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Abstract

We propose four novel mathematical models, describing the microscopic mechanisms of

force generation in the cardiac muscle tissue, which are suitable for multiscale numerical

simulations of cardiac electromechanics. Such models are based on a biophysically accu-

rate representation of the regulatory and contractile proteins in the sarcomeres. Our models,

unlike most of the sarcomere dynamics models that are available in the literature and that

feature a comparable richness of detail, do not require the time-consuming Monte Carlo

method for their numerical approximation. Conversely, the models that we propose only

require the solution of a system of PDEs and/or ODEs (the most reduced of the four only

involving 20 ODEs), thus entailing a significant computational efficiency. By focusing on the

two models that feature the best trade-off between detail of description and identifiability of

parameters, we propose a pipeline to calibrate such parameters starting from experimental

measurements available in literature. Thanks to this pipeline, we calibrate these models for

room-temperature rat and for body-temperature human cells. We show, by means of numer-

ical simulations, that the proposed models correctly predict the main features of force gener-

ation, including the steady-state force-calcium and force-length relationships, the length-

dependent prolongation of twitches and increase of peak force, the force-velocity relation-

ship. Moreover, they correctly reproduce the Frank-Starling effect, when employed in multi-

scale 3D numerical simulation of cardiac electromechanics.

Author summary

Computer-based numerical simulations of the heart are increasingly assuming a recog-

nized role in the context of computational medicine and cardiology. They are based on

mathematical models describing the different physical phenomena occurring during an

heartbeat. Among these models, a pivotal role is played by those describing how cardio-

myocytes—the cardiac muscle cells—produce active force, driven by changes in calcium

concentration. However, due to the intrinsic complexity of these subcellular mechanisms,

the computational cost associated with the solution of cardiac active force models is often

prohibitive. For this reason, phenomenological models are typically used in place of bio-

physically detailed ones in organ-scale simulations. In this paper, we propose some new
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biophysically detailed mathematical models of cardiac force generation. Our models are

rigorously derived on the basis of physically motivated assumptions that allow to drasti-

cally reduce the computational cost associated to their resolution, making them suitable

for organ-scale numerical simulations, without renouncing to their biophysical detail.

This is a PLOS Computational Biology Software paper.

Introduction

Cardiovascular mathematical and numerical models are increasingly used, with a twofold role

[1–6]. On the one hand, realistic and detailed in silico models of the heart can deepen the

understanding of its function, help the interpretation of experimental observations and explain

the delicate links between the organ-level emergent phenomena and the underlying biophysi-

cal mechanisms. On the other hand, patient-specific numerical simulations, which are increas-

ingly becoming available, can provide clinicians with valuable quantitative information to

improve patient care and to support decision-making procedures.

The construction of an integrated mathematical and numerical model of cardiac electrome-

chanics (EM) is however a remarkably arduous task. This is mainly due to themultiphysics
(due to the interplay of biochemistry, electricity, solid mechanics, fluid dynamics) andmulti-
scale nature of the heart: characteristic spatial scales range from nanometers to centimeters

and the temporal ones from microseconds to seconds. This makes it difficult to devise compu-

tationally efficient and accurate algorithms for a plurality of mathematical models featuring a

broad degree of details [5, 7–11].

The contrasting needs between model accuracy and computational efficiency of numerical

simulations is mainly due to the multiscale nature of the heart, for which the mechanical work

enabling the macroscopic motion of the organ is fueled by the energy consumed at the micro-

scale by subcellular mechanisms. The generation of active force takes place inside sarcomeres

and involves a complex chain of chemical and mechanical reactions. This mechanism can be

split into two steps, that we sketch in Fig 1. First, a ionic signal (specifically, an increase of cal-

cium ions concentration) triggers the so-called regulatory units, protein complexes consisting

of troponin and tropomyosin, that act as on-off switches for the muscle contraction. Then,

when the regulatory units are activated, the actin andmyosin proteins are free to interact and

form the so-called crossbridges, molecular motors that generate an active force by consuming

the chemical energy stored in ATP [12, 13].

Microscopic force generation includes many regulatory mechanisms, forming the subcellu-

lar basis of organ-level phenomena, such as the Frank-Starling effect [13]. Hence, if a micro-

scale mathematical model of force generation is used in a multiscale setting to build an

integrated organ-level EM model, then it should be able to reproduce the above-mentioned

mechanisms.

In the past decades, several efforts have been dedicated to the construction of mathematical

models describing the complex dynamics of the processes taking place in sarcomeres [14–29].

However, because of the intrinsic complexity of the phenomenon of force generation, huge

computational costs are associated with the numerical approximation of such models, thus

limiting their application within multiscale EM simulations. Despite several attempts to
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capture the fundamental mechanisms underlying the force generation phenomenon into a

tractable number of equations [16, 17, 30–34], the existing organ-level cardiac mathematical

models rely on two alternative strategies to describe microscopic force generation.

• Phenomenological models (see e.g. [18, 23, 26, 35, 36]) are built by fitting the measured data

with simple laws, chosen by the modeler. However, the parameters characterizing phenome-

nological models often lack a clear physical interpretation; moreover, the noisy nature and

deficiency of data coming from the subcellular contractile units and the intrinsic difficulties

in measuring sarcomeres under the conditions occurring during an heartbeat hamper the

predictive power of such models [4].

• Biophysically detailed models are based on an accurate description of the proteins involved

in the force generation process and are derived from physics first principles. However, their

numerical solution, because of their complexity, is typically obtained by means of a Monte

Carlo (MC) approximation (see e.g. [19, 24, 25]). The MC method is in fact inefficient, fea-

turing a huge computational cost, both in terms of time and memory storage. Indeed, to

accurately approximate the solution of a single heartbeat for a single myofilament, tens of

hours of computational time may be required; see e.g. [37].

The purpose of this paper is to develop a biophysically detailed model for active force gener-

ation, that explicitly describes the fundamental ingredients of the force generation apparatus,

yet with a tractable computational cost, so that it is suitable for multiscale EM simulations.

Paper outline

This paper is structured as follows. First, we recall the main features of the force generation

phenomenon in cardiomyocytes and the main difficulties encountered in the construction of

mathematical models describing the associated mechanisms. In the section Models, we present

the models proposed in this paper and we describe the strategy employed for their calibration.

Then, in the section Results and Discussion, we show some numerical results obtained with

the proposed models, including filament-level 0D simulations and multiscale 3D cardiac EM

Fig 1. Representation of the different stages of the force generation mechanism and of the sections where they are discussed in

this paper.

https://doi.org/10.1371/journal.pcbi.1008294.g001
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simulations. Finally, we provide some concluding remarks. In Table 1 we provide a list of the

abbreviation used throughout this paper.

Microscale models of cardiac contraction

We recall the microscopical mechanisms by which active force is generated in the cardiac tis-

sue and we highlight the difficulties, rooted in the their intrinsic complexity, in describing

such phenomena with a tractable number of equations. We also review the main contributions

available in literature.

Sarcomeres are cylindrically-shaped, 2 μm length units made of a regular arrangement of

thick and thin filaments. The former, also known as myosin filaments (MF), are mainly made

of the protein myosin, while the latter are made of actin, troponin (Tn) and tropomyosin (Tm)

and are also called actin filaments (AF).

In the next sections, first we deal with the activation of the thin filament, involving the tro-

ponin-tropomyosin regulatory units (RUs). Then, we address the crossbridge (XB) cycling and

finally we consider the full-sarcomere dynamics (see Fig 1).

Modeling the thin filament activation. The activation of the thin filament is mainly regu-

lated by two variables, namely the intracellular calcium ions concentration ([Ca2+]i) and the

sarcomere length (SL). The experimental signature of the regulation mechanisms is given by

the steady-steady relationships between calcium, sarcomere length and generated force.

The force-calcium relationship (see Fig 2) features a sigmoidal shape, well described by the

Hill equation [40–42]:

T iso
a ¼

Tmax
a

1þ
EC50

½Ca2þ�i

� �nH ;
ð1Þ

where Tmax
a is the maximum tension (tension at saturating calcium levels), EC50 is the half max-

imal effective concentration (i.e. the calcium concentration producing half maximal force) and

nH is the Hill coefficient. The experimentally measured force-calcium curves in the cardiac tis-

sue feature a steep slope in correspondence of half activation (Hill coefficient greater than one)

[41–43], thus revealing the presence of cooperative effects. Despite several explanations have

been proposed [16, 44–50], the most likely hypothesis lies in the end-to-end interactions of

Tm units [51–53].

An increase of SL has a two-fold effect on the steady-state tension (see Fig 2): the plateau

force (i.e. the tension associated with saturating calcium) increases and the calcium-sensitivity

Table 1. List of abbreviations of this paper.

Anatomical terms Mathematical models

LV Left ventricle H57 Model of [14]

Tm Tropomyosin TTP06 Model of [38]

Tn Troponin ToR-ORd Model of [39]

MH Myosin head

XB Crossbridge Others abbreviations

RU Regulatory unit ODE Ordinary differential equation

BS Binding site PDE Partial differential equation

MF Myosin (thick) filament CTMC Continuous-time Markov Chain

AF Actin (thin) filament MC Monte Carlo

EM Electromechanics

https://doi.org/10.1371/journal.pcbi.1008294.t001
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is enhanced (i.e. the sigmoidal curves are left-ward shifted). Whereas the explanation of the

first effect is commonly-agreed to be linked to the increase of extension of the single-overlap

zone (i.e. the region of the sarcomere where the MF filament a single AF), a well-assessed

explanation for the second effect (known as length-dependent activation, LDA) has not yet

been found [44, 50, 53–60].

The earliest attempts to model the calcium-driven regulation of the muscular contractile

system date back to the 1990s [16, 30, 31, 61–63]. Those models rely on the formalism of con-

tinuous-time Markov Chains (CTMC), also known as Markov Jump processes (see e.g. [64]),

to model the transitions between the different configurations assumed by the proteins involved

in the force regulation process. In those models, the necessity of representing the end-to-end

interactions of Tm units dictates a spatially-explicit representation of the RUs. Indeed, mean-

field models, where only a single representative RU is considered, fail to correctly predict the

cooperative activation and the resulting steep force-calcium curves [17, 44], unless phenome-

nological laws are introduced, as discussed below. However, the number of degrees of freedom

of the CTMC increases exponentially with the number of RUs represented. This hinders the

possibility of numerically approximating the solution of the Forward Kolmogorov Equation,

also known as Master Equation in natural sciences, which describes the time evolution of the

probabilities associated with the states of a stochastic process [65]. As a matter of fact, the For-

ward Kolmogorov Equation associated with this CTMC would have a number of variables that

is exponential in the number of RUs, resulting in as many as 1020 or more variables [37]. For

this reason, spatially-explicit models require a MC approximation for their numerical resolu-

tion, thus resulting in very large computational costs [33, 37, 44].

To avoid an explicit representation of end-to-end interactions, phenomenological models,

where the transition rates are set as a nonlinear functions of the calcium concentration, have

been proposed [18, 23, 26, 35, 36]. These models are however based on phenomenological

laws. Alternatively, to overcome the large computational cost induced by the MC method

without renouncing to represent end-to-end interactions (unlike in phenomenological mod-

els), several attempts to capture cooperative phenomena by means of numerically tractable

ODE systems have been done in literature. In [17] an analytical solution is derived for the

steady-state. In [32], a periodicity assumption is used to reduce the number of unknowns. In

[33] each RU is considered independently of each others, while end-to-end interactions are

accounted for by fitting the parameters of an integro-differential system with memory from a

collection of simulations. In [34], the states of the CTMC are grouped by the number of

unblocked RUs and a MC sampling technique is used to estimate the average free energy of

each group and, thus, the transition rates within groups. For further details on these modeling

attempts, the interested reader can refer to [37, 66].

Fig 2. Representation of the steady-state force-calcium relationship (a), the force-velocity relationship (b) and tension-

elongation curves after a fast transient (c).

https://doi.org/10.1371/journal.pcbi.1008294.g002
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Modeling the crossbridge dynamics. Active force is generated by XBs by the cyclical

attachment and detachment of myosin heads (MHs) to actin binding sites (BSs). When MHs

are in their attached configuration, they rotate towards the center of the sarcomere, perform-

ing the so-called power-stroke, thus pulling the AF along the same direction. Such cyclical

path, known as Lymn-Taylor cycle [67], features a wide range of time scales (nearly from 1 to

100 ms) [12, 28, 68]; hence, also the response of the force generation apparatus to external sti-

muli is characterized by different time scales. Indeed, when a fast step in force (respectively, in

length) is applied to an isometrically contracted muscle fiber, three different phases can be

observed [20, 28, 68–70]. First, an instantaneous elastic response occurs along the so-called T1-

L1 curve (see Fig 2), whose slope corresponds to the stiffness of the attached myosin proteins.

Then, a fast transient (2-3 ms) occurs, and the sarcomere reaches a length (respectively, a ten-

sion) belonging to the T2-L2 curve (see Fig 2). Such second phase corresponds to a rearrange-

ment of MHs within their pre- and post-power-stroke configuration. Finally, with a time scale

on nearly 100 ms, the muscle fiber reaches a steady-state regime, characterized (in case the

step is applied by controlling the force) by a constant shortening (or lengthening) velocity. The

relationship between the steady-state velocity and the muscle tension constitutes the so-called

force-velocity curve (see Fig 2), firstly measured by Hill in [71], and it is characterized by a

finite value of velocity (denoted by vmax) for which the generated tension is zero [12, 13]. The

experimental measurements of the T1-L1, the T2-L2 and the force-velocity curves are invariant

after normalization of the tension by its isometric value, denoted by T iso
a . This reveals that the

underlying mechanisms are related to the XB dynamics, while they are independent of the thin

filament regulation, whose effect is simply that of tuning the number of recruitable XBs [12,

13, 70].

The attachment-detachment process of MHs has been described accordingly with the for-

malism of the Huxley model [14] (that we denote by H57 model), where the population of

MHs is described by the distribution density of the distortion of attached XB. The time evolu-

tion of such distribution is driven by a PDE, where a convection term accounts for the mutual

sliding between filaments, and a source and a sink term (whose rates depend on the XB distor-

tion) account for the creation and destruction of XBs [22, 72–74]. In order to capture the sepa-

ration between the fastest time scales (i.e. between the first two phases following a fast step

either in force or in length), an explicit representation of the power-stroke must be included in

the model, by introducing a multistable discrete [15, 75] or continuous [20, 28, 29, 69, 76]

degree of freedom, representing the angular position of the rotating MH.

Modeling the full sarcomere dynamics. In the past two decades, several models describ-

ing the generation of active force in the cardiac tissue, including both the calcium-driven regu-

lation and the XB cycling, have been proposed. The main challenge faced in the development

of such models lies in the spatial dependence of the cooperativity phenomenon, crucial to

reproduce the calcium dependence of muscle activation. As a matter of fact, an explicit repre-

sentation of spatial-dependent cooperative mechanisms dramatically increases the computa-

tional complexity of activation models, even more so when such models are coupled with

models describing XB cycling. When the interactions between BSs and MHs are considered,

indeed, one must face the further difficulty of tracking which BS faces which MH when the fil-

aments mutually slide. The attempt of capturing such spatially dependent phenomena in a

compact system of ODEs is the common thread of most of the literature on sarcomere model-

ing (see e.g. [17, 22, 32–34, 36, 37, 77–79]). We remark that computational efficiency is a

major issue when sarcomere models are employed in multiscale simulation, such as cardiac

EM. In this case, indeed, the microscale force generation model needs to be simultaneously

solved in many points of the computational domain (typically at each nodal point of the
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computational mesh). Nonetheless, most of biophysically detailed full-sarcomere models rely

on the time-consuming MC method for their numerical approximation [19, 24, 25, 33, 80].

Models

In this section, we propose four different microscale models of active force generation in the

cardiac tissue. These models are derived from a biophysically detailed CTMC, accurately

describing the dynamics of the regulatory and contractile proteins. We present a strategy to

derive a set of equations, with a dramatically smaller number of variables than the Forward

Kolmogorov Equation, describing the evolution of the biophysically detailed CTMC. Our

strategy is based on physically motivated assumptions, aimed at neglecting second-order inter-

actions among the proteins, focusing only on the main interactions, so that the variables

describing the stochastic processes associated with the states of the proteins can be partially

decoupled, similarly to what we have done in [37]. This results in a drastic reduction in the

size of models. Moreover, we change the classical MH-centered description of XBs (see e.g.

[15, 29, 72, 75]), in favor of a BS-centered one. This prevents the necessity of tracking the

mutual sliding between the filaments, still without the need of introducing any simplifying

assumption.

As in most of RUs models (see Introduction), we describe Tn and Tm by discrete states.

Moreover, based on the experimental evidence that cooperativity is linked to RUs end-to-end

interactions [51–53], we include nearest-neighbor interactions among RUs with the formalism

of the model of [17].

Concerning the modeling of XBs, we are here interested in developing a model of cardio-

myocytes contraction in the heart, which is characterized by slower time-scales than the fast

time-scale of the power-stroke. This suggests that the level of detail that best suits the applica-

tion to cardiac EM does not require to explicitly represent the power-stroke [81]. In [29],

indeed, the authors showed that, if the time-scales of interest are slower than the time-scale of

the power-stroke, the detailed models including the power-stroke reduce to H57-like models,

where only the attachment-detachment process of XBs is explicitly represented. Therefore, we

model the XB dynamics as a two-states process, within the H57 formalism, where the attach-

ment-detachment rates depend on the myosin arm distortion.

Model setup

We consider a pair of interacting myofilaments and we denote by NA the number of RUs

located on an AF and by NM the number of MHs located on half MF. To identify a RU we

employ the index i 2 IA ≔ f1; . . . ;NAg, while to identify MHs we employ the index

j 2 IM ≔ f1; . . . ;NMg. The CTMC model describing the dynamics of the RUs and of the

MHs is sketched in Fig 3.

Each RU is composed by a Tn unit and by a Tm unit, respectively associated with the vari-

ables Cti and Tti . Tn can be either unbound (U) or bound (B) to calcium (we write Cti ¼ U and

Cti ¼ B, respectively). On the other hand, Tm can be either in non-permissive (N ) or in per-

missive (P) configuration (we write Tti ¼ N and Tti ¼ P, respectively). In our model, the cal-

cium binding kinetics is affected by the state of Tm. Hence, when the i-th Tm unit is non-

permissive (i.e. Tti ¼ N ), we denote the binding and unbinding calcium rates by kUBjN
C;i and

kBUjN
C;i , respectively; conversely, when Tti ¼ P, we denote the binding and unbinding calcium

rates by kUBjP
C;i and kBUjP

C;i . Similarly, the kinetics of Tm is affected by the calcium-binding state of

the corresponding Tn unit. Moreover, because of the Tm end-to-end interactions, the Tm

transition rates also depend on the state of the nearest-neighboring Tm units. Hence, the
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transition rates from the non-permissive to the permissive states and vice versa—given the

state of Ti−1, Ti+1 and Ci—are respectively denoted by kNPjTi� 1 � Tiþ1 ;Ci
T;i and kPN jTi� 1 � Tiþ1 ;Ci

T;i . To

better clarify the notation, an example is shown in Fig 3 (bottom-left box). In the example,

kNPjP � P;B
T;i denotes the transition rate for i-th Tm unit from the non-permissive to the permis-

sive state, when the nearest-neighboring units are both permissive and the associated Tn unit

is bound to calcium. Concerning the Tm units located at the ends of the filaments, for which a

neighbor is missing, the latter is assumed to be in state N . We exclude any feedback from XBs

on the dynamics of the RUs, as recent experimental evidence suggests that this kind of feed-

back is not present [49, 50].

Each myosin arm is modeled as a linear spring with stiffness kXB. The attachment and

detachment rates of XBs depend on the distance between the MH resting position and the

BS, denoted by x, and on the relative velocity between the myofilaments, denoted by

vhsðtÞ≔ � d
dt SLðtÞ=2. For simplicity, we define as v(t) = 2vhs(t)/SL0 the normalized shortening

velocity, where SL0 denotes a reference sarcomere length. Moreover, to model the calcium-

Fig 3. Sketch of the proposed CTMC model. Each RU is described by a 4-state model (top left), whose dynamics is affected by the

state nearest-neighboring RUs. An example of nearest-neighbor interactions is shown in the bottom-left box, where the notation for

the transition rates kT,i is illustrated by the orange arrows. MHs are described as 2-state elements, whose transition rates are affected

by the XB elongation, the sliding velocity between myofilaments and the permissivity state of the RU.

https://doi.org/10.1371/journal.pcbi.1008294.g003
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driven regulation, the XB attachment and detachment rates depend on the state of the corre-

sponding Tm unit. Hence, when Tti ¼ N , we denote the XB binding and unbinding rates by

f iN ðx; vðtÞÞ and giN ðx; vðtÞÞ, respectively; conversely, when Tti ¼ P, we denote the XB binding

and unbinding rates by f iPðx; vðtÞÞ and giPðx; vðtÞÞ. In particular, we set f iN � 0 since new XBs

can form only if the corresponding Tm unit is permissive. Clearly, a XB can form only if nei-

ther the BS nor the MH is already attached to another site. Moreover, the attachment rates f iN
and f iP are zero sufficiently far from x = 0.

In order to describe the state of XBs, we introduce the variables Ati ,M
t
j and Zti , respectively

denoting the state of actin BSs, the state of MHs and the displacement of attached XBs. Specifi-

cally, when the i-th actin BS is attached to the j-th MH we write Ati ¼ j. Similarly, when the j-
th MH is attached to the i-th actin BS we writeMt

j ¼ i. Moreover, we write Zti ¼ x whenever

the i-th actin BS is attached to a MH with displacement x. Clearly, these variables are redun-

dant, as we have:

ðAti ¼ jÞ , ðM
t
j ¼ iÞ , ðZ

t
i ¼ dijðtÞÞ;

where we have denoted by dij(t) the distance between the i-th BS and the j-th MH.

To summarize, the CTMC is described by the following stochastic processes, for i 2 IA, j 2
IM and t� 0:

Cti ¼

(B if the i� th Tn is bound to calcium;

U otherwise;

Tti ¼

(P if the i� th Tm is permissive;

N otherwise;

Ati ¼

( j if the i� th actin BS is attached to the j� th MH;

0 if the i� th actin BS is not attached to any MH;

Mt
j ¼

( i if the j� th MH is attached to the i� th actin BS;

0 if the j� th MH is not attached to any actin BS;;

Zti ¼

( x if the i� th actin BS is attached to a MH with displacement x;

; if the i� th actin BS is not attached to any MH:

ð2Þ

We remark that we denote the detached state by Zti ¼ ; rather than Zti ¼ 0, because the lat-

ter notation is employed to denote the case when the i-th actin BS is attached with displace-

ment x = 0.

The total force exerted by the pair of interacting half MF and AF is given by the sum of the

force generated by each attached XB. Therefore, the expected value of the force is given by:

FhfðtÞ ¼
X

i2IA

E½FXBðZtiÞ�;

where FXB(x) denotes the force exerted by an attached MH with distortion x and where we set

by convention FXB(;) = 0. Here and in what follows, we denote by E½�� the expected value of a

random variable.

The size of the CTMC (2), that is the number of its states, is overwhelming. As a matter of

fact, each RU can be in four possible states (UN , BN , UP and BP), and the corresponding BS
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can be either unbound or bound to one of the NMMHs. In conclusion, the number of states of

the CTMC is ð4ðNM þ 1ÞÞ
NA ’ 1060. Thus, the numerical solution of the associated Forward

Kolmogorov Equation is unaffordable, as it would feature as many variables as the number of

states of the CTCM [37]. To overcome this inconvenient, we introduce some physical moti-

vated assumptions that allow to partially decouple the dynamics of the stochastic processes,

thus yielding a much reduced set of equations.

Models equations

In this section, we present equations describing the evolution of the stochastic processes of Eq

(2). A detailed derivation of these equations is provided in the Supporting Information (S1

Appendix).

Thin filament regulation. Due to the lack of feedback from XBs to RUs, it is possible to

write an equation describing the evolution of the stochastic processes Cti and Tti independently

of the stochastic processes associated with the XBs (while the converse clearly does not hold).

Similarly to [37], we focus on the joint probabilities of triplets of consecutive RUs. Hence, we

consider the following variables, where i = 2, . . ., NA − 1, W; Z; l 2 fU;Bg and

a;b; d 2 fN ;Pg:

p
abd;WZl
i ðtÞ≔ P½ðTi� 1;Ti;Tiþ1Þ

t
¼ ða; b; dÞ; ðCi� 1;Ci;Ciþ1Þ

t
¼ ðW; Z;lÞ�; ð3Þ

where P½�� denotes the probability of an event. For instance, p
PNP;BBU
i ðtÞ denotes the probabil-

ity that the triplet centered in the i-th unit has the Tm units in states P, N and P and the Tn

units in states B, B and U respectively, as shown in Fig 4.

For each i = 2, . . ., NA − 1, we have 64 variables written in the form (3), corresponding to as

many states of the triplet. The dynamics of each variable is determined by 6 possible forward

and backward transitions, as depicted in Fig 5. However, the transition rates associated with

the Tm units at the edge of the triplet cannot be computed from the variables of Eq (3), as they

depend on the state of a Tm unit outside the triplet. For instance, the rate of the transition

from p
PNP;BBU
i ðtÞ to p

PNN ;BBU
i ðtÞ depends on the state of Ttiþ2

, which does not belong to the

triplet. Nonetheless, under a suitable hypothesis, the transition rates between Tm being in per-

missive and non-permissive state can be defined as:

~k�aaj� � b;�WZ

T;i ≔

P
x;z
k�aajx � b;W

T;i p
x�ab;zWZ
i

P
x;z
p
x�ab;zWZ
i

for i ¼ 2; . . . ;NA � 1;

k�aajN � b;W
T;i for i ¼ 1;

8
>>>><

>>>>:

~k
�ddjb � � ;Zl�

T;i ≔

P
x;z
k

�ddjb � x;l

T;i p
b�dx;Zlz
i

P
x;z
p
b�dx;Zlz
i

for i ¼ 2; . . . ;NA � 1;

k
�ddjb � N ;l

T;i for i ¼ NA;

8
>>>><

>>>>:

ð4Þ

where the symbol ˚ recalls that the corresponding unit has an arbitrary state. In Eq (4) and in

what follows, we use the notation �N ¼ P, �P ¼ N , �U ¼ B and �B ¼ U to denote opposite

states. For instance, if a ¼ N , then �a ¼ P.
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Eq (4) is rigorously derived in the Supporting Information (S1 Appendix). The derivation is

rather technical and is based upon the following assumption:

ðTiþ1;Ciþ1Þ
t ⫫ Tti� 2

jðTi� 1;Ti;Ci� 1;CiÞ
t for i ¼ 3; . . . ;NA � 1;

ðTi� 1;Ci� 1Þ
t ⫫ Ttiþ2

jðTiþ1;Ti;Ciþ1;CiÞ
t for i ¼ 2; . . . ;NA � 2;

ðH1Þ

where, given three events A, B, C we write A⫫ B|C if A and B are conditionally independent

given C (i.e. P½A \ BjC� ¼ P½AjC�P½BjC�). Assumption (H1) states that distant RUs are condi-

tionally independent given the states of the intermediate RUs. From a modeling viewpoint,

Fig 4. Representation of the configuration corresponding to the state variable p
PNP;BBU
i ðtÞ. The arrows illustrate the meaning of

the notation.

https://doi.org/10.1371/journal.pcbi.1008294.g004

Fig 5. Spatially-explicit model: Each triplet of consecutive RUs can undergo 6 different transitions. For example,

this figure shows the transitions of the configuration associated with the state variable p
PNP;BBU
i ðtÞ, with the

corresponding transition rates. The transition rates computed thanks to Ass. (H1) are highlighted with a colored

background.

https://doi.org/10.1371/journal.pcbi.1008294.g005
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this means that the interaction of far units is mediated by the intermediate ones, which is

coherent with the short-range nature of end-to-end interactions.

In conclusion, we obtain the following system of ODEs, for t� 0 and for any i = 2, . . ., NA
− 1, W; Z; l 2 fU;Bg and a;b; d 2 fN ;Pg:

d
dt
pabd;WZli ¼ ~k�aaj� � b;�WZ

T;i� 1 p
�abd;WZl
i � ~ka�a j� � b;�WZ

T;i� 1 p
abd;WZl
i

þk
�bbja � d;Z

T;i p
a�bd;WZl
i � kb

�b ja � d;Z

T;i p
abd;WZl
i

þ~k
�ddjb � � ;Zl�

T;iþ1 p
ab�d;WZl
i � ~kd

�d jb � � ;Zl�

T;iþ1 p
abd;WZl
i

þk
�WWja

C;i� 1 p
abd;�WZl
i � kW

�W ja

C;i� 1 p
abd;WZl
i

þk�ZZjb

C;i p
abd;W�Zl
i � kZ�Zjb

C;i p
abd;WZl
i

þk
�lljd

C;iþ1 p
abd;WZ�l
i � kl

�l jd

C;iþ1 p
abd;WZl
i ;

ð5Þ

endowed with suitable initial conditions.

The permissivity of a given RU is defined as its probability of being in permissive state (i.e.

PiðtÞ ¼ P½Tti ¼ P�) and can be obtained from the variables p
abd;WZl
i ðtÞ as:

PiðtÞ ¼

X

b;d2fN ;Pg

X

W;Z;l2fU;Bg

pPbd;WZl
2

ðtÞ for i ¼ 1;

X

a;d2fN ;Pg

X

W;Z;l2fU;Bg

paPd;WZli ðtÞ for i ¼ 2; . . . ;NA � 1;

X

a;b2fN ;Pg

X

W;Z;l2fU;Bg

pabP;WZlNA � 1
ðtÞ for i ¼ NA:

8
>>>>>>>>><

>>>>>>>>>:

Crossbridge dynamics. Similarly to the H57 model, we introduce distribution density

functions tracking the elongation of attached XBs. However, since in our CTMC the XB transi-

tion rates depend on the state of the associates Tm unit, we split attached XBs into two families:

those associated with a non-permissive Tm and those associated with a permissive one. Hence,

we define the following variables, for i 2 IA, corresponding to the probability density that the

i-th BS is attached to a MH with displacement x and that the associated RU is in a given per-

missivity state:

ni;Pðx; tÞ ¼ f ½Zti ¼ x;T
t
i ¼ P�;

ni;N ðx; tÞ ¼ f ½Zti ¼ x;T
t
i ¼ N �;

ð6Þ

where the symbol f½�� denotes a probability density function.

We notice that we make here the choice of tracking the XBs from the point of view of the

BSs, rather than of the MHs, as it is traditionally done in literature [15, 29, 72, 75]. This change

of perspective has the significant advantage that it does not require to track which RU faces

which MH at each time. Indeed, each BS and each RU, being located on the same filament, rig-

idly move with respect of each others and, thus, each BS is always associated with the same RU.
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In the Supporting Information (S1 Appendix) we derive the following system of PDEs,

describing the time evolution of ni;P and ni;P :

@ni;P
@t
� vhs

@ni;P
@x

¼ ðDM
� 1Pi � ni;PÞf iP � g

i
Pni;P

� ~kPN
T;i ni;P þ ~kNP

T;i ni;N x 2 R; t � 0; i 2 IA;

@ni;N
@t
� vhs

@ni;N
@x

¼ ðDM
� 1ð1 � PiÞ � ni;N Þf iN � g

i
Nni;N

� ~kNP
T;i ni;N þ ~kPN

T;i ni;P x 2 R; t � 0; i 2 IA;

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð7Þ

endowed with suitable initial conditions, where we define:

~kNP
T;i ≔

P
a;d;W;Z;l

kNPja � d;Z
T;i p

aN d;WZl
i

1 � Pi
;

~kPN
T;i ≔

P
a;d;W;Z;l

kPN ja � d;Z
T;i p

aPd;WZl
i

Pi
:

ð8Þ

The sink and source terms in Eq (7) account for the fluxes among the two groups (XBs with

non-permissive Tm and with permissive Tm). The terms Pi and (1 − Pi) represent the maxi-

mum possible proportion of attached BSs in each group. The term DM, defined as the distance

between two consecutive MHs, appears because in this setting ni;P and ni;N are, from a dimen-

sional point of view, the inverse of length units (they are probability densities), whereas the

variables of the H57 model are dimensionless. We remark that, differently than the H57

model, Eq (7) is referred to BSs rather than to MHs.

The derivation of Eq (7), presented in the Supporting Information (S1 Appendix), is based

on two assumptions. First, we assume that the state of a BS is conditionally independent of the

state of surrounding RUs, given the permissivity state of the associated RU. This is coherent

with the physics of the model, as the only feature of the RUs that directly affects the XBs bind-

ing rates is the permissivity state of Tm. In mathematical terms, this assumption reads:

Ati ⫫ ðTi� 1;Tiþ1;CiÞ
t
jTti for i ¼ 2; . . . ;NA � 1: ðH2Þ

Second, we assume that the shortening velocity v is never so large to convect attached BSs

within the range of attachment of a different MH. In mathematical terms, we assume that:

f iPðdijðtÞ; vðtÞÞ 6¼ 0) Ah 6¼ j 8 h 6¼ i: ðH3Þ

The latter assumption allows to decouple the dynamics of the different units. We notice

that all the models belonging to the family of the H57 model are based on assumptions analo-

gous to Ass. (H3), without which the H57 equation cannot be derived.

By combining Eq (5) with Eq (7), describing the dynamics of RUs and XBs, respectively, we

obtain a model that we denote as the SE-PDE model (where SE stands for spatially-explicit,

while PDE denotes the fact that the XB dynamics is described by a PDE system). In this model,

the expected value of the force exerted by the whole half filament can be determined as
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follows:

FhfðtÞ ¼
X

i2IA

Z þ1

� 1

FXBðxÞðni;Pðx; tÞ þ ni;N ðx; tÞÞdx: ð9Þ

Distribution-moments equations. When the XB attachment-detachment transition rates

assume special forms, the PDE system of Eq (7) can be reduced to a more compact system of

ODEs, by following a general strategy in statistical physics, already used for H57-like models

[22, 77, 78]. Specifically, under suitable hypotheses on the transition rates, the distributions of

the elongation of attached XBs (i.e. ni;Pðx; tÞ and ni;N ðx; tÞ) can be fully characterized by their

first two moments that we denote by m0
i;P , m1

i;P and by m0
i;N , m1

i;N , respectively. More precisely, we

define, for a 2 fN ;Pg, for c 2 ff iP; f
i
N ; g

i
P; g

i
Ng and for p = 0, 1:

m
p
i;aðtÞ ≔

Z þ1

� 1

x
SL0=2

� �p

ni;aðx; tÞdx;

m
p
cðvÞ ≔

Z þ1

� 1

x
SL0=2

� �p

cðx; vÞ
dx
DM

:

ð10Þ

We notice that the zero order moment m0
i;N ðtÞ (respectively, m0

i;PðtÞ) can be interpreted as

the probability that the i-th BS is attached and associated to a non-permissive (respectively,

permissive) RU. Moreover, the ratio m1
i;N ðtÞ=m

0
i;N ðtÞ (respectively, m1

i;PðtÞ=m
0
i;PðtÞ) corresponds

to the expected value of the distortion (normalized with respect to SL0/2) of the XB attached to

the i-th RU, provided that the corresponding RU is in non-permissive (respectively, permis-

sive) state. The physical meaning of the variables m0
i;N ðtÞ and m0

i;PðtÞ is illustrated in Fig 6.

Let us assume that the total attachment-detachment rate is independent of the XB distor-

tion (i.e. there exist functions riPðvÞ and riN ðvÞ, for i 2 IA, such that riPðvÞ ¼ f
i
Pðx; vÞ þ g

i
Pðx; vÞ

and riN ðvÞ ¼ f
i
N ðx; vÞ þ g

i
N ðx; vÞ for any x 2 R). Under this assumption, as shown in the Sup-

porting Information (S1 Appendix), we get the following distribution-moments equations:

d
dt
m0

i;P ¼ � ðriP þ ~kPN
T;i Þm

0
i;P þ

~kNP
T;i m

0
i;N þ Pim

0

f iP
t � 0; i 2 IA;

d
dt
m0

i;N ¼ � ðriN þ ~kNP
T;i Þm

0
i;N þ

~kPN
T;i m

0
i;P þ ð1 � PiÞm

0

f i
N

t � 0; i 2 IA;

d
dt
m1

i;P þ v m
0

i;P ¼ � ðriP þ ~kPN
T;i Þm

1
i;P þ

~kNP
T;i m

1
i;N þ Pim

1

f iP
t � 0; i 2 IA;

d
dt
m1

i;N þ vm
0

i;N ¼ � ðriN þ ~kNP
T;i Þm

1
i;N þ

~kPN
T;i m

1
i;P þ ð1 � PiÞm

1

f i
N

t � 0; i 2 IA:

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð11Þ

By assuming a linear spring hypothesis for the tension generated by attached XBs (i.e.

FXB(x) = kXB x), the expected value of the force of half filament is given by:

FhfðtÞ ¼ kXB
SL0

2
NAm

1ðtÞ; ð12Þ
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where we have defined:

mpðtÞ ¼
1

NA

XNA

i¼1

m
p
i;P þ m

p
i;N

� �
: ð13Þ

Since the active force generated by half MF is proportional to μ1(t), there exists some con-

stant aXB (with the dimension of a pressure) such that the macroscopic active tension can be

written as Ta(t) = aXB μ1(t). In the following, we denote by SE-ODE model the one obtained by

combining Eq (5) with Eq (11) (where ODE denotes the fact that the XB dynamics is described

by an ODE system).

Mean-field approximation. The models proposed so far are based on an explicit spatial

description of the physical arrangements of proteins along the myofilaments. The spatial

description allows to model the cooperativity mechanism (linked to the nearest-neighbor

interactions within RUs) and the SL related effects on the force generation machinery (linked

to the filament overlapping). However, the first phenomenon, despite being spatially depen-

dent, is based on interactions of local type; the effect of the second phenomenon, in turn,

largely depends on the size of the single-overlap zone, that is a scalar quantity non dependent

on the spatial variable. Based on the above considerations, we propose a mean-field approxi-

mation of the spatially dependent CTMC presented above, where the nearest-neighbor inter-

action are captured as a local effect, and the effect of SL is modeled in function of the size of

the single-overlap zone.

This mean-field model is based on the assumption that the single-overlap zone can be con-

sidered as infinitely long. Such approximation is reasonable as far as the effect of the edges can

be neglected (the validity of such approximation will be discussed in the Conclusions). A direct

consequence of this assumption is the invariance by translation of the joint distribution of

RUs. In other terms, the variables p
abd;WZl
i ðtÞ defined in Eq (3) coincide for each i. In addition,

we further reduce the number of variables by tracking only the state of the Tn unit of the cen-

tral RU of the triplet (this further reduction is made possible by the fact that we never have to

track the behavior at the boundaries of the filaments, as we will see in what follows). We define

Fig 6. Representation of the variables of the distribution-moments equations. The variable m0
i;PðtÞ (respectively, m0

i;N ðtÞ)
corresponds to the fraction of permissive (respectively, non-permissive) BSs to which a MH is bound, while the ratio

m1
i;PðtÞ=m0

i;PðtÞ (respectively, m1
i;N ðtÞ=m0

i;N ðtÞ) corresponds to the average XB distortion within the permissive (respectively, non-

permissive) attached BSs.

https://doi.org/10.1371/journal.pcbi.1008294.g006
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thus the following variables, for a; b; d 2 fN ;Pg and Z 2 fU;Bg:

pabd;ZðtÞ≔ P½ðTi� 1;Ti;Tiþ1Þ
t
¼ ða; b; dÞ;Cti ¼ Z�: ð14Þ

A visual representation of these variables is provided in Fig 7. We notice that the variables

παβδ,η(t) are well-defined thanks to the translational invariance of the distribution of RUs.

Moreover, the transition rates kd
�d jb

C;i and kb
�b ja � Z;d

T;i for the units in the single-overlap region do

not depend on i. Hence, we will denote them simply as kd
�d jb

C and kb
�b ja � Z;d

T .

The dynamics of the variables παβδ,η(t) involves 4 possible forward and backward transi-

tions (see Fig 8). Similarly to the spatially-explicit model, the transitions rates associated with

the edge Tm units cannot be determined without additional assumptions. Therefore, we

Fig 7. Representation of the configuration corresponding to the state variable pPNP;BðtÞ. The arrows illustrate the meaning of the

notation.

https://doi.org/10.1371/journal.pcbi.1008294.g007

Fig 8. Mean-field model: Representation of the 4 forward and backward transitions of the configuration

associated with the state variable pPNP;BðtÞ, with the corresponding transition rates. The transition rates computed

thanks to Ass. (H4) are highlighted with a colored background.

https://doi.org/10.1371/journal.pcbi.1008294.g008
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introduce the following assumption:

ðTiþ1;CiÞ
t ⫫ ðTi� 2;Ci� 1Þ

t
jðTi� 1;TiÞ

t for i ¼ 3; . . . ;NA � 1;

ðTi� 1;CiÞ
t ⫫ ðTiþ2;Ciþ1Þ

t
jðTiþ1;TiÞ

t for i ¼ 2; . . . ;NA � 2;

ðH4Þ

Assumption (H4), similarly to (H1), states the conditional independence of far units, given

the states of the intermediate ones. In other terms, by Assumption (H4) we neglect the long-

range interactions between Tm units, which is a secondary effect compared to short-range (i.e.

end-to-end) interactions. We remark that Ass. (H4) and (H1) are two different mathematical

translations of the same physical concept. The difference is due to the different state represen-

tation done in the two models: while the state of the SE model comprises three Tn units, the

one of the MF model comprises only one Tn unit.

In this way we obtain (as proved in the Supporting Information (S1 Appendix)), the follow-

ing ODE model, valid for t� 0 and for any a;b; d 2 fN ;Pg and Z 2 fU;Bg:

d
dt
pabd;Z ¼ ~k�aaj� � b;�

T p�abd;Z � ~ka�a j� � b;�

T pabd;Z

þk
�bbja � d;Z

T pa
�bd;Z � kb

�b ja � d;Z

T pabd;Z

þ~k
�ddjb � � ;�

T pab
�d ;Z � ~kd

�d jb � � ;�

T pabd;Z

þk�ZZjb

C pabd;�Z � kZ�Z jb

C pabd;Z;

ð15Þ

where:

~k�aaj� � b;�

T ≔
P

x;z
k�aajx � b;z

T px�ab;z

P
x;z
px�ab;z

;

~k
�ddjb � � ;�

T ≔
P

x;z
k

�ddjb � x;z

T pb
�dx;z

P
x;z
pb

�dx;z
:

The permissivity of a RU in the single-overlap zone, defined as PðtÞ ¼ P½Tti ¼ P� (such that

the i-th RU belongs to the single-overlap zone), can be obtained as:

PðtÞ ¼
X

a;d2fN ;Pg

X

Z2fU;Bg

paPd;ZðtÞ:

By similar arguments, it follows that also the joint distribution of the stochastic processes

associated with XB formation enjoys the translational invariance property and, consequently,

the following variables are well defined, as the right-hand sides are independent of the index i
(for i belonging to the single-overlap zone):

nPðx; tÞ ¼ f½Zti ¼ x;T
t
i ¼ P�;

nN ðx; tÞ ¼ f½Zti ¼ x;T
t
i ¼ N �:

ð16Þ
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By proceeding as before, we get the following model:

@nP

@t
� vhs

@nP

@x
¼ ðDM

� 1P � nPÞfP � gPnP

� ~kPN
T nP þ

~kNP
T nN x 2 R; t � 0;

@nN

@t
� vhs

@nN

@x
¼ ðDM

� 1ð1 � PÞ � nN ÞfN � gNnN

� ~kNP
T nN þ

~kPN
T nP x 2 R; t � 0;

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð17Þ

where we have defined:

~kNP
T ðtÞ≔

P
a;d;Z
kNPja � d;Z
T paN d;ZðtÞ
1 � PðtÞ

;

~kPN
T ðtÞ≔

P
a;d;Z
kPN ja � d;Z
T paPd;ZðtÞ
PðtÞ

:

ð18Þ

The expected value of the force exerted by the whole half filament can be obtained as fol-

lows:

FhfðtÞ ¼ NA wsoðSLðtÞÞ
R þ1
� 1
FXBðxÞðnPðx; tÞ þ nN ðx; tÞÞdx; ð19Þ

where the single-overlap ratio χso denotes the fraction of the AF filament in the single-overlap

zone:

wsoðSLÞ≔

0 if SL � LA;

2ðSL � LAÞ
LM � LH

if LA < SL � LM;

SLþ LM � 2LA
LM � LH

if LM < SL � 2LA � LH;

1 if 2LA � LH < SL � 2LA þ LH;

LM þ 2LA � SL
LM � LH

if 2LA þ LH < SL � 2LA þ LM;

0 if SL > 2LA þ LM;

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

ð20Þ

LA being the length of the AF, LM the length of the MF and LH the length of the bare zone

(see Fig 9). We notice that we are here assuming that the relative sliding between the filaments

is such that χso slowly varies, so that we can neglect the effects linked to the state transitions

taking place at the border of the single-overlap zone. The combination of Eqs (15) and (17)

gives a model for the full-sarcomere dynamics, which we denote as theMF-PDE model (where

MF stands for mean-field).

Moreover, under the assumption that the total attachment-detachment rate does not

depend on the XB elongation (i.e. there exist two functions rPðvÞ and rN ðvÞ such that rPðvÞ ¼
fPðx; vÞ þ gPðx; vÞ and rN ðvÞ ¼ fN ðx; vÞ þ gN ðx; vÞ for any x 2 R), we can derive the following
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distribution-moment equation:

d
dt
m0

P ¼ � ðrPðvÞ þ ~kPN
T Þm

0
P þ

~kNP
T m0

N þ P m
0
fP

t � 0;

d
dt
m0

N ¼ � ðrN ðvÞ þ ~kNP
T Þm

0
N þ

~kPN
T m0

P þ ð1 � PÞ m
0
fN

t � 0;

d
dt
m1

P þ vm
0

P ¼ � ðrPðvÞ þ ~kPN
T Þm

1
P þ

~kNP
T m1

N þ P m
1
fP

t � 0;

d
dt
m1

N þ v m
0

N ¼ � ðrN ðvÞ þ ~kNP
T Þm

1
N þ

~kPN
T m1

P þ ð1 � PÞ m
1
fN

t � 0;

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð21Þ

endowed with suitable initial conditions and where we define, for a 2 fN ;Pg:

mp
a
ðtÞ ≔

Z þ1

� 1

x
SL0=2

� �p

naðx; tÞdx: ð22Þ

The force exerted by half thick filament is then given by:

FhfðtÞ ¼ kXB
SL0

2
NA m

1ðtÞ; ð23Þ

where

mpðtÞ≔ wsoðSLðtÞÞ½m
p
PðtÞ þ m

p
N ðtÞ�; ð24Þ

for p = 0, 1 and, hence, the tissue level active tension is Ta(t) = aXB μ1(t). Finally, by combining

Eqs (15) and (21) we obtain a model that we denote asMF-ODE model.
List of proposed models. Table 2 provides a recap of the different models proposed in

this paper. For each model, we report the assumptions underlying its derivation. The two mod-

els derived within the distribution-moments formalism (SE-ODE and MF-ODE) also require

that the sum of the attachment and detachment rates is independent of x (we write f + g⫫ x).
We notice that this is not a simplificatory assumption, but rather a specific modeling choice.

Fig 9. Sketch of the sarcomere model. The thick filament (MF) is represented in red and two thin filaments (AF) are

represented in blue (top). The origin of the frame of reference is the left side of the reference AF. The functions χSF and

χM are also represented (bottom).

https://doi.org/10.1371/journal.pcbi.1008294.g009
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Table 2 contains four different models describing the same biological phenomenon. A natu-

ral question is when each model is to be preferred with respect to the others and which are its

advantages and disadvantages. The modeler should make two choices:

• ODE versus PDE models. The two PDE models leave a great freedom to the modeler in the

choice of the XB transition rate functions fPðx; vÞ, fN ðx; vÞ, gPðx; vÞ and gN ðx; vÞ. Hence, if

the modeler has knowledge of the specific form of these functions (or if he wants to test dif-

ferent choices), PDE models are to be preferred. Otherwise, the two ODE models allow to

avoid having to define the precise form of the functions fPðx; vÞ, fN ðx; vÞ, gPðx; vÞ and

gN ðx; vÞ, only requiring to set a few scalar parameters, that can be easily calibrated from mac-

roscopic measurements, as we show later.

If the interest of the modeler is oriented towards the microscopical dynamics of XBs, PDE

models allow to simulate the precise distribution of XB strains, whereas ODE models only

describe its first two moments. The greater detail of PDE models, however, comes at the

price of larger computational costs. Therefore, in the context of multiscale simulations such

as cardiac electromechanics—where the model should be solved simultaneously in a large

number of points—the ODE models are computationally more attractive than PDE models.

• SE (spatially-explicit) versus MF (mean-field) models. The two MF models are derived from

the corresponding SE models by considering a single triplet of RUs rather than a whole AF.

Hence, the former models neglect the profile that the states of RUs assume alongside the AF.

As we show later, this profile—specifically the behavior near the end-points of the single-

overlap zone—may play a role in the SL-induced change in calcium sensitivity (the so-called

LDA), but the sources of this phenomenon have not been not fully understood yet [53, 57,

58, 60]. Clearly, the MF models are much lighter than the SE ones. Hence, the former should

be preferred when computational cost is a major issue, such as in large-scale simulations of

cardiac electromechanics. On the other hand, SE models are to be preferred if the modeler is

interested in studying the activation profile alongside the AFs (e.g. to investigate its role in

the onset of the LDA phenomenon).

Definition of transition rates

We have shown that, under some physically motivated assumptions, the CTMC presented

above can be described by different systems of ODEs and/or PDEs. The models listed in

Table 2 are thus valid independently of the specific choice of the transition rates (with the only

exception of the models SE-ODE and MF-ODE that require that the sum of the detachment

Table 2. List of the models proposed in this paper. For future reference, we assign a name to each model (SE stands for spatially-explicit,MF stands for mean-field). In

the second column we report the number of ODEs and PDEs included in each model as a function ofNA and NM and we specify the resulting values in the caseNA = 32,

NM = 18. In the “Assumptions” column,m.f. stands formean-field assumption.

Model name

(Equations)

Number of ODEs

Number of PDEs

Assumptions Modeling choices

SE-PDE

(5)–(7)

(NA − 2)26 = 1920

2NA = 64

(H1),(H2),(H3)

SE-ODE

(5)–(11)

(NA − 2)26 + 4NA = 2048

-

(H1),(H2),(H3) f + g⫫ x

MF-PDE

(15)–(17)

24 = 16

2 = 2

(H4),(H2),(H3), m.f.

MF-ODE

(15)–(21)

24 + 4 = 20

-

(H4),(H2),(H3), m.f. f + g⫫ x

https://doi.org/10.1371/journal.pcbi.1008294.t002
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and attachment rate is independent of the XB distorsion). In this section, we present and moti-

vate the specific choice of transition rates that we will adopt in the rest of this paper.

In the spatially-explicit models introduced above, the transition rates possibly depend on

the location of the RUs in the myofilaments. This allows to account for the myofilaments over-

lap (single overlap, duble overlap, no overlap). To facilitate the identification of the overlap

region corresponding to a given RU from its index i 2 IA, we introduce the following func-

tions, which define a smooth transition between the regions (see Fig 9):

wMðSL; iÞ ¼
1

2
tanh

yi � yLM
ε

� �
þ

1

2
tanh �

yi � yRM
ε

� �
;

wSFðSL; iÞ ¼
1

2
1þ tanh

yi � ySF
ε

� �� �
;

where we have defined:

yLM ¼ ð2 LA � SLþ LHÞ=2; ySF ¼ 2 LA � SL;

yRM ¼ ð2 LA � SLþ LMÞ=2; yi ¼
LA
NA
ði � 0:5Þ:

as the coordinates (with respect to the end of the AF closer to the center of the sarcomere) of

the left and right ends of the MF (yLM, yRM), of the beginning of the single-overlap region (ySF)
and of the i-th RU (yi). Hence, we have χM(SL, i)’ 1 if the i-th RU faces the considered half

MF and χSF(SL, i)’ 1 if the i-th RU is in the single filament region (no overlap with other AFs

occurs).

RUs transition rates. The RU dynamics is determined by the eight rates associated with

the forward and backward transitions UN Ð BN , UP Ð BP, UN Ð UP and BN Ð BP.

The transition rates are affected by [Ca2+]i (that enhances in a multiplicative way the transition

U ! B), the filament overlap and the state of the nearest-neighboring Tm units (for the latter

interaction we adopt the cooperative interactions proposed in [17]). We start by considering

the single-overlap zone, where we adopt the transition rates of the model of [17]. We show

below that the transition rates of [17] are, however, rather general, as they are based on just a

couple of assumptions. We keep the notation consistent with [17] to allow for comparisons.

We call kBUjN
C ≔ koff and, without loss of generality, we set kBUjP

C ≔ koff=m, where the con-

stant μ allows to differentiate the two rates. Experiments carried out with protein isoforms

from different species highlight that there is no apparent variation in the transition U ! B in

different combinations of Tn subunits and Tm [18]. We assume thus that the transition rates

for UN ! BN and for UP ! BP coincide, and we set kUBjN
C ¼ kUBjP

C ≔ koff=kd ½Ca
2þ�i. Con-

versely, we allow the reverse transition rates to depend on the state of the associated Tm. Con-

cerning the transitions involving Tm, we assume that the calcium binding state of Tn affects

the transition rate of N ! P for the associated Tm, but not the reverse rate. Therefore, we set

kPN ja � d;U
T ¼ kPN ja � d;B

T ¼ kbasicg2� nða;dÞ, where n(α, δ) 2 {0, 1, 2} denotes the number of permissive

states among α and δ, as proposed in [17]. The physical interpretation of the constant γ corre-

sponds to g ¼ exp 2 DE
kB T

� �
, where kB is the Boltzmann constant, T the absolute temperature

and ΔE denotes the energetic gain of the configuration of neighboring units in the same state

(i.e. N � N or P � P) with respect to that with different states (i.e. N � P or P � N ). See

[66] for more details in this regard.

Then, without loss of generality we denote kNPja � d;B
T ¼ Qkbasicgnða;dÞ, where the constant

Q allows to differentiate the forward and backward transition rates. The only transition
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rate left is given, to satisfy the detailed-balance consistency with the other rates, by

kNPja � d;U
T ¼ Q=m kbasicgnða;dÞ.

We remark that, due to the definition of n(α, δ) as the number of neighboring units in per-

missive state, the units located at the ends of the filament cannot have n = 2. Coherently with

this, in Eq (4), the state of the missing neighboring RUs is set to N .

In conclusion, the transition rates are determined by the five parameters Q, μ, kd, koff, kbasic

(plus the parameter γ that regulates the amount of cooperativity), resulting from the eight free

parameters constrained by the two assumptions (U ! B not affected by Tm, P ! N not

affected by Tn) and by the detailed-balance consistency.

Concerning the dependence on the filament overlap, we assume that the only transition

affected by filament overlap is N ! P, that is prevented in the central zone of the sarcomere,

where the two AFs meet [82]. Specifically, we set, for Z 2 fU;Bg and for a; d 2 fN ;Pg:

kNPja � d;Z
T;i ¼ wSFðSL; iÞ k

NPja � d;Z
T : ð25Þ

The resulting 4-states CTMC associated with each RU is represented in Fig 10.

XBs transition rates. On the basis of the results of [81], we work under the hypothesis

that the total attachment-detachment rate is independent of the XB elongation. In this case,

the models SE-ODE and MF-ODE can be used in place of the more computationally expansive

counterparts SE-PDE and MF-PDE, which involve the solution of a PDE system. As a matter

of fact, in [81] we have shown that the introduction of such hypothesis significantly reduces

the number of parameters to be fitted by experiments, still preserving the capability of the

models of reproducing a wide range of experimental characterizations. Moreover, we also

make the reasonable assumption that the sliding velocity only affects the detachment rate.

As already mentioned, the transition rates may be affected by the mutual arrangement of

the filaments. Specifically, we assume that binding is possible only in the single-overlap region

and when Tm is in the state P. In other terms, we set:

f iN ðx; vÞ ¼ 0; f iPðx; vÞ ¼ fPðx; vÞ wMðSL; iÞ wSFðSL; iÞ: ð26Þ

We assume that the unbinding rate can take different values inside and outside the single-

overlap region. Hence, we set, for a 2 fN ;Pg and i 2 IA:

gi
a
ðx; vÞ ¼ gaðx; vÞ wMðSL; iÞ wSFðSL; iÞ þ ~g aðx; vÞ ð1 � wMðSL; iÞ wSFðSL; iÞÞ: ð27Þ

Moreover, it is well motivated that out of the single-overlap zone, the detachment rates are

not affected by the state of Tm (i.e. ~gN � ~gP) and that the detachment rate when Tm is in state

N is not affected by the filament overlap (i.e. ~gN � gN ). In summary, we have:

fPðx; vÞ þ gPðx; vÞ ¼ gN ðx; vÞ ¼ ~gN ðx; vÞ ¼ ~gPðx; vÞ ¼ r0 þ qðvÞ;

for some constant r0 and function q, such that q(0) = 0. Moreover, since we focus on the small

velocity regimes, the function q is well characterized by its behavior around v = 0. Hence, we

set q(v) = α|v|, in order to ease the calibration process.

We notice that, from (10) and (26), it follows, for p = 0, 1:

m
p
f iP
¼ m

p
fP
wMðSL; iÞ wSFðSL; iÞ: ð28Þ

Therefore, the parameters to calibrate are the scalars m0
fP

, m1
fP

, r0, α and aXB, to link the

microscopic force with the macroscopic active tension.
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Parameters calibration

We developed a pipeline to calibrate the parameters of the models proposed in this paper from

measurements typically available from experiments. Our strategy is based on the observation

that different experimental setups involve different time scales and different aspects of the

force generation phenomenon. This allows to decouple the role of parameters associated with

different phenomena and with different time scales, thus calibrating them in sequential man-

ner. The calibration pipeline is made of three building blocks: the calibration of the XB rates,

the calibration of the RU rates ruling the steady-state solution and, finally, the calibration of

the RU rates ruling the kinetics of force development and relaxation. We report below the

main steps of the calibration pipeline. A detailed description of the different steps is available

in the Supporting Information (S2 Appendix).

Calibration of the XBs rates. Even if the thin-filament activation precedes the XB cycling

from a logical viewpoint, we start by illustrating the calibration procedure for the latter part.

The reason will be clarified later. In [81] we have shown that the parameters of the distribu-

tion-moments equations describing the XB dynamics can be calibrated to fit the steady state

force, the shape of the force-velocity relationship (see Fig 2b) and the slope of the tension-

Fig 10. The proposed four states Markov model describing each RU. The terms depending on the intracellular calcium

concentration [Ca2+]i are highlighted in red; terms depending on the state of neighbouring RUs (i.e. depending on n) are highlighted

in green; terms depending on the position of the RU and the current sarcomere elongation are highlighted in blue.

https://doi.org/10.1371/journal.pcbi.1008294.g010
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elongation curve following a fast step (see Fig 2c). We remark that the experimental setups

associated with these measurements are are such that the thin filament activation machinery

can be considered in steady-state. This observation is crucial since it allows to decouple the cal-

ibration of the parameters involved in the thin filament regulation from the calibration of the

parameters involved in XBs cycling.

In conclusion, once the parameters of the thin filament activation model has been cali-

brated, we have at our disposal an automatic procedure to calibrate the remaining parameters.

For this reason, we first setup such calibration procedure for the parameters associated with

XB cycling (i.e. (11) or (21)) and, successively, we calibrate the parameters associated with RU

activation (i.e. (5) or (15)), so that we can directly see the effect of changes of such parameters

on the resulting force (the remaining parameters are automatically adjusted).

Calibration of the RUs rates (steady-state). The steady-state solution of the thin filament

activation models (i.e. (5) and (15)) only depends on the ratio between the pairs of opposite

transition rates (e.g. the ratio kNPja � d;B
T =kPN ja � d;B

T ¼ Q g2nða;dÞ� 2). Therefore, the six parameters

can be split into two groups: the first group (Q, μ, kd and γ) determines the steady-state solu-

tion, while the second group (koff, kbasic) only affects the kinetics of the model (that is to say

how fast the transients are). This allows to calibrate first the parameters of the first group, and,

only successively, those of the second group.

The fingerprint of the steady-state solution of the RU model is the force-calcium relation-

ship (see Fig 2a). Hence, we tune the parameters Q, μ, kd and γ to fit this curve. Specifically, kd

mainly acts on the calcium sensitivity (i.e. EC50), γ on the apparent cooperativity (i.e. nH),

while Q and μ affect cooperativity, calcium sensitivity, the asymmetry of the force-calcium

relationship below and above EC50 [17] and the SL-driven regulation on calcium sensitivity (in

the SE-ODE model).

As we show in the section Results, the force-calcium curves obtained with the SE-ODE

model exhibit the SL-induced change in calcium sensitivity observed in experiments (LDA, see

Introduction). We remark that we are here able to reproduce the LDA without any phenome-

nological SL-dependent tuning of the parameter, as done, e.g. in [18, 24, 25, 33]. The LDA

emerges from the SE-ODE model in a spontaneous way, as a consequence of the spatial-

dependent interaction between the RUs (see [66] for a discussion on this topic). Conversely,

with the MF-ODE model it is not possible to reproduce the LDA by simply acting on the

model parameters. Indeed, the only effect of SL in the model is to multiplicatively tune the gen-

erated force by the factor χso(SL(t)). Therefore, no SL induced effect on the calcium sensitivity

can be achieved. The mechanism reproducing LDA in the SE-ODE model is indeed intrinsi-

cally linked to the explicit spatial representation of the myofilaments [66]. Therefore, in the

mean-field model MF-ODE, without an explicit spatial representation, we phenomenologically

tune the calcium sensitivity kd in function of SL, by setting

kdðtÞ ¼ �kd þ akdðSLðtÞ � SLkdÞ; ð29Þ

where SLkd ¼ 2:15 mm.

Calibration of the RUs rates (kinetics). To complete the calibration of the SE-ODE and

MF-ODE models, we only need to set the parameters kbasic and koff, ruling the rapidity at

which the transitions N Ð P and U Ð B take place, respectively. Despite the fact that, at this

stage, we need to calibrate just two parameters, this reveals some difficulties, mainly related to

the following two aspects. First, the interplay between the two parameters is tight and their

roles cannot be easily decoupled [18, 83, 84]. This results in a poor identifiability of the param-

eters: different combinations of parameters give similar results in terms of force transients.
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This issue has been reported also by [85], while calibrating the models of [23] and [18]. Addi-

tionally, the force transients predicted by the model are very sensitive to the calcium transient

at input (this is a typical feature of activation models, see e.g. [85]). Therefore, since the experi-

mentally measured calcium transients are much affected by noise (see e.g. [43, 85, 86], a cali-

bration based on the best fit of the model response to experimentally measured calcium

transients should be performed with care.

Based on the former remarks, we calibrate the parameters kbasic and koff by the following

procedure. We consider force transients experimentally measured during isometric twitches

and synthetic calcium transients fitted from experimentally measured ones. Then, we perform

a MC sampling of the parameters kbasic and koff within prescribed ranges, and we select those

values for which the force transients predicted by the model best fit the experimental ones.

Calibration from rat and human experimental data. Due to the lack of a sufficiently

large set of measurements from human cells at body temperature [26] to adequately fit all the

model parameters, to calibrate the SE-ODE and MF-ODE models for body-temperature

human cardiomyocytes we proceed as follows. First, we calibrate the model parameters from

rat experiments at room temperature (for which available data are more abundant) and then

we adjust the parameters that are reasonably affected by the two varying factors (i.e. inter-spe-

cies variability and temperature) to fit the available data from human cells as body tempera-

ture. We compensate in this way for the data deficiency. We notice that we work under the

hypothesis that inter-species variability does not affect the fundamental processes of tissue acti-

vation and force generation, but, since different species express different isoforms of the same

protein, it can be encompassed by changing the parameters of the same mathematical model

(see [85] for a detailed discussion on this topic).

Specifically, different species mainly differ in their calcium-sensitivity (i.e. kd) and in the

kinetics (different species feature highly different heart rates), while temperature mainly affects

the kinetics [12, 87, 88]. By exploiting the decoupling of the parameters of the RUs model rul-

ing the steady-state relationships from those ruling the kinetics, we first focus on the steady-

state, and we adjust kd to reflect the higher calcium sensitivity of human cells compared to rat

[18, 26, 85]. Then, we re-calibrate the parameters koff and kbasic based on the kinetics of human

force transients experimentally measured from human cells at body temperature.

We provide in Table 3 the full list of parameters for both species (room-temperature rat

and body-temperature human) and for both models (SE-ODE and MF-ODE). Finally, we

report in Table 4 the geometrical constants describing the size of the myofilament components

that we use in the following.

Results and discussion

We show the results of numerical simulations obtained with the SE-ODE and MF-ODE mod-

els, performed under different experimental settings. The numerical schemes employed to

approximate the solutions of the models here proposed are described in the Supporting Infor-

mation (S3 Appendix). The codes implementing the models proposed in this paper and used

to produce the results presented in this section are freely available in the following online

repository: https://github.com/FrancescoRegazzoni/cardiac-activation.

With this implementation, the computational cost of the SE-ODE model is of nearly 12 s of

simulation for 1 s of physical time on a single-core standard laptop. The MF-ODE model,

instead, requires nearly 1 s of computational time to simulate 1 s of physical time on the same

computer platform. Moreover, all the data used to generate the figures of this paper are avail-

able in the static repository [89]: https://doi.org/10.5281/zenodo.3992553.
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Steady-state results

First, we consider steady-state solutions. To numerically obtain the steady-state curves, we fix

a level of [Ca2+]i and SL and we let the model reach the equilibrium solution.

Force-calcium relationship. We report in Fig 11 the force-calcium curves obtained with

the SE-ODE and MF-ODE models calibrated from room-temperature rat data, compared

with the experimental data used for the calibration. We are able to well fit the main features of

the curves, including the characteristic S-shape, the plateau forces at both SL, the significant

cooperativity typical of the cardiac tissue and the SL-induced change in calcium sensitivity. In

Fig 12 we report the steady-state curves obtained with the sets of parameters calibrated for

human body temperature cells. Also in this case, the curves reproduce the main experimentally

observed features reported in the Introduction.

Fig 13 shows the dependence of the Hill coefficient nH and of the half-activating calcium

concentration EC50 on the sarcomere length SL. We notice that, while the MF-ODE model

produces an Hill coefficient that is independent of SL (the reason is that the role of SL on acti-

vation is just that of shifting and rescaling the curves, thus leaving nH unaffected), the SE-ODE

model predicts a small increase of nH with SL. Both the results are equally acceptable since

there is no common agreement on whether the Hill coefficient depend on SL or not [40–42,

90, 91]. Both the models correctly predict for both species an increase of EC50 as SL decreases.

The relationship is approximately linear in the typical working range of SL (as experimentally

Table 3. Parameters of the SE-ODE and MF-ODE models calibrated for room-temperature rat and body-temperature human cells.

SE-ODE MF-ODE

Parameter Units Rat, room temp. Human, body temp. Rat, room temp. Human, body temp.

RU steady-state

μ - 10 10 10 10

γ - 20 20 12 12

Q - 3 3 2 2

�kd μM 1.622 0.74 0.835 0.381

akd μM μm-1 0 0 -1.258 -0.571

RU kinetics

koff s-1 120 100 120 100

kbasic s-1 28 13 24 13

XB cycling

m0
fP

s-1 57.416 57.157 32.708 32.653

m1
fP

s-1 1.368 1.362 0.779 0.778

r0 s-1 134.31 134.31 134.31 134.31

α - 25.184 25.184 25.184 25.184

Micro-macro upscaling

aXB MPa 22.894 22.894 22.894 22.894

https://doi.org/10.1371/journal.pcbi.1008294.t003

Table 4. List of geometrical constants.

Parameter Value Units Parameter Value Units

SL0 2.2 μm ε 0.05 μm

LA 1.25 μm NM 18 -

LM 1.65 μm NA 32 -

LH 0.18 μm

https://doi.org/10.1371/journal.pcbi.1008294.t004
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observed, e.g., in [41]), while, for small values of SL, the SE-ODE model produces a faster

decrease of sensitivity.

Force-length relationship. Fig 14 shows the ascending limb of the steady-state force-

length relationship. For both the SE-ODE and MF-ODE models we observe a change of slope

for saturating calcium concentration around 1.65 μM, coherently with the experimental obser-

vations [42, 90, 92, 93]. Moreover, both models predict the observed change of convexity of

the force-length curves at different calcium levels [40, 42, 90].

Fig 11. Steady-state force-calcium curves obtained with the SE-ODE (left) and MF-ODE (right) models with the optimal parameters values reported in Table 3

for SL = 1.85 μm and SL = 2.15 μM, compared with experimental data from intact rat cardiac cells at room temperature, from [90].

https://doi.org/10.1371/journal.pcbi.1008294.g011

Fig 12. Steady-state force-calcium relationship at different SL obtained with the SE-ODE (left) and the MF-ODE (right) models for intact, body-temperature

human cardiomyocytes.

https://doi.org/10.1371/journal.pcbi.1008294.g012
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Isometric twitches

The predicted isometric twitches obtained with the room-temperature rat models are com-

pared with the experimental data used for their calibration in Fig 15. The calcium transient

here employed is obtained by fitting the experimental transient of [86] with the synthetic curve

reported in the Supporting Information (S2 Appendix).

Similarly, we show in Fig 16 the tension transients obtained by simulating isometric

twitches giving as input to the human models the calcium transient of the ToR-ORd model

[39]. We notice that both models predict the tension-dependent prolongation of the twitch

time [43, 86, 94], as it can be seen from the normalized traces reported in the bottom lines of

Fig 13. Dependence of the Hill coefficient nH and of the half-activating calcium concentration EC50 on the sarcomere length

SL, for the SE-ODE (blue lines) and MF-ODE (red lines) model, calibrated for intact, room-temperature rat cardiomyocytes

(dashed lines) and for intact, body-temperature human cardiomyocytes (solid lines).

https://doi.org/10.1371/journal.pcbi.1008294.g013

Fig 14. Steady-state force-length relationship at different [Ca2+]i obtained with the SE-ODE (left) and the MF-ODE (right) models for intact, body-temperature

human cardiomyocytes.

https://doi.org/10.1371/journal.pcbi.1008294.g014
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the figures. We remark that, despite recent measurements on rabbit cells show that part of the

increase of twitch force is linked to a larger calcium release under stretch [59], in this paper—

due to the lack of experimental data showing a similar effect in human cells—we employ for

simplicity the same calcium transient for all lengths.

In order to quantitatively assess the effects of SL on twitches, we report in Fig 17 the depen-

dence on SL of the peak force (Tpeak
a ) and of some synthetic indicators of the kinetics. Specifi-

cally, we consider the time-to-peak TTP (defined as the time separating the beginning of the

stimulus and the tension peak) and the relaxation times RT50 and RT90 (defined as the time

needed to accomplish 50% and 90% of relaxation, respectively). We notice that both models

feature a kinetics with characteristic times matching those obtained experimentally. Moreover,

both the peak tension and the characteristic times feature the expected increasing behavior

with respect to SL. Remarkably, in the SE-ODE model, this feature spontaneously emerges

from the model. Conversely, in the MF-ODE model, the prolongation of TTP and of the relax-

ation times is to be ascribed to the change of calcium sensitivity with respect to SL. Further-

more, it is remarkable that, although in both the cases the kinetic constants koff and kbasic

have been calibrated to fit the twitch kinetics for a given SL, the simulations yields a good

experimental match also for other values of SL (this happens despite the SL-dependent effect

on calcium sensitivity is calibrated under a different experimental setting, i.e. steady-state

conditions).

Fig 15. Force transients (top line) and phase-loops (bottom line) in isometric twitches, for different values of SL, predicted by

the SE-ODE model (left column) and MF-ODE model (right column), in comparison with the experimental measurements

from intact rat cardiac cells taken from [94].

https://doi.org/10.1371/journal.pcbi.1008294.g015
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Fig 16. Tension transients during isometric twitches at different SL obtained with the SE-ODE (left) and the MF-ODE (right) models for

intact, body-temperature human cardiomyocytes.

https://doi.org/10.1371/journal.pcbi.1008294.g016

Fig 17. Tension peak, normalized with respect to the value at 2.2 μm (left), and metrics of activation and relaxation kinetics

(right) as function of SL during isometric twitches obtained with the SE-ODE and the MF-ODE models for intact, body-

temperature human cardiomyocytes. When possible, model results are compared with experimental data from [95].

https://doi.org/10.1371/journal.pcbi.1008294.g017
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Force-velocity relationship

Fig 18 shows the force-velocity relationship predicted with the rat models, compared with the

experimental data used for the calibration. The human model yields similar results. For both

the SE-ODE and the MF-ODE model, the numerical results correctly reproduce the experi-

mentally observed convex profile, with the force reaching zero in correspondence of a finite

value of velocity, the so-called maximum shortening velocity (see Introduction). Moreover,

the value of vmax
hs is not significantly affected by the level of activation (that is to say, by the val-

ues of [Ca2+]i and SL), as well as the curvature of the curve. This is also coherent with the

experimental observations [70]. The good agreement with the experimental data serves as a

validation for the automatic calibration procedure presented above.

Fast force transients

We consider the response to fast steps predicted by the SE-ODE and the MF-ODE models.

With this aim, we set a fixed value for the calcium concentration and sarcomere length (we set

[Ca2+]i = 1.2 μM and SL = 2.2 μm, but the results are not significantly affected by this choice)

and we let the system reach the steady-state. Then, we apply a length step, by applying a con-

stant shortening velocity in a small time interval Δt = 200 μs, and we plot the tension at the

end of the step as a function of the step length ΔL.

We show in Fig 19 the results obtained with the rat models, with a comparison with experi-

mental data (similar results are obtained with the human models). The good match between

the simulation results and the experimental measurements provide a further validation of the

calibration procedure.

Multiscale cardiac electromechanics

Finally, we consider a multiscale cardiac EM model of the left ventricle (LV), that we describe

in the following. Further details on the EM model and its numerical discretization can be

Fig 18. Normalized force-velocity relationships for different combinations of [Ca2+]i and SL obtained with the SE-ODE (left)

and the MF-ODE (right) models for intact, room-temperature rat cardiomyocytes in comparison with experimental

measurements from [70].

https://doi.org/10.1371/journal.pcbi.1008294.g018
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found in [66]. For the sake of brevity, we only show the results obtained by considering the

MF-ODE model for human body-temperature cardiomyocytes.

We employ a computational domain O0 derived from the Zygote heart model, representing

the 50th percentile of a 21 years old healthy caucasian male [96], in which we generate the

fibers and sheets distribution by the rule-based algorithm proposed in [97]. We model the

electrophysiological activity of the heart tissue by means of the monodomain equation [98,

99], coupled with the TTP06 model for the ionic activity [38]. We introduce a deformation

map φ : O0 � ½0;T� ! R
3

and we define the displacement vector as d(X, t) = φ(X, t) − X. The

mechanical behavior of the myocardium is described by means of the balance of momentum

equation for the displacement d [100, 101], where we model the passive properties of the car-

diac tissue through the quasi-incompressible exponential constitutive law of [102]. To account

for the presence of the pericardium, we employ the generalized Robin boundary conditions of

[7, 103] on the epicarial boundary. On the LV base we adopt the energy-consistent boundary

condition that we proposed in [104], accounting for the effect of the neglected part of the

domain on the artificial boundary of the LV base.

Within a multiscale setting, we describe the force generation mechanisms at the microscale

by means of the MF-ODE model, proposed in this paper. The intracellular calcium concentra-

tion ([Ca2+]i) is provided in each point of the computational domain by the TTP06 model.

The local sarcomere length, in turn, is assumed to be proportional to the tissue stretch in the

direction of muscel fibers f0, that is we set SL ¼ SL0

ffiffiffiffiffiffiffi
I 4;f

p
, where SL0 denotes the sarcomere

length at rest, I 4;f ¼ Ff0 � Ff0 and F = I +rd denotes the deformation gradient. The last

input of the MF-ODE model, the normalized shortening velocity, is obtained by definition as

v ¼ � @

@t SL=SL0.

The output of the MF-ODE model, namely the active tension magnitude field Ta, provides

the link from the microscopic to the macroscopic level, where the effect of the microscopically

generated active force is given by the following active stress tensor [66, 105]:

Pact ¼ Ta
Ff0 � f0

kFf0k
:

Fig 19. Normalized force after the application of a fast length step ΔL for intact, room-temperature rat cardiomyocytes. Solid

line: model result; circles: T2-L2 experimental data from [70].

https://doi.org/10.1371/journal.pcbi.1008294.g019
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Finally, the 3D LV model is coupled to a 0D model of blood circulation, consisting of a

two-elements Windkessel model [106].

For the spatial discretization of the equations involved in the EM model, we employ piece-

wise linear Finite Elements of a tetrahedral computational mesh with 354 � 1010 cells. For the

discretization of time derivatives, we use first-order finite difference schemes [107] with the

implicit-explicit (IMEX) scheme described in [66]. The coupling of the different core models

is obtained by means of the segregated strategy presented in [8].

The results of the numerical simulation are provided in Fig 20, where we show the defor-

mation of the LV at different time steps of an heartbeat, and in Fig 21, showing the time evo-

lution of the variables involved in the force generation phenomenon and of the LV pressure

and volume predicted by the multiscale EM model. In Fig 22 we show the pressure-volume

loops obtained for different preloads, i.e. by varying the end-diastolic pressure pED. Our

model correctly predicts the increased stroke volume following a raise in the preload. This

phenomenon, known as Frank-Starling effect, represents a self-regulatory mechanism of

fundamental importance, as it allows the cardiac output to be synchronized with the venous

return [13]. The microscopic driver of the Frank-Starling effect is the length-dependent

mechanisms of force generation. We remark that, in our EM model, the Frank-Starling is

Fig 20. LV multiscale EM: Deformed geometry and magnitude of displacement d at different times. Top row: full geometry.

Middle row: half domain (top view). Bottom row: half domain (frontal view).

https://doi.org/10.1371/journal.pcbi.1008294.g020
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not artificially imposed, but it spontaneously emerges from the properties of the microscopic

model of force generation.

Conclusions

In this paper we have derived four different models for the generation of active force in the

cardiac muscle tissue. Such models are based on a biophysically detailed description of the

microscopic mechanisms of regulation and activation of the contractile proteins. Still, their

numerical realization features a contained computational cost. Indeed, their numerical resolu-

tion does not require the computationally expensive MC method.

The main difficulties to be addressed in the derivation of full-sarcomere models concern (i)

the spatial correlation of the states of the RUs due to the nearest-neighbor interactions of Tm,

Fig 21. LV multiscale EM. Time evolution of [Ca2+]i, SL, v and Ta (minimum, maximum and average over the computational domain) and of

left ventricle pressure and volume.

https://doi.org/10.1371/journal.pcbi.1008294.g021

Fig 22. Pressure-volume loops obtained with different preloads (reported in legend).

https://doi.org/10.1371/journal.pcbi.1008294.g022
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which hinders a straightforward decoupling of the adjacent RUs, and (ii) the mutual filament

sliding, that changes which RU regulates which XB from time to time. Similarly to what we did

in [37], we address the first problem by introducing a conditional independence assumption

for far RUs, given the state of intermediate RUs (this is coherent with the local nature of near-

est-neighboring interactions). This assumption dramatically reduces the number of equations

needed to describe the evolution of the stochastic processes: while in the original model of [17]

the number of variables of the CTMC increases exponentially with the number of RUs, in our

model the number of variables grows linearly with the number of RUs.

Since no feedback from the XBs to the RUs is foreseen, the dynamics of the latter can be

considered independently of that of the former. Moreover, we depart from the traditional

MHs-centered representation of XBs, in favour of a BSs-centered point of view. Thanks to this

change of perspective, we derived a set of equations describing the XB dynamics without the

need to track the mutual position of the RUs and the MHs.

Under the hypothesis that the total attachment-detachment rate is independent of the myo-

sin arm stretch (as done in [22, 78]), the PDE system describing the XBs can be replaced by a

system of ODEs. We remark that this is not a simplificatory assumption, like the conditional

independence assumptions mentioned before, but rather a feature of the specific modeling

choice for the transition rates describing the attachment-detachment process.

We have also presented a class of models (MF-PDE and MF-ODE), such that the myofila-

ments overlap is not explicitly described, but is rather replaced by a mean-field description of

a single representative RUs triplet. We remark that such mean-field models differ from the

mean-field models of [16, 30, 31, 61, 79]. The latter, indeed, consider a single RU, instead of a

triplet. In this manner, the short-range spatial correlation, responsible of cooperativity, cannot

be captured. Conversely, the mean-field triplet framework here proposed, thanks to the local

nature of cooperativity, allows to capture the effect of nearest-neighbor interactions, as testified

by the remarkably good agreement between model predictions as experimental measurements,

in particular in the reproduction of the highly cooperative steady-state force-calcium curves.

We have then calibrated the SE-ODE and the MF-ODE models for room-temperature rat

intact cardiomyocytes and, later, body-temperature human intact cardiomyocytes.

The SE-ODE model predicts the so-called LDA (the increment of calcium sensitivity when

the sarcomere length increases), phenomenon whose microscopic source is still debated [44,

50, 53, 56–58, 60]. Interestingly, in our SE-ODE model, the LDA spontaneously emerges with-

out any phenomenological tuning the parameters in dependence of SL, thanks to the explicit

spatial representation of the spatially-dependent nearest-neighborhood interactions among

RUs. In particular, we believe that this is linked to the RUs located at the end-points of the sin-

gle-overlap zone, characterized by a low probability of being in the P state (because they have

at most one neighbor in state P). Since nearest-neighbor interactions propagate the low proba-

bility of P towards the center of the filament, small values of SL are penalized with respect to

large values of SL, the role of such border effect being more pronounced (further details on

this topic can be found in [66]). Therefore, if the hypothesis that the RUs located at the end-

point of the single-overlap zone behave as if the outer neighboring units are in state N is

accepted, then the SE-ODE model provides a possible explanation for LDA. Conversely, if this

hypothesis in not accepted, then the effect of the edges can be neglected and the mean-field

approximation underlying the MF-ODE model is well motivated. In conclusion, according to

the hypothesis made on the behavior of the RUs near the end-points of the single-overlap

zone, the SE-ODE and the MF-ODE models represent two alternative descriptions of the sar-

comere dynamics based on a microscopically detailed representation of the regulatory and

contractile proteins, where phenomenological modeling choices are only introduced for phe-

nomena whose underlying mechanisms are not fully understood [53, 57, 58, 60]. The models
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proposed in this paper could be enriched to investigate alternative hypotheses for the LDA

(such as the force-dependent recruitment of MHs from an “off” state, in which the interaction

with the BSs is prevented [59]).

The results of the numerical simulations showed that our models can reproduce the main

features of the experimental characterizations of muscle contraction associated with the time

scales of interest of cardiac EM (that is to say, the time scales larger than that of the power-

stroke), including the steady-state relationship between calcium and force and between sarco-

mere length and force, the kinetics of activation of relaxation, the length-dependent twitches

prolongation and peak force increase, and the force-velocity relationship. Additionally, we

plan to study the response of the models to changes in the heart rate, which has been reported

to have an impact on calcium sensitivity, developed force and twitch kinetics [108–110]. How-

ever, this investigation requires a model for calcium dynamics capable of accounting for the

effects of the heart rate on the calcium transients [108].

Finally, we have presented the results of multiscale EM numerical simulations in a human

LV, obtained by modeling the microscopic generation of active force through the MF-ODE

model, able of reproducing realistic pressure-volume loops. Moreover, our multiscale EM

model is capable of reproducing—at the macroscale—the Frank-Starling self-regulation mech-

anism, in virtue of the length-dependent effects characterizing—at the microscale—the force-

generation model. This macroscopic effect, emerging from a microscopic phenomenon, can

be regarded as a proof of concept for potential uses of the models proposed in this paper in

the context of 3D numerical simulations. The latter, indeed, can help to investigate the links

between microscopic mechanisms and organ-level phenomena and to elucidate the relation-

ships intercurrent between the microscopic variables and the macroscopic ones. Furthermore,

the employment of a biophysically detailed model in organ-level simulations might reveal the

links between cardiomyopathies and their cellular or molecular basis.
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S1 Appendix. Models derivation. This appendix contains the mathematical details about the

formal derivation of the models proposed in this paper.
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