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a b s t r a c t   

Short-chain fatty acids (SCFAs) exhibit anticancer activity in cellular and animal models of colon cancer. 
Acetate, propionate, and butyrate are the three major SCFAs produced from dietary fiber by gut microbiota 
fermentation and have beneficial effects on human health. Most previous studies on the antitumor me-
chanisms of SCFAs have focused on specific metabolites or genes involved in antitumor pathways, such as 
reactive oxygen species (ROS) biosynthesis. In this study, we performed a systematic and unbiased analysis 
of the effects of acetate, propionate, and butyrate on ROS levels and metabolic and transcriptomic sig-
natures at physiological concentrations in human colorectal adenocarcinoma cells. We observed sig-
nificantly elevated levels of ROS in the treated cells. Furthermore, significantly regulated signatures were 
involved in overlapping pathways at metabolic and transcriptomic levels, including ROS response and 
metabolism, fatty acid transport and metabolism, glucose response and metabolism, mitochondrial trans-
port and respiratory chain complex, one-carbon metabolism, amino acid transport and metabolism, and 
glutaminolysis, which are directly or indirectly linked to ROS production. Additionally, metabolic and 
transcriptomic regulation occurred in a SCFAs types-dependent manner, with an increasing degree from 
acetate to propionate and then to butyrate. This study provides a comprehensive analysis of how SCFAs 
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induce ROS production and modulate metabolic and transcriptomic levels in colon cancer cells, which is 
vital for understanding the mechanisms of the effects of SCFAs on antitumor activity in colon cancer. 

© 2023 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural 
Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ 

licenses/by-nc-nd/4.0/).   

1. Introduction 

A gut ecosystem consisting of a dynamic and complex microbiota  
[1] is regarded as a separate organ system for its interaction with the 
host and integration into the host biology [2]. Colon cancer is closely 
associated with diet habits [3]. Short-chain fatty acids (SCFAs), in-
cluding acetate, propionate, and butyrate [4], are produced by the 
gut microbiota through the fermentation of dietary fibers [5] and 
have been reported to play essential roles in the communication 
between the gut and microbes, in the interconnection of the gut- 
brain axis of the microbiota [6], and most critically, in the inhibition 
of colon tumor progression [7]. 

A previous study has shown that SCFAs induce apoptotic cell 
death and activate autophagic responses in colon cancer cells [3]. 
Butyrate, known to be the most effective SCFA in maintaining in-
testinal barrier function [8,9], exerts extraordinary anticancer ac-
tivities [10] and is the most studied SCFA [11,12] in terms of 
inhibiting the progression and proliferation of cancer cells by reg-
ulating metabolic, endocrine, and immune functions [13]. However, 
acetate and propionate have received considerable attention because 
of their potential benefits in nutrient absorption, inflammation in-
hibition, and tumor growth inhibition [3]. Acetate, accounting for 
approximately 60–75% of the total fecal SCFAs [14], has been de-
monstrated to have anti-tumorigenic effects after being delivered in 
liposomes [15] and induce colon cancer cell death when combined 
with propionate [16]. Acetate inhibits the proliferation of human 
cancer cell lines, HT29 and HCT116, by reducing glycolysis and in-
creasing reactive oxygen species (ROS) levels [17]. Moreover, pro-
pionate suppresses colon cancer growth by promoting the 
proteasomal degradation of euchromatic histone-lysine N-methyl-
transferase 2 [18]. In addition to research on a single SCFA, the 
combination of butyrate and propionate induced a greater extent of 
apoptosis and G2-M arrest than propionate alone in Caco-2 cells. 
However, butyrate induced a higher oxidative pentose pathway ac-
tivity than SCFAs combination treatment for 24 and 48 h [19]. 

The mechanisms involved in colon cancer inhibition include in-
hibition of glycolysis, activation of ROS production, transformation 
of the redox state, histone acetylation, induction of apoptosis by 
differentiation, and regulation of the expression of various onco-
genes. These three main SCFAs showed different effects on the in-
hibition of colon cancer. Butyrate shows greater inhibitory efficacy 
than propionate and acetate against HCT116 cell line proliferation 
through cell cycle arrest and apoptosis [20]. Furthermore, acetate 
and propionate can modulate the barrier function of Caco-2 mono-
layers at higher concentrations than butyrate [21]. It has been hy-
pothesized that chain length determines the bioactivity of SCFAs in 
inflammation, carcinogenesis, and barrier function [22–25]. DeSo-
ignie et al. found that lipid solubility decreases as the chain length 
decreases, which influences the ability of SCFAs to cross cell mem-
branes [24]. 

Although several studies have attempted to understand the 
precise mechanisms by which SCFAs affect colon cancer, the com-
prehensive pathways through which SCFAs induce apoptosis and 
growth arrest in colon cancer cells remain unclear. However, cancer 
has been suggested to be both a genetic and metabolic disease [26]. 
According to this theory, metabolic disturbances in cancer cells 
would induce ROS accumulation, leading to biomolecular damage 
and cell death, and vice versa. Although several studies have focused 

on one or more metabolites or genes involved in specific pathways 
related to human cancer progression, additional systematic in-
vestigations are needed to elucidate the overall mechanism by 
which SCFAs inhibit cancer cell proliferation. In this study, we in-
vestigated the molecular basis by which acetate, propionate, and 
butyrate interact with human colorectal adenocarcinoma cells at 
physiological concentrations, by combining metabolomic and tran-
scriptomic analyses. Additionally, we analyzed the effects of SCFAs 
treatments on ROS production. We aimed to provide a comprehen-
sive analysis of the processes by which SCFAs affect colon cancer 
progression. 

2. Experiment and design 

2.1. Caco-2 cells culture and cell viability assay 

Caco-2 cells (ATCC #HTB-37) were maintained and cultured in 
Minimum Essential Medium (MEM) containing 20% fetal bovine 
serum, 1% penicillin-streptomycin, 1х non-essential amino acid so-
lution, and 10 mM sodium pyruvate at 37 °C and 5% CO2. 

Cell viability was determined using the WST-1 assay, according to 
the manufacturer’s protocol (Beyotime, Shanghai, China). Briefly, 
human colon epithelial cells (Caco-2) were seeded in a 96-well plate 
(1 × 104 cells/well) and cultured in a humidified CO2 incubator with 
5% CO2 at 37 °C. After 24 h of incubation, the cells were treated with 
various concentrations of acetate, propionate, and butyrate (0, 2.5, 5, 
10, 20, 40, 80, 160, and 320 mM, Sigma-Aldrich) for 24 h. WST-1 
reagent was added to each well, and the plate was incubated for 2 h 
at 37 °C. The absorbance was measured at 450 nm using a microplate 
reader (TECAN M200 PRO, Switzerland). 

2.2. Measurement of ROS generation 

After 24 h-incubation, the cells were treated with low con-
centrations of SCFAs (acetate, 20 mM; propionate, 5 mM; and bu-
tyrate, 3 mM) and high concentrations of SCFAs (acetate, 80 mM; 
propionate, 20 mM; and butyrate, 12 mM), and MEM was used as the 
control treatment. After treatments, the cells were incubated with 
10 μM 2′, 7′-dichlorodihydrofluorescein diacetate (DCFH-DA) solu-
tion for 20 min at 37 °C. Subsequently, the cells were washed three 
times with serum-free MEM to completely remove DCFH-DA. Two 
methods were used for ROS detection using a ROS assay kit 
(Beyotime, Shanghai, China). First, Caco-2 cells were treated with 
different concentrations of SCFAs to detect the fluorescence intensity 
of ROS at 488 nm excitation and 525 nm emission wavelengths using 
a microplate reader (TECAN M200 PRO, Switzerland). Relative 
fluorescence was calculated using the following formula: relative 
fluorescence (%) = × 100%Treatmentgroup

controlgroup
. Fluorescence images of ROS 

from the high-concentration SCFA-treated and control cells were 
obtained using a laser confocal microscope (Leica TCS SP8, Germany) 
and measured at 488 nm excitation and 525 nm emission wave-
lengths. 

2.3. Sample collection and preparation for metabolic analysis 

Caco-2 cells were incubated with sodium acetate (20 mM), so-
dium propionate (5 mM), and sodium butyrate (3 mM). After 24 h of 
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incubation, the medium was removed from the cell culture flask, and 
the cells were washed twice with 2 mL water and then quenched 
with liquid N2. The cells were stored at − 80 °C until extraction for 
nuclear magnetic resonance (NMR) detection. Methanol:water ex-
traction methods were conducted according to a previously de-
scribed protocol [27]: 1 mL extraction solution of 80% methanol was 
added to the cell culture flask, and cells were scraped into a 2-mL EP 
tube followed by two sonication and vortex cycles. The mixtures 
were then centrifuged for 45 min at 12000 × g at 4 °C, and the su-
pernatant was collected in a 2-mL EP tube. Methanol was removed 
using a spin vac, and water was removed by freeze-drying. The dry 
extracted powder was stored at − 80 °C until NMR detection. 

2.4. NMR experiment and data analysis 

The extracts were redissolved in 520 μL phosphate buffer 
(0.1 M K2HPO4/NaH2PO4 in D2O, pD 7.4). Particulates were removed 
by centrifugation (5 min, 12000 × g, 4 °C), and 500 μL of the super-
natant was pipetted into a 5.0-mm NMR tube. An 800-MHz Bruker 
Avance III NMR system (Bruker BioSpin, Germany) equipped with a 
5-mm TCI cryoprobe was used to acquire one-dimensional 1H NMR 
spectra at 25 °C with a water-suppressed 1D-NOESY sequence using 
a 100-ms mixing time [28]. Sixty-four scans were collected for each 
spectrum using a 5 s relaxation delay, 120190 points, and a 12-kHz 
sweep width. Five two-dimensional spectra, namely 1H–1H J-re-
solved (J-Res), 1H–1H correlation spectroscopy (COSY), 1H–1H total 
correlation spectroscopy (TOCSY), 1H–13C heteronuclear single 
quantum coherence spectroscopy (HSQC), and 1H–13C heteronuclear 
multiple bond correlation spectroscopy (HMBC) were acquired for a 
subset of control samples for assignment purposes. 

The free induction decays were processed on Topspin 3.6.1 
(Bruker BioSpin, Germany), multiplied by a 1 Hz exponential 
window function, Fourier transformed, and manually corrected for 
phase and minor baseline distortions. The spectra corresponded to 
the right doublet peak of lactate, with a chemical shift at δ 1.32, 2793 
spectral peaks between 0.6 and 9.5 ppm were obtained with a uni-
form bucketing (bucket width = 0.002) method using the online 
software, NMRPROCFLOW (https://nmrprocflow.org). We removed 
the water regions (δ 4.65 −5.0) to avoid the effects of imperfect water 
suppression. Additionally, signals from acetate (δ 1.822 −2.0), pro-
pionate (δ 1.025–1.08 and δ 2.094–2.21), butyrate (δ 0.84–0.915, δ 
1.516–1.6, and δ 2.094–2.20) and methanol (extraction solvent re-
sidual, δ 3.347–3.369) were excluded from the cell extraction 
spectra. We normalized the binning data using a probabilistic quo-
tient normalization method and then scaled them to unit variance 
before performing multivariate analysis on the dataset on 
MetaboAnalyst [29] (https://www.metaboanalyst.ca/). Subsequently, 
we conducted a principal component analysis (PCA) on the dataset 
to generate an overview of the metabolic effects of acetate, propio-
nate, and butyrate exposure. We incorporated back-transformed 
loadings from orthogonal projection to latent structures dis-
criminant analysis (O-PLS-DA) with color-coded coefficients to 
generate coefficient plots in MATLAB (MATLAB & SIMULINK R2014a)  
[30]. The loading coefficients represent the weights of metabolites 
contributing to the separation between classes, where the red color 
indicates significance in the differentiation between the two groups 
and the blue color indicates no significance. We chose correlation 
coefficients higher than 0.878 as significant in the discrimination 
based on the 95% confidence limit and the number of samples in 
each group. 

2.5. RNA sequencing (RNA-Seq) 

Caco-2 cells were treated with 20 mM sodium acetate, 5 mM 
sodium propionate, or 3 mM sodium butyrate. Subsequently, the 
RNeasy Plus Mini Kit (Qiagen) was used to extract the total RNA from 

the cells. An RNA-seq library was constructed using total RNA with 
28 S/18 S >  1 and RNA integrity numbers of 7.1–9.3. A SMART-Seq HT 
kit (Takara Bio) was used to generate cDNA. Finally, the Nextera DNA 
Flex Library Prep kit and Nextera DNA Unique Dual Indexes Set A 
(Illumina) were used to construct RNA-seq libraries. Quality control 
of the libraries (checking the size distribution with an average 
fragment size of 600 bp when analyzed with a size range of 
150–1500 bp) and quantitative PCR (qPCR) assays (starting con-
centration: 2 nM and final loading concentration: 300 pM) were 
performed on the TapeStation. Finally, the libraries were sequenced 
using a NovaSeq6000 (Illumina). 

RNA sequencing was performed using the CLC Genomics 
Workbench (Qiagen 21.0.4). Data were normalized to reads per 
kilobase of transcript per million mapped reads (RPKM). A false 
discovery rate (FDR)-corrected p-value was used as the criterion for 
significance. The outliers of the transcriptomes of all samples were 
evaluated using PCA on SIMCA 17.01. Gene set enrichment analysis 
(GSEA) was carried out with iDEP V0.94 using the pre-ranked fgsea 
method [31], and heat maps of differentially expressed genes (DEGs) 
in enriched pathways were built using supervised hierarchical 
clustering in Heatmapper [32]. 

2.6. Quantitative real-time reverse transcription polymerase chain 
reaction (qRT-PCR) assay 

Caco-2 cells were treated with 20/80 mM acetate, 5/20 mM 
propionate, or 3/12 mM butyrate in a humidified CO2 incubator with 
5% CO2 at 37 °C for 24 h. Total cell RNA was extracted using a 
MolPure® Cell RNA kit (Yeasen, Shanghai, China), following the 
manufacturer’s protocol, and reverse-transcribed into cDNA using a 
reverse transcription kit (Vazyme, Nanjing). The qPCR primer se-
quences (Supplementary Table 2) were synthesized by Tsingke Bio-
tech (Wuhan, China). qRT-PCR was performed using a QuantStudio 6 
detection system (Applied Biosystems, USA) with a 10 μL reaction 
system containing Hieff® qPCR SYBR Green Master Mix (Yeasen, 
Shanghai, China). mRNA expression levels relative to GAPDH were 
calculated using the 2-ΔΔCT method. 

3. Results 

3.1. Effect of SCFAs on Caco-2 cell growth 

Colon epithelial cells were selected to investigate the metabolic 
and transcriptomic effects of acetate, propionate, and butyrate, 
which account for more than 95% of SCFAs in the gut and colon at 
physiological concentrations. The physiological concentrations of 
SCFAs, including acetate, propionate, and butyrate, are approxi-
mately 50–150 mM in the colon [33]. The molar ratio of the SCFAs 
concentrations of acetate, propionate, and butyrate in the colon of 
postmortem human subjects is approximately 60:20:20 [34]. How-
ever, the concentrations of short fatty acids fluctuate under different 
physiological conditions in the gut. Cytotoxicity assays were per-
formed to determine non-cytotoxic concentrations of SCFAs in Caco- 
2 cells. As shown in Fig. 1, cell viability gradually decreased with 
increasing concentrations of SCFAs compared with the corre-
sponding control group. 

Additionally, different SCFAs treatments resulted in different 
cytotoxicities. For example, 2.5–80 mM of acetate had no noticeable 
cytotoxic effect on Caco-2 cells, whereas acetate concentrations 
higher than 80 mM were cytotoxic. However, the non-cytotoxic 
concentrations of propionate and butyrate were up to 40 mM and 
20 mM, respectively, suggesting that these two SCFAs were more 
toxic than acetate in Caco-2 cells (Fig. 1). Summarizing these results 
and previous reports on the physiological concentrations of SCFAs in 
the gut [33], we investigated the effect of 20 mM acetate, 5 mM 
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propionate, or 3 mM butyrate treatment on ROS production and 
metabolomic and transcriptomic profiles of Caco-2 cells. 

3.2. SCFAs activated the intracellular production of ROS 

Our previous RNA-seq data demonstrated that lactate, a micro-
bial metabolite like the SCFAs, significantly upregulated ROS meta-
bolism and disturbed mitochondrial function by downregulating the 
electron transport chain and oxidative phosphorylation in Caco-2 
cells [35], which endogenously generated ROS in the mitochondria  
[4]. Consistently, ROS-mediated fluorescence was significantly pro-
moted by increasing the concentrations of SCFAs (Fig. 2A), indicating 
that the enhancement of ROS production by SCFAs was dose-de-
pendent in Caco-2 cells. Of the mentioned SCFAs, propionate was the 
most potent enhancer of ROS biosynthesis (Fig. 2A). Additionally, 
laser confocal microscopy showed an obvious induction of ROS 
production in cells treated with high concentrations of SCFAs 
(Fig. 2B). 

3.3. Metabolite assignments for 1H NMR spectroscopy 

Fig. 3 shows the typical 1H NMR spectra of the cell extracts ob-
tained from the control group. Metabolite assignments were con-
firmed using two-dimensional NMR spectra and verified using data 
reported in the literature [36]. In total, 41 metabolites were identi-
fied. Signals arose at the high field between 0.00 ppm and 4.6 ppm 
mainly including amino acids (e.g., glutamine, valine, isoleucine, and 
leucine), sugars (e.g., glucose and fructose), and a range of organic 
acids (e.g., lactate and succinate). Additionally, nucleotides (e.g., 
adenosine monophosphate, adenosine triphosphate, uridine 5′- 
monophosphate, and uridine-5′-diphosphate) were found in the low 
field between 5.00 ppm and 9.4 ppm. More detailed assignments of 
metabolites are provided in Supplementary Table 1. 

3.4. Significantly changed metabolites detected by high-resolution  
1H NMR 

PCA score plots displayed distinguishing metabolic profiles of 
exposure to acetate, propionate, and butyrate compared to the 
control group. Overall, butyrate induced more distinct metabolic 
disturbances (Fig. 4C) than propionate (Fig. 4 B). Acetate had an al-
most negligible effect on Caco-2 cells (Fig. 4A). Twelve significantly 
changed metabolites, including six with increased leucine, glycine, 
phenylalanine, tyrosine, choline, fructose, acetylcholine, and six with 
decreased ATP/ADP, lactate, choline, UDP glucuronate, and UDP 
glucose (UDPGs), were observed in all three treatments (Fig. 4 D and 
E). Signatures changed in the propionate and butyrate treatment 

groups, including elevated levels of acetate, glucose, α-keto-β-me-
thyl-valerate (α-KMV), isoleucine, succinate, nicotinamide adenine 
dinucleotide (NAD+), and reduced levels of glutathione (GSH), 
phosphocholine (PC), and taurine. 

Increased α-Keto-isovalerate (α-KIV) levels were observed only in 
the propionate group. Butyrate treatment also resulted in some 
metabolic alterations, including increased lysine, glutamine, histi-
dine, dimethylglycine (DMG), alanine, N-Acetyl-L-Glutamine (NAG), 
pyruvate, and valine levels and decreased creatine and methionine 
levels. Furthermore, glutamate, which plays a critical role in the 
central metabolism of many organisms, showed significantly higher 
levels in the acetate group, but significantly lower levels in the bu-
tyrate group (Fig. 4 D). 

Additionally, several intracellular metabolic signatures changed 
depending on the type of SCFAs used. Corresponding plots of nor-
malized concentrations (Fig. 5) for the respective SCFAs types were 
plotted, and gradually increased the production levels of Ile, Leu, Val, 
Gln, Lys, Tyr, His, Phe, Glc, Fru, Pyr, DMG, and Tau were observed in 
the order of acetate, propionate, and then butyrate at their physio-
logical concentrations. Meanwhile, ATP/ADP, UDPGs, GSH, Cre, PC, 
and Cho were dropped off by acetate, propionate, and then butyrate 
treatment. 

3.5. SCFAs modulated transcriptome signatures in human colon 
epithelial cells 

High-throughput and unbiased RNA sequencing was performed 
to evaluate the entire transcriptional program induced by SCFAs in 
Caco-2 cells. We observed 229 upregulated (pink dots) and eight 
downregulated (blue dots) top genes in acetate-treated cells 
(Fig. 6A). Propionate treatment resulted in more DEGs, including 72 
downregulated and 665 upregulated genes (Fig. 6 B). Moreover, 636 
downregulated and 2168 upregulated genes were observed in the 
butyrate-treated group (Fig. 6C), indicating that the lowest con-
centration of butyrate had a maximal impact on gene expression 
compared with the acetate- and propionate-treated groups. A Venn 
plot was used to define the expected gene expression modulations 
among the three treatments. A total of 198 signatures were dis-
turbed in the three SCFA treatments (Fig. 6 D). Additionally, we 
identified one commonly changed gene between the acetate and 
butyrate groups, 24 commonly changed genes between the acetate 
and propionate groups, and 456 commonly changed genes between 
the propionate and butyrate groups. Signatures were defined based 
on criteria, including FDR-corrected p  <  0.001 and an absolute fold 
change ≥ 4. 

Pathways were significantly enriched in the SCFAs treatment 
compared with the control (Fig. 7), and heatmap analysis was used 

Fig. 1. Effects of SCFAs on cell viability in Caco-2 cells. Data are expressed as mean ±  SD (n = 4). The statistical analysis was performed between the control and treatments using a 
one-way ANOVA with Dunnett’s multiple comparisons test. * ** represents p  <  0.001, and * ** * represents p  <  0.0001. A: acetate; P: propionate; B: butyrate. 
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Fig. 2. Effects of different concentrations of SCFAs on ROS generation in Caco-2 cells. ROS production was detected by a DCFH-DA assay using a microplate reader (A) or laser 
confocal microscope (B, 10 × objective, scale bar =250 µM.) at 488 nm excitation and 525 nm emission. The statistical analysis was performed between the control and treatments 
using a one-way ANOVA with Dunnett’s multiple comparisons test. * ** * represents p  <  0.0001. 

Fig. 3. Typical 1H NMR spectra from the cell extracts of the control group. Key: 1, Pantothenate; 2, Isoleucine; 3, Leucine; 4, Valine; 5, α-keto-β -methyl-valerate; 6, α-Keto- 
isovalerate; 7, Lactic acid; 8, Threonine; 9, Alanine; 10, N-Acetyl-L-Glutamine; 11, Glutamate; 12, Glutamine; 13, Pyruvate; 14, Succinate; 15, Methionine; 16, Dimethylglycine; 17, 
Glutathione; 18, Creatine; 19, Choline; 20, Phosphocholine; 21, Taurine; 22, Fructose; 23, Glucose; 24, Galactose-1-phosphate; 25, Fumaric acid; 26, Tyrosine; 27, Phenylalanine; 
28, Uridine 5′-monophosphate; 29, Histidine; 30, Nicotinamide adenine dinucleotide; 31, Formate; 32, Adenosine monophosphate; 33, Adenosine triphosphate; 34, Uridine 5′- 
diphosphate; 35, UDP Glucose; 36, UDP Glucuronate; 37, Acetate; 38, Lysine; 39, Glycine; 40, Adenosine diphosphate; 41, Acetylcholine. 

C. Huang, W. Deng, H.-z. Xu et al. Computational and Structural Biotechnology Journal 21 (2023) 1606–1620 

1610 



to define metabolism-related genes (Fig. 8). Thirty-two enriched 
pathways were identified and were mostly related to metabolic 
pathways, including upregulated pathways such as organic acid 
transport and catabolism, ROS metabolism, amino acid transport, 
and glutamine family amino acid catabolism, and downregulated 
pathways such as mitochondrial gene expression, oxidative phos-
phorylation, and amino acid activation and methylation. The extent 
of alteration in the expression of genes in these pathways gradually 
increased in the order of acetate, propionate, and butyrate (Fig. 8). 

First, human colon cancer cells responded quickly to SCFAs 
treatment via the upregulation of the mRNA expression of solute 
carriers (SLCs, e.g., SLC27A1, SCL2A4, SLC17A7, and SLC5A5) (Fig. 8). 
Genes involved in mitochondrial transport and the respiratory chain 
complex, such as MT.NDs, MT.CO1, MT.ATP6, COX10, and SIRT4 were 
significantly altered, suggesting that mitochondrial function was 
disturbed in SCFAs treated colon cells (Fig. 8). Meanwhile, the ROS 
response and metabolism were activated by elevated levels of PLIN5, 
HVCN1, CDKN1A, and PREX1 and reduced levels of IMMP2L and SIRT5 
(Fig. 8). SCFAs treatment also significantly affected the expression of 
glucose import mRNAs (e.g., ERFE, IGF1, INSR, RTN2, SLC27A1, 
ASPSCR1, SLC2A4, and IRS2), polyol metabolic pathway (e.g., ISYNA1, 
PCK1, SGPP1, IMPA1, DEGS2, and ASAH2), glycolysis (e.g., HKDC1, HK1, 
ENO2, PFKFB3, and PKM), and pyruvate metabolism (e.g., PPP1R1A, 
HK1, and PGM2L1) (Fig. 8). One-carbon metabolism, comprising a 
series of interlinking metabolic pathways including the methionine 
and folate cycles and providing one carbon unit for the synthesis of 
DNA [37], showed significant elevations in the expression of 
ALDH1L1, MBOAT2, and CA12 and reductions in the expression of 
MTHFD2, MTHFS, and PCY1TB (Fig. 8). 

A previous report demonstrated that overexpression of most 
fatty acid transporters promotes CoA activity by two- to five-fold  
[38]. Consistently, our study also showed that SCFAs treatment re-
sulted in significantly elevated expression of genes in the CoA-re-
lated pathway, including HMGCLL1, HMGCS2, CPT1A (β-oxidation), 
ECI2, CRAT, and ACSF2 (Fig. 8). 

3.6. Effects of SCFAs on gene expression detected by qRT-PCR 

To validate the transcriptome data, qRT-PCR was used to de-
termine the mRNA expression levels of the top 20 upregulated and 
downregulated genes in Caco-2 cells treated with low and high 
concentrations of SCFAs. The expression of ANAX3, FOXQ1, MT-ATP6, 
and PITX1 mRNAs was downregulated at low concentrations of 
SCFAs compared to that in the control group (Fig. 9A), and their 
expression was more significantly suppressed in cells treated with 
high concentrations of SCFAs (Fig. 9B). Low concentrations of SCFAs 
had no effect on the mRNA levels for CEBPD, whereas the expression 
was significantly downregulated by high concentrations of SCFAs 
(Fig. 9). The mRNA levels of CRIP2, EFNA3, ESAM, HK1, LGALS1, MCAM, 
NDRG4, NPAS1, NPPB, PHOSPHO1, SERPINI1, SLC16A3, and TUBB4A 
were upregulated at low concentrations of SCFAs compared with 
those in the control group (Fig. 9A), and their expression was sig-
nificantly increased with increasing concentrations of the treatment 
(Fig. 9B). Additionally, the expression of ALPG in acetate- and pro-
pionate-treated cells significantly increased at low and high SCFAs 
concentrations (Fig. 9). However, a high concentration of butyrate 
had no effect on ALPG expression, whereas a low concentration 
significantly enhanced ALPG expression (Fig. 9). Low concentrations 

Fig. 4. Differential metabolomic profiles of the Caco-2 cells between the SCFAs-treated and control groups. A. PCA scores (left) of the complete metabolic profiles and color-coded 
correlation coefficient loadings plots generated by comparing the spectra of the intracellular metabolites between the acetate (A) and the control treatments; B. PCA scores (left) 
of the complete metabolic profiles and color-coded correlation coefficient loadings plots generated by comparing the spectra of the intracellular metabolites between the 
propionate (P) and the control treatments; C. PCA scores (left) of the complete metabolic profiles and color-coded correlation coefficient loadings plots generated by comparing 
the spectra of the intracellular metabolites between the butyrate (B) and the control treatments; D. Dynamic alterations of key metabolites in response to acetate, propionate and 
butyrate exposure. The color indicates a correlation coefficient as a scale on the right-hand side. Red denotes an increase in metabolite levels in the SCFAs-treated cells compared 
to the control group, whereas blue indicates a decrease; E, Venn diagram showing the number of metabolites that were changed in the Caco-2 cells in response to acetate, 
propionate, and butyrate treatment. 
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of SCFAs did not change the mRNA expression of CDKN1A compared 
to that in the control group, whereas high concentrations of pro-
pionate and butyrate significantly upregulated its expression (Fig. 9). 
Collectively, the qRT-PCR data were consistent with the RNA-seq 
data and showed that the regulation of SCFAs was dose-dependent 
in most genes. Fig. 10. 

4. Discussion and Conclusions 

Cancer is a genetic and metabolic disease [26]. Unlike most tis-
sues that use glucose as their energy source, the colon utilizes SCFAs, 
particularly butyrate, as its primary energy source [39,40]. However, 
in most cancer cell lines, the primary energy metabolism pathway 
shifts from oxidative phosphorylation to glycolysis, which is a sig-
nificant source of ATP synthesis [41]. Similarly, colorectal cancer cells 
shift their primary energy source from butyrate to glucose, resulting 
in increased glycolytic levels [42,43]. Several studies have shown 
that SCFAs suppress cancer progression by blocking glycolysis [10]. 
However, inconsistent viewpoints support the notion that butyrate 
is still the primary fuel for the human adenocarcinoma cell line HT- 
29 [44]. 

In contrast, SCFAs have been reported to alter the biology of 
cancer cells by inhibiting histone acetylation [45], suppressing cell 
proliferation [46], and inducing apoptosis [47]. Although research 
has been conducted on how SCFAs inhibit colon cancer cells, the 
molecular mechanisms remain unclear when considering the overall 
regulation of metabolic and transcriptomic profiles, owing to the 

complexity of intracellular molecular signaling pathways. In this 
study, we systematically analyzed the profiles of SCFA-induced dis-
turbances at the metabolic and transcriptomic levels, which is cri-
tical for evaluating the mechanisms by which microbiota-derived 
metabolites regulate intestinal cancer by modulating the SCFAs ratio 
or concentration. 

Moreover, 3 mM butyrate induced more severe disturbances at 
the metabolic and transcriptomic levels (Figs. 5 and 8), suggesting 
that Caco-2 cells responded more sensitively to butyrate exposure 
than to 20 mM acetate and 5 mM propionate. SCFAs significantly 
induced ROS production in Caco-2 cells in a concentration-depen-
dent manner. Our RT-PCR data were consistent with RNA-seq data 
for 20 up/downregulated genes in cells treated with SCFAs at higher 
concentrations, and similar alterations were observed at low con-
centrations. Meanwhile, the metabolic analysis showed that 32 
metabolites were disturbed and are involved in pathways including 
glucose uptake and metabolism, amino acid uptake and metabolism, 
choline uptake and metabolism, one-carbon metabolism, and mi-
tochondrial respiratory function. Of these 32 metabolites, 21 showed 
dependence on the type of SCFAs, accompanied by corresponding 
transcriptomic changes acquired in the RNA sequence analysis. 
Subsequently, we discuss this issue in detail. 

4.1. SCFAs modulated gene expression of transporter SLCs 

First, exposure to SCFAs activated the expression of genes en-
coding membrane-bound transporter SLCs genes, which play vital 

Fig. 5. Normalized concentrations of 32 significant change metabolites depending on the type of SCFAs. A: acetate; P: propionate; B: butyrate.  
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roles in transporting substrates, including amino acids, glucose, 
other sugars, and fatty acids [48]. Particularly, we observed that 
SLC27A1 (FATP), widely reported as a vital fatty acid transporter, was 
expressed at significantly higher levels in the SCFA-treated cells. 
Similar findings have been reported for the increased surface ex-
pression of SLC27A1 in butyrate-treated HEK cells [49] and acetate- 
treated rabbit livers [50]. 

4.2. SCFAs induced mitochondria dysfunction 

Dysfunctional mitochondria induce transcriptomic and metabolic 
disturbances [35]. Our results showed that SCFAs led to mitochon-
drial activity dysfunctions, such as the electron transport chain and 
oxidative phosphorylation and alterations in the expression of sev-
eral genes related to mitochondrial function, such as decreased MT- 
NDs, MT-CO1, and MT-ATP6 and increased PIP5KL1, UCP1, and 
C15ORF48 (Fig. 8). Additionally, we observed increased succinate and 
decreased fumarate levels (although not significantly) in the SCFA- 
treated groups, a hallmark of electron transport chain dysfunction in 
complex II. Alterations of succinate dehydrogenase (SDH) complex 
genes involved in this pathway include increased SDHA, SDHAF3, and 
SDHD and decreased SDHB, SDHC, SDHAF1, SDHAF2, and SDHAF3. 

4.3. SCFAs activated the ROS signaling pathway 

Meanwhile, colon cancer cells with dysfunctional mitochondria 
that cannot efficiently metabolize SCFAs accumulate fatty acids in 
the cell [41] and increase cellular oxidative stress by elevating ROS 
production [39]. ROS, including hydroxyl radicals, superoxide anions, 
and hydrogen peroxide, formed during the single-electron reduction 
of molecular oxygen, modulate a few signaling pathways in the in-
testine and are recognized as central regulators of the function of 
intestinal stem cells [51]. Furthermore, ROS play a role in oxidizing 
and damaging proteins, lipids, and nucleic acids, and act as signaling 
molecules to activate self-protective mechanisms. In contrast, bu-
tyrate, propionate, and acetate treatments had decreased, no, or 
increased effects on ROS production in rat neutrophils [52]. Ma-
slowski et al. discovered that acetate promoted the release of ROS 
when added to mouse neutrophils by activating GPR43 [53]. Re-
searchers in the field of immunology consider that SCFAs may reg-
ulate inflammatory diseases by accelerating pathogen clearance via 
ROS activation [54]. SCFAs have been reported to suppress cancer 
progression by increasing ROS levels. For example, sodium butyrate 
induces apoptosis following an increase in ROS levels in breast 
cancer cells [55]. Additionally, butyrate increases ROS levels in col-
orectal cancer cells and inhibits cell proliferation [56] by regulating 

Fig. 6. Volcano plots showing the differentially expressed genes (DEGs) in the Caco-2 Cells responding to treatment with A, acetate, B, propionate, and C, butyrate compared to the 
control group; D, Venn diagram showing the number of mRNAs that changed in the Caco-2 cells in response to acetate, propionate, and butyrate treatment. FDR-corrected 
p  <  0.001; absolute fold change >  = 4. The blue dots represent the downregulated DEGs, and the red dots represent the upregulated DEGs. The gray dots represent the genes with 
no difference in expression. 
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the expression of the histone deacetylase SIRT-1 [57]. Another study 
demonstrated that butyrate induces apoptosis through the upregu-
lation of miR-22, followed by the downregulation of SIRT-1, resulting 
in increased ROS production and apoptosis of hepatic cells. This 
study has shown significantly higher levels of ROS in the three types 
of SCFA treatments at physiological concentrations in Caco-2 cells. 
SCFAs significantly altered the expression of genes involved in ROS 
production, such as PLIN5 [58], CDKN1A [59], PREX1 [60], UCP1 [59], 
FYN [61], COLIA1 [62], FOXO1 [63], IMMP2L [64], and DUOXA2 [65]. 
These results suggest that SCFAs activate ROS signaling pathways via 
the modulation of metabolic and transcriptomic signatures. 

Sirtuins (SIRT) regulate the energy state of cells, which is asso-
ciated with oxidative stress signaling and antioxidant defense in the 
cells [66]. We observed elevated SIRT4 and SIRT2 expression and 
reduced expression of SIRT5 in SCFA-treated cells. SIRT2 is mainly 

localized in the cytoplasm [67], whereas SIRT4 and SIRT5 are loca-
lized in the mitochondria [67,68]. SIRT4 plays a vital role in sup-
pressing tumor progression by regulating glutamine metabolism. 
The overexpression and knockout of SIRT4 [69] showed elevated and 
reduced ROS levels, respectively. SIRT5 has been associated with 
reprogramming metabolic pathways, including glycolysis, the TCA 
cycle, and electron transport chain [70], which promotes tumor cell 
metabolism. Lu et al. reported that SIRT5 facilitates cell growth in 
non-small cell lung cancer [71]. SIRT5 facilitates the consumption of 
ammonia [72], which is vital for inducing ROS production and de-
creasing the levels of the antioxidant GSH [73]. In this study, in-
creased ROS and decreased GSH levels were consistently observed. 
Cancer cells are more tolerant to oxidative stress than normal cells 
and have a higher capacity to scavenge ROS to increase their survival 
rate [74]. GSH improves antioxidant capacity and resistance to 

Fig. 7. Pathways were significantly enriched in SCFAs-treatment compared with controls. Negative normalized enrichment scores (blue dots) show downregulated pathways and 
positive normalized enrichment scores (red dots) show upregulated pathways. * Adjusted p  <  0.05, * * Adjusted p  <  0.01, * * *Adjusted p  <  0.001. A: acetate; P: propionate; B: 
butyrate. 
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oxidative stress in cancer cells [75]. Low GSH levels have been ob-
served to increase the sensitivity of cancer cell lines to irradiation  
[76]. GSH is vital for maintaining the intracellular redox state and 
regulating the sensitivity of cancer cells to apoptosis [55,77]. Several 
studies have reported the depletion of GSH by butyrate exposure in 
various cell lines, including Caco-2 [78,79], MCF-7 [80], and 
HT29 [81,82]. 

4.4. One-carbon Metabolism Pathway was reprogrammed by SCFAs 
treatment 

The trans-sulfuration pathway synthesizes GSH and is involved in 
ROS production in cancer cells [83]. The low levels of GSH in this 
study indicated that treatment with SCFAs might alter the trans- 
sulfuration pathway, one of the three critical reactions of the one- 
carbon metabolic pathway. One-carbon metabolism serves as a vital 
modulation pathway [84] and is present in both the mitochondria 
and cytoplasm of cancer cells. As another reaction involved in one- 

carbon metabolism, the folate cycle is vital for purine production 
and serine is a necessary metabolite. This process converts serine to 
glycine by serine hydroxymethyl transferases 1 and 2 (SHMT1 and 
SHMT2) in the cytosol and mitochondria, respectively [85]. However, 
we could not detect any disturbance in the metabolic levels of serine 
because of its limited physiological concentration. However, only 
SHMT2 in the mitochondria and not SHMT1 in the cytosol was sig-
nificantly decreased in all three SCFA-treated groups. Additionally, 
significantly reduced levels of SHMT1 were detected only in the 
acetate-treated cells. 

Sideroflexin (SFXN1–5) is a mitochondrial transporter of serine in 
one-carbon metabolism, and SFXN1 and SFXN3 play essential roles in 
maintaining glycine balance [86]. This study demonstrated that 
SCFAs significantly decreased SFXN1, SFXN2, SFXN4, and SFXN5 but 
increased SFXN3 expression, indicating that SCFAs modulated the 
serine transporter pathway. However, interpreting underlying me-
chanisms is challenging. Additionally, we observed significantly in-
creased glycine levels in all the SCFA-treated cells; however, glycine 

Fig. 8. Supervised heat maps of differentially expressed genes in all SCFAs-treated cells in the enriched gene sets. The enriched gene sets were analyzed using supervised 
hierarchical clustering in Heatmapper including DEGs with an FDR-corrected p  <  0.05 and fold change ≥ 1.5, upregulated (red) genes, and downregulated (green) genes in the 
SCFAs treatment vs. the control groups. A: acetate; P: propionate; B: butyrate. 
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insufficiency has been reported in studies involving cells lacking 
mitochondrial components [87–89]. Moreover, protein kinase C 
(PKC) activation has been reported to reduce the expression of GLYT1 
in Caco-2 cells with high levels of glycine [90]. Consistently, the 
glycine transporter gene GLYT1 (SLC6A9) was significantly reduced 
and PRKCD, a member of the novel PKC subfamily, was upregulated 
in this study. Taken together, these results suggest that glycine levels 
in cells may be elevated via other pathways. Considering that sup-
plementary glycine has been reported to prevent cancer [91], we 
speculated that SCFAs effectively inhibit cancer progression by, at 
least in part, upregulating glycine levels. 

4.5. Different types of SCFAs resulted in different profiles of 
glutaminolysis pathway 

The myelocytomatosis oncogene (MYC) plays an essential role in 
glutamine metabolism [92] by activating glutamine transporters 
SLC1A5 and SLC38A5 [93] and enhancing glutaminolysis by elevating 
glutaminase (GLS) translation [94]. We observed significantly ele-
vated levels of glutamine in propionate- and butyrate-treated cells 
but did not observe a significant variance in the acetate treatment 
group. However, glutamate, the downstream metabolite of gluta-
mine, significantly decreased in the butyrate group and increased in 
the acetate group. Increased glutamate levels were also observed in 
the propionate treatment group, although the difference was not 
significant. 

MYC, which regulates the activities of GLS, showed a similar 
expression profile to glutamate, with increased expression in 
acetate- and propionate-treated cells and decreased expression in 
the butyrate-treated group. These results indicated that SCFAs in-
duced disturbances of glutaminolysis in Caco-2 cells in a specific 
manner, depending on the type of SCFAs. 

4.6. SCFAs caused alterations in glucose metabolism 

In addition to regulating glutamine metabolism, MYC modulates 
aerobic glycolysis by promoting glucose uptake (by enhancing glu-
cose transporter SLC2A1 expression [95]), activating the production 
of pyruvate (by elevating PKM expression [96]), and modulating 
lactate export (by inducing lactate transporters-monocarboxylate 
transporters MCT1 and MCT2 [97]). First, butyrate treatment in-
creases glucose uptake in Caco-2 cells [98]. In this study, we also 
observed elevated glucose and altered expression of GLUT genes in 
SCFA-treated Caco-2 cell lines, including increased insulin-regulated 
gene GLUT4 (SLC2A4) and decreased expression of non-insulin-de-
pendent genes GLUT2 (SLC2A2) and GLUT9 (SLC2A9), which is in 
contrast with previous reports on increased gene expression of 
GLUT2 in SCFA-treated cells [99,100]. Meanwhile, the metabolic 
analysis showed that elevated glucose levels were induced by SCFAs 
exposure, which is consistent with a previous study and indicated 
that increased glucose uptake in colon cancer cells could lead to 
oxidative phosphorylation damage through lactate-induced mi-
tochondrial dysfunction [101]. 

Pyruvate dehydrogenase kinase (PDK) is a regulatory enzyme of 
the pyruvate dehydrogenase complex (PDC) that serves as a cross-
road between glycolysis and the tricarboxylic acid cycle [102]. Ele-
vated PDK1–4 expression was detected in the propionate- and 
butyrate-treated groups, while elevated PDK2–3 expression was 
observed in the acetate group. Higher levels of pyruvate were ob-
served in the SCFA-treated group, although this was statistically 
significant only in butyrate-treated cells. PDK is an inhibitor of PDC, 
suggesting that pyruvate was blocked in the TCA cycle and might 
accumulate in the mitochondria, where elevated levels of PDK in-
hibited the activity of PDC. 

Lactate is the end product of glycolysis and is essential for cancer 
progression. Butyrate induced a lower level of lactate in a 

Fig. 9. mRNA expression in Caco-2 cells treated with SCFAs of low (A) or high (B) concentration. Data are expressed as mean ±  SD (n = 4). The statistical analysis was performed 
between the control and treatments using one-way ANOVA with Dunnett’s multiple comparisons test. * * represents p  <  0.01, * ** represents p  <  0.001, and * ** * represents 
p  <  0.0001. A: acetate; P: propionate; B: butyrate. 
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remarkably enriched source of pyruvate in HCT116 cells and was 
used as an indicator of a metabolic shift from anabolic processes, 
which are vital for tumor cell proliferation, oxidative phosphoryla-
tion, and energy production [46]. Consistently, significantly lower 
lactate levels were observed in all the SCFA-treated cells in the 
present study. However, the LDH gene expression was not disturbed. 
These results suggested that lower lactate levels may not be caused 
by elevated pyruvate levels. Furthermore, a higher expression level 
of the lactate transporter SLC16A3 (MCT4) was observed in the SCFA- 
treated cells. MCT4 may be particularly appropriate for the export of 
lactate derived from glycolysis [103]. Additionally, the levels of other 
mRNAs related to lactate transporters, including SLC16A1 (MCT1) 
and SLC16A7 (MCT2), were increased in propionate- and butyrate- 
treated cancer cells. Our data indicate that reduced lactate levels 
might be due to the increased activity of lactate transporters. 

The level of fructose was increased by SCFAs through the polyol 
pathway in Caco-2 cells, accompanied by a decrease in the fructose 
transporter gene GLUT5 (SLC2A5). Elevated levels of GLUT5 are as-
sociated with poor prognosis in patients with lung adenocarcinoma, 
and depletion of GLUT5 inhibits cell proliferation and invasion and 
increases apoptosis [104]. Moreover, high expression of GLUT5 and 
enhanced fructose utilization are associated with poor outcomes and 
exacerbate leukemic phenotypes [105]. Moreover, the polyol process 
is accompanied by the oxidation of NADPH to NADP+, which causes 

GSH deficiency, because NADPH is necessary to produce GSH from 
GSSG [106]. However, the oxidative pentose phosphate pathway 
(PPP), the primary provider of NADPH for GSH synthesis, has been 
reported to be activated by SCFAs in the Kato 3 gastric cancer cell 
line [55]. Our study showed that the expression of G6PD, a rate- 
limiting enzyme that catalyzes the first step of PPP, is activated by 
SCFAs. Elevated oxidative PPP was linked to an increase in the oxi-
dative state, which might induce ROS production. In our study, de-
spite elevated ROS and decreased GSH levels involved in the PPP 
pathway, no significant changes in metabolites were detected, in-
dicating that the level of GSH may be modulated in SCFA-treated 
cancer cells. Additionally, the glycogen synthesis pathway may be 
inhibited because decreased levels of GBE1 and UDPGs involved in 
glycogen synthesis were observed in SCFA-treated cells. 

4.7. SCFAs induced disturbances in the choline transport and 
metabolism 

Increased choline and phosphocholine levels have been observed 
in cancer cells from the brain, breast, prostate, and colon [107]. In 
this study, exposure to SCFAs induced a wide range of disturbances 
in choline transport and metabolic pathways. This study showed 
significantly altered expression of the transporter gene, SLC44A1–5, 
and choline metabolism, including elevated acetylcholine and 

Fig. 10. Metabolic and transcriptomic alterations of pathways under SCFAs exposure. Blue, red, and orange indicate the downregulated, upregulated and up/down-regulated 
pathways, respectively. A: acetate; P: propionate; B: butyrate. 
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decreased choline and PC. A review of this process indicated that 
cells would elevate phospholipid generation and promote apoptosis 
when choline is restricted to transport into the cell [107]. We 
speculate that SCFAs induce cancer cell death, at least partly through 
the modulation of choline transport. 

4.8. SCFAs altered the transport and metabolism of amino acids 

Amino acids were significantly elevated in SCFA-treated cells, 
accompanied by an increased expression of amino acid transporters, 
indicating that SCFAs promoted amino acid uptake. We observed 
several increased levels of amino acids, including leucine, isoleucine, 
valine, lysine, phenylalanine, and tyrosine, in SCFA-treated cells. In 
addition, glutamine serves as an energy source and helps maintain 
the redox balance. Branched-chain amino acids such as valine, leu-
cine, and isoleucine can fuel the TCA cycle [108] as alternative 
sources, contributing to bioenergetic pathways [108], mediating li-
pogenesis, and regulating nucleotide synthesis [109]. Nonetheless, 
further detailed studies are required to investigate the mechanisms 
underlying these alterations. 

In this study, we combined metabolomics and transcriptomics to 
determine how SCFAs regulate cell metabolism and transcriptomes 
by producing high levels of ROS. However, endogenous metabolic 
changes result from comprehensive and complex cellular regulatory 
processes. A typical example in this study is the final level of GSH, 
which is regulated by multiple pathways, including the polyol 
pathway, PPP, one-carbon metabolism pathway, glutaminolysis 
pathway, and unidentified pathways. Further studies are warranted 
to determine the precise metabolic flux of one or more metabolites 
using dissolution dynamic nuclear polarization (dDNP) [110], which 
is a robust tool for studying real-time metabolic flux. Particularly, 
whether SCFAs regulate metabolic pathways via ROS activation re-
mains an important question, or whether these effects represent 
indirect consequences of mitochondrial and cellular physiology 
changes. Additionally, it is worth studying the combined effects of 
SCFAs, because they are not present individually in the human colon 
as the sole metabolites. 
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