh7.5 cells. Their impacts on
HCV protein expression were measured by Western blot analysis of the HCV NS3 protein in J6/JFH1
RNA-transfected Huh7.5 cells. EC50 is the concentration required for 50% inhibition of HCV NS3
protein expression. T1/2 is the time required for 50% inhibition of HCV NS3 protein expression at the
concentration of 10 µM. Positions of 55 and 70 kd protein size markers were indicated with lines.
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Figure 6. The concentration- and time-dependent effects of (A) EVF, (B) SVF-5Ac, and (C) SVF on
genotype 1b HCV protein expression in Bart79I RNA-transfected Huh7.5 cells. Their impacts on HCV
protein expression were measured by Western blot analysis in Bart79I RNA-transfected Huh7.5 cells.
EC50 is the concentration required for 50% inhibition of HCV protein expression. 1 nM of daclatasvir,
an NS5A inhibitor, was used as a positive control. Positions of 55 and 70 kd protein size markers were
indicated with lines.

Table 1. Comparison of EC50, CC50, and T1/2 values for EVF, SVF-5Ac, and SVF based on their results
from genotype 2a and 1b luciferase reporter assay, RT-PCR, and Western blot analyses.

Antiviral Assays
Used

EVF SVF-5Ac SVF

EC50 (M) CC50 (M) T1/2 (h) EC50 (M) CC50 (M) T1/2 (h) EC50 (M) CC50 (M) T1/2 (h)

GT 2a luciferase
reporter assay 0.1 >10 15.5 2.4 >10 12.6 0.2 >10 21.9

GT 2a RT-PCR 2.9 N/A 10 4.7 N/A 11.1 9.3 N/A 62.5
GT 1b RT-PCR 7 N/A 10.9 10.4 N/A 18.1 1.7 N/A 7.7

GT 2a Western blot 1.2 N/A 35.1 1 N/A >72 6.4 N/A 37.1
GT 1b Western blot 0.9 N/A 58.2 0.8 N/A 29.6 0.9 N/A 13.1

3.4. Inhibition of Genotype 1b HCV NS3 Helicase by EVF

In previous studies, we have identified that resveratrol tetramers such as vitisin B can inhibit
genotype 1b HCV NS3 helicase activity. Based on this observation, we hypothesized that vinifirin might
inhibit NS3 helicase activity through its direct binding. To test this hypothesis, we utilized a GO-based
NS3 helicase assay previously described [24]. In this assay, when Cy5-labelled double-stranded
DNA is dissociated into single-stranded DNA by HCV NS3 helicase, the fluorescence of the released
Cy5-labelled single-stranded DNA decreases by binding to GO. Therefore, blocking the HCV NS3



Viruses 2019, 11, 890 13 of 18

helicase with an inhibitor should lead to the restoration of fluorescent activity. As shown in Figure 7,
EVF increased fluorescence in a dose-dependent manner at a concentration below its IC50 value
(half maximal inhibitory concentration (IC50) = 58.7 nM), whereas the negative control resveratrol did
not, up to a concentration of 10 µM. These data suggest that the inhibition of HCV NS3 helicase is a
main antiviral mechanism of action by EVF.
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3.5. The Pharmacokinetic Characterization of SVF in Mice

In order to study the pharmacokinetic characteristics of SVF, we measured the plasma concentration
of SVF after oral and intraperitoneal administration (Figure 8A,B). We observed plasma profile patterns
and pharmacokinetic properties of SVF similar to those reported in our previous results [25]. Following
an oral dose of 50 mg/kg, the mean Cmax of SVF was 53.5 ± 28.2 ng/mL occurring at a Tmax of 22.5 min
(ranges, 15-30 min), which indicates fast absorption (Figure 8A). Following an intraperitoneal dose
of 15 mg/kg, plasma concentrations were much higher than those after oral dosing; the Cmax values
were 2130 ± 403 ng/mL (Figure 8B). Previous studies have shown that the oral bioavailability of SVF is
below 1% in mice [25]. These results suggest that its extremely low oral bioavailability might be due
to very low permeability in the gastrointestinal tract and intestinal first-pass effects, but not due to
hepatic first-pass effects. Intraperitoneal dosing might be a favorable route of administration for SVF.
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4. Discussion

In this study, we prepared three different versions of viniferin (EVF, SVF-5Ac, and SVF) via
plant-derived extraction and chemical synthesis (Figure 1). We identified all three as potential HCV
replication inhibitors in 2a and 1b HCV genotype replicon cells (Figures 2–4). We found that their
inhibition of HCV genome replication led to reduced expression levels of viral proteins in a dose- and
time-dependent manner (Figures 5 and 6). In addition, we also confirmed that the main inhibitory
mechanism of HCV replication by EVF was its suppression of HCV NS3 helicase activity (Figure 7).
Finally, we found that intraperitoneal administration of SVF improved its pharmacokinetic properties
when compared to oral administration in a mouse model (Figure 8).

EVF demonstrated 2.0- and 3.2-fold more antiviral activity than SVF in both genotype 2a renilla
luciferase-based and RT-PCR-based HCV replication assays, respectively (Figures 2 and 3). Its higher
antiviral potency was also evident in genotype 2a NS3 Western blot analysis (Figure 5). Since SVF is a
racemic mixture of (+)-ε-viniferin (EVF) and (-)- -viniferin, these data suggest the potential lack of
antiviral activity of (-)-ε-viniferin. However, this structure and activity relationship does not seem to
be applicable to genotype 1b HCV replication since SVF showed more potent antiviral activity than
EVF in genotype 1b HCV replication (Figure 4). Interestingly, there was no difference in the NS3
protein reduction capacity of SVF and EVF (Figure 6). Based on these data, we conclude that an HCV
genotype-specific difference in the antiviral activity of SVF and EVF appears to exist. With respect to the
potential effects of penta-acetylation of viniferin on HCV replication, it seems to mediate a detrimental
effect on HCV replication since its removal contributed to increased antiviral potency in the genotype
2a HCV reporter assay (Figure 2). This negative effect of penta-acetylation on HCV replication was also
validated by the genotype 1b HCV RT-PCR-based replication assay (Figure 4). However, its removal
resulted in decreased antiviral potency in the genotype 2a RT-PCR-based replication assay (Figure 3)
and the genotype 2a NS3 Western blot-based assay (Figure 5). The presence of a renilla luciferase gene
in genotype 2a HCV replicon may contribute to this discrepancy via an as yet unknown mechanism.

HCV helicase helps coordinate polyprotein translation and processing, and it can strip
RNA-binding proteins from viral RNA, which aids in translation. The NS3 helicase is a Y-shaped
protein composed of three domains. Domains 1 and 2 are RecA-like domains[29], the ATP-binding
site is located between domains 1 and 2, and oligonucleotides are thought to be located between two
RecA-like domains and domain 3 [30]. In this study, we confirmed that vinifirin displays different
antiviral effects on different HCV genotypes. A difference in DNA unwinding rates between genotypes
1 and 2 HCV helicases has been reported [31]. The genotype 2a HCV helicase unwinds DNA faster
than other HCV genotype helicases, possibly because it binds more tightly to target DNA. This might
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enhance the processivity of the helicase enzyme [32–34]. A more rapid helicase activity might be
one of the reasons why genotype 2a HCV replication is more sensitive to viniferin than genotype 1b.
Since we confirmed the inhibitory effect of SVF only on HCV genotype 1b helicase (Figure 7), it would
be interesting to test the impact of SVF on HCV genotype 2a helicase in the future. These data could
provide clues on the genotype-specific effects of the three viniferin versions on HCV replication.

Several biological functions of viniferin have been demonstrated. For example, viniferin
exhibited hepatoprotective activity and had a potent inhibitory effect against lipoxygenase and
the oxidation of low-density lipoprotein and high-density lipoprotein [35]. It was also shown to prevent
inflammation [36]. Furthermore, vinifirin was even identified as an anti-Alzheimer’s agent. Indeed,
it inhibits Aβ-induced neuronal apoptosis through regulation of the SIRT1-ROCK1 signaling pathway
and Aβ aggregation [37]. However, these effects do not appear to be related to viniferin’s role in the
inhibition of HCV replication considering its nano-molar rage of inhibitory activity against HCV NS3
helicase in vitro (Figure 7). However, a micro-molar range of antiviral potency in cell-based assays
seems to be relatively high. This loss of antiviral potency could be due to its cell permeability and
stability in the cells.

The concentration of viniferin in wine is between 0.1 and 4.3 mg/L [36]. Viniferin has been shown,
in vitro, to possess antioxidant, anti-inflammatory, anti-carcinogenic, anti-viral, and cardioprotective
activities. In vivo, the bioavailability of vinifirin is reported to be low, notably because of its rapid and
intensive metabolic conversion [38]. After absorption, several forms of vinifirin were found in the
bloodstream such as the native form and as glucuronide or sulfate metabolites. Glucuronidation and
sulfation, which can be performed by UDP-glucuronosyltransferase (UGT) and sulfotransferase (SULT),
respectively, are major metabolic pathways for numerous polyphenols including resveratrol [39,40].
Perhaps, for similar reasons described above, vinifirin has a low absorption rate in vivo [41]. In this
report, the oral bioavailability of viniferin is usually less than 1%. Viniferin is intensely metabolized
(i.e., 70–80% of the molecules are converted into conjugates) [42]. Thus, the oral bioavailability of
vinifirin is extremely low, perhaps owing to its low absorption through the intestinal epithelium and to
their intense metabolism [25]. In a previous study, we identified that vitisin B has a low EC50 value
(0.006 µM) for inhibiting HCV replication in vitro [14]. Vinifirin also has an antiviral effect in vitro
(EC50 value = 1 µM) [14]. However, vinifirin has a low level of pharmacokinetic dynamics through
oral drug delivery systems. In Figure 8, we showed its improved bioavailability via intraperitoneal
injection compared to oral administration. However, given that most HCV therapeutics are already
developed as orally available forms, the pharmacokinetic behavior of viniferin needs to be further
improved in order to make it a more attractive as a member of a new class of HCV drugs [43].

Th therapeutic efficacy of the recently developed direct-acting antivirals against HCV has
been remarkable since approximately 90% of chronic HCV cases can be cleared with the new
combination treatment regimen [13]. They include of glecaprevir (NS3/4A protease inhibitor)/
pibrentasvir (NS5A inhibitor), sofosbuvir (NS5B RNA polymerase inhibitor)/ledipasvir (NS5A
inhibitor), sofosbuvir/daclatasvir (NA5A inhibitor), sofosbuvir/simeprevir (NS3/4A protease inhibitor),
sofosbuvir/velpatasvir (NS5A inhibitor), and elbasvir (NS5A inhibitor)/grazoprevir (NS3/4A protease
inhibitor) [11]. Depending on the HCV genotype, the liver condition of the patient (cirrhosis),
HIV coinfection status, and the patient’s ethnicity, a specific type, and duration of anti-HCV treatment
plan vary [11]. However, in spite of the supreme antiviral efficacy and high treatment-success rate of
current HCV drugs, these direct-acting antivirals cannot be free from a viral resistance problem due to
the ever-evolving nature of the RNA virus [44]. Since all of the current anti-HCV drugs target either
NS3/4A protease, NS5A protein, and NS5B RNA polymerase, development of a new class of anti-HCV
drugs targeting other viral functions would be the best option for efficient suppression of the viral
resistance. In this regards, HCV NS3 helicase inhibitors including vitisin B and viniferins would serve
as another class of antiviral regimens reserved for current HCV drug-resistant patients.

Genetic structures and RNA sequences of other flaviviruses such as Dengue fever virus, Japanese
encephalitis virus, Yellow fever virus, West Nile virus, and Zika virus were reported to be well
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conserved [45]. Especially, the relatively high sequence homology in the NS3 helicase region of
flaviviruses raises the possibility of development of anti-NS3 helicase inhibitors as pan-flavivirus
antiviral drugs. Given the unavailability of effective antiviral measures for most flavivirus infections
except HCV, it would be imperative to test the effects of these three kinds of viniferins on viral helicase
activity as well as the replication efficiency of other flaviviruses in the near future.

In summary, we successfully prepared three different versions of viniferin, including EVF,
SVF-5Ac, and SVF. We confirmed their anti-HCV replication activities with minimal cytotoxicity.
Anti-HCV NS3 helicase activity by EVF was also verified in vitro. Finally, we found that the
intraperitoneal administration of SVF improved its pharmacokinetic properties. Overall, the antiviral
and pharmacokinetic properties of these three viniferin versions warrant their further study as members
of a promising new class of anti-HCV therapeutics.
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