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ABSTRACT
Background. Ground reaction forces (GRFs) are important for understanding human
movement, but their measurement is generally limited to a laboratory environment.
Previous studies have used neural networks to predict GRF waveforms during running
from wearable device data, but these predictions are limited to the stance phase of
level-ground running. A method of predicting the normal (perpendicular to running
surface) GRF waveform using wearable devices across a range of running speeds and
slopes could allow researchers and clinicians to predict kinetic and kinematic variables
outside the laboratory environment.
Purpose. We sought to develop a recurrent neural network capable of predicting
continuous normal (perpendicular to surface) GRFs across a range of running speeds
and slopes from accelerometer data.
Methods. Nineteen subjects ran on a force-measuring treadmill at five slopes
(0◦, ±5◦, ±10◦) and three speeds (2.5, 3.33, 4.17 m/s) per slope with sacral- and shoe-
mounted accelerometers.We then trained a recurrent neural network to predict normal
GRF waveforms frame-by-frame. The predicted versus measured GRF waveforms had
an average ± SD RMSE of 0.16 ± 0.04 BW and relative RMSE of 6.4 ± 1.5% across all
conditions and subjects.
Results. The recurrent neural network predicted continuous normal GRF waveforms
across a range of running speeds and slopes with greater accuracy than neural
networks implemented in previous studies. This approach may facilitate predictions
of biomechanical variables outside the laboratory in near real-time and improves the
accuracy of quantifying and monitoring external forces experienced by the body when
running.
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INTRODUCTION
Ground reaction forces (GRFs) are applied to the body when the foot is in contact with
the ground and their measurement has facilitated numerous insights into the etiology
of running-related injuries (Ceyssens et al., 2019). However, measurement of GRFs is
generally restricted to a laboratory environment. To determine the effects of sport-
specific environments on running kinetics and kinematics, previous studies have replicated
aspects of an athlete’s competitive environment (e.g., running surface, slope) within a
laboratory environment (Voloshina & Ferris, 2015; Kipp, Taboga & Kram, 2017; Whiting et
al., 2020). Alternatively, inertial measurement units (IMUs; wireless wearable devices that
measure magnetism, linear acceleration, and angular velocity) have been used to measure
athletes’ leg joint angles, stride kinematics, and segmental accelerations during competitive
events (Reenalda et al., 2016; Ruder et al., 2019; Clermont et al., 2019). Although IMUs
cannot directly measure GRFs, previous studies have used algorithms to estimate discrete
biomechanical variables like peak vertical GRF, ground contact time, vertical impulse, and
vertical loading rate (Neugebauer, Hawkins & Beckett, 2012; Kiernan et al., 2018; Ancillao et
al., 2018; Derie et al., 2020; Alcantara et al., 2021) from IMU data.

Recently, neural networks have been used to predict GRF waveforms during running
(Wouda et al., 2018; Pogson et al., 2020; Dorschky et al., 2020; Johnson et al., 2021), from
which a variety of discrete variables can be calculated. Although predictions of the entire
GRF waveform represent a more versatile outcome compared to predicting a discrete
variable, previous studies have used neural network architectures that required waveforms
to be normalized to the duration of a step (Dorschky et al., 2020) or stance phase (Wouda
et al., 2018; Johnson et al., 2021). Temporal normalization is typically accomplished by
identifying gait events in the GRF waveform and segmenting the neural network’s input
signals, preventing the calculation of biomechanical variables with a temporal component
(e.g., ground contact time, step frequency, vertical impulse, and loading rate) outside
the laboratory where the GRF waveform is unavailable. Additionally, previous studies
have predicted GRF waveforms only during level-ground running (Wouda et al., 2018;
Pogson et al., 2020; Dorschky et al., 2020; Johnson et al., 2021), limiting the application to
environments that are flat (e.g., level treadmill or athletics track). Road and trail running
are internationally popular forms of physical activity (Running USA, 2019; International
Trail Running Association, 2020) and require runners to navigate a variety of uphill and
downhill slopes. A method that accurately predicts GRF waveforms from wearable device
data across a range of running slopes, while maintaining the temporal component, could
allow researchers, clinicians, and coaches to measure and monitor a variety of kinetic and
kinematic variables in outdoor environments.

Long short-termmemory (LSTM) networks (Hochreiter & Schmidhuber, 1997) are a type
of recurrent neural network that can overcome the traditional requirement of normalizing
GRF waveforms to the duration of stance phase because LSTM networks can recurrently
predict smaller, uniform portions of a larger sequence of any length. As such, a sequence
of continuous GRF data can be predicted if it can be broken up into uniform portions.
For the prediction of a given portion, LSTM networks use information from previous
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portions, effectively ‘‘remembering’’ the portion’s context, and have been used to predict
sequential data during natural language processing tasks (Wang & Jiang, 2016). In the field
of Biomechanics, LSTM networks have been used to make frame-by-frame predictions
of GRF waveforms using motion capture data (Mundt et al., 2020) and predictions of
the center of mass position relative to center of pressure from IMU data during walking
(Choi, Jung & Mun, 2019). Developing an LSTM network to predict GRF waveforms from
wearable device data would allow researchers to predict GRF waveforms not only during
an isolated stance phase, but continuously for multiple steps or the entire duration of
a run. IMUs have already been used to longitudinally measure biomechanical variables
(Reenalda et al., 2016; Kiernan et al., 2018; Ruder et al., 2019; Clermont et al., 2019) and
applying an LSTM network to such data could effectively provide a way to indirectly
measure continuous GRF waveforms outside of the laboratory at a scale that was previously
unattainable. Improving the accuracy of remotely measuring biomechanical variables with
wearable devices may improve a clinician’s ability to identify injury risk factors or, monitor
rehabilitation progress (Gurchiek, Cheney & McGinnis, 2019).

The purpose of this exploratory study was to develop an LSTM network that could
predict continuous normal (perpendicular to running surface) GRF waveforms across a
range of running speeds and slopes using data from accelerometers. We sought to develop
a network that could predict GRF waveforms with accuracy better than state-of-the-art
predictions of time-normalized vertical GRF data during level-ground running using data
from multiple IMUs: a root mean square error (RMSE) of 0.21 BW (Dorschky et al., 2020)
and relative RMSE (rRMSE; RMSE normalized to the average range of the compared
waveforms; Eq. 1) of 13.92% (Johnson et al., 2021).

MATERIALS & METHODS
Subjects
We analyzed a pre-existing dataset (Baggaley et al., 2019; Khassetarash et al., 2020; Vernillo
et al., 2020) where 21 subjects ran at a combination of running speeds and slopes. Two
subjects were excluded from the current analysis due to equipment data acquisition
errors, leaving 19 subjects remaining (10 male, nine female; 29 ± 9 years, 173 ± 9 cm,
68.1 ± 9.9 kg). All subjects provided informed written consent and the experimental
protocol was approved by the University of Calgary Conjoint Health Research Ethics
Board (#REB14-1117).

Experimental protocol
Following a 5 min warm up at a self-selected speed, each subject completed thirty 30 s trials
on a force-measuring treadmill (2,000 Hz; Bertec, OH, USA), which included five slopes
(0◦, ±5◦, ±10◦) at three speeds (2.5, 3.33, 4.17 m/s) per slope, and three step frequencies
(preferred and ±10%) at 3.33 m/s for each slope. Three custom biaxial accelerometers
(2,000 Hz) were adhered with tape to subjects during all conditions: two on the right shoe
and one on the sacrum. The accelerometers on the shoe were only used to determine the
foot strike pattern for each condition using a previously validatedmethod (Giandolini et al.,
2014), which provided the percentage of a trial’s foot strikes classified as either rearfoot,
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Figure 1 Overview of the long short-termmemory (LSTM) network’s input features and function. (A)
The LSTM network’s input features included body mass, height, running speed, slope, and percentage of a
trial’s steps classified as rearfoot (RFS), midfoot (MFS), or forefoot (FFS) strikes. (B) Vertical and antero-
posterior sacral acceleration data were divided into overlapping six frame (12 ms) windows, one for each
frame of the normal ground reaction force (GRF) data. The mean, standard deviation (SD), and range of
vertical and anteroposterior sacral acceleration values were calculated for each window and used as input
features to the LSTM network. For the prediction of a normal GRF value at a given time (t ), the respec-
tive window of acceleration data begins at t−3 and ends at t+2. (C) Normal GRFs were predicted frame-by-
frame by the LSTM network using the 13 input features.

Full-size DOI: 10.7717/peerj.12752/fig-1

midfoot, or forefoot strikes. The biaxial accelerometer was placed on the sacrum such that
the vertical axis in the accelerometer’s local coordinate system was oriented superiorly, but
we did not perform a calibration to align accelerometer and treadmill coordinate systems
(Fig. 1). We did not align the accelerometer and treadmill coordinate systems because an
LSTM network can likely learn the transformation between the coordinate systems and
requiring this preprocessing calibration may limit the utility of an LSTM network outside
a laboratory setting.

Data processing
We analyzed 5 s of data (approximately 13 foot-ground contacts) from each trial and
downsampled the normal GRF, vertical sacral acceleration, and anteroposterior sacral
acceleration to 500 Hz to reduce the computational cost and match the sampling
frequency of prior studies (Day et al., 2021; Alcantara et al., 2021). We normalized GRFs
to bodyweight (BW) and filtered them using a 4th order low-pass Butterworth filter
with a 30 Hz cut-off. We filtered the sacral acceleration data with a 4th order low-pass
Butterworth filter with a 20 Hz cut-off. Preliminary analysis revealed that a 20 Hz cut-off
improved prediction accuracy compared to 5 Hz, 10 Hz, 30 Hz, and no filter and preserved
approximately 89% and 82% of the vertical and anteroposterior signal power, respectively.

Vertical sacral accelerometer data were further processed so that all negative values were
replaced with zeros. Vertical center of mass acceleration is primarily negative during the
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aerial phase of running (Blickhan, 1989) and preliminary analysis revealed that replacing
negative vertical sacral accelerometer data with zeros helped the LSTM network avoid
predictions of negative normal GRFs during the aerial phase. For each condition, we
used the 2,500 frame (5 s trial @ 500 Hz) sequences of vertical and anteroposterior sacral
accelerometer data to predict the simultaneously collected 2500 frame sequence of normal
GRFs. The recurrent nature of the LSTM network requires sequential data to be divided
into smaller portions that are iteratively used to make predictions. To accomplish this, we
divided acceleration data for each trial into overlapping windows with a 6 frame (12 ms)
width and padded the beginning and end of each trial’s acceleration data with the first and
final values, respectively, to ensure the number of windows equaled the number of normal
GRF frames (2500) and that the windows were centered on the corresponding frame of the
normal GRFs (Fig. 1). Preliminary analysis revealed that a window width of 6 frames was
the smallest window we could use without decreasing LSTM network prediction accuracy
and we found no improvement in prediction accuracy when using window sizes up to
60 frames (120 ms). Thus, the LSTM network iteratively predicted a single frame of the
normal GRF at time t using acceleration data from frames t -3 through t+2 (Fig. 1).

Feature engineering
A total of 13 features were used as inputs in the LSTM network (Fig. 1). We calculated the
mean, standard deviation (SD), and range of vertical and anteroposterior acceleration data
for each 12 ms window and used them as input features. The use of summary statistics
as input features has been shown to maintain neural network accuracy while benefiting
from a reduced computational cost (Figo et al., 2010). These three summary statistics were
normalized to a range of 0–1 and represent 6 (3 features × 2 acceleration axes) of the 13
input features. The remaining input features were selected due to their effect on running
kinetics and kinematics: subject height, body mass, running speed, slope, and percentage
of steps classified as either rearfoot, midfoot, or forefoot strikes (Almeida, Davis & Lopes,
2015; Khassetarash et al., 2020; Vernillo et al., 2020; Vincent et al., 2020; Alcantara et al.,
2021). We chose not to include step frequency as an input feature, despite the presence of
the ±10% preferred step frequency conditions, to increase the variability in the data used
to predict GRF waveforms. Doing so theoretically represents a greater challenge for the
LSTM network as there is additional variability between trials that is not being explicitly
accounted for with an input variable.

Neural network architecture
The neural network consisted of a Bidirectional LSTM and a multilayer perceptron (MLP)
with three fully connected layers containing 128, 384, and 320 neurons, respectively (Fig. 2).
The Bidirectional LSTM consists of two LSTM layers where the order of the input sequence
is reversed for the second layer. Reversing the sequence for the second LSTM layer allows
the network to utilize information from future portions of the sequence just as the first
LSTM layer utilizes information from prior portions. The outputs from each LSTM layer
are then averaged before being passed along to the MLP. The number and size of the
layers were determined using the Hyperband hyperparameter optimization algorithm
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Figure 2 Neural network architecture. The long short-term Memory (LSTM) network consisted of a
Bidirectional LSTM layer with a hyperbolic tangent activation function followed by a multilayer percep-
tron (MLP) with rectified linear unit activation functions for three hidden layers with 128, 384, and 320
neurons, respectively. The Bidirectional LSTM layer is unraveled to illustrate its recurrent nature and
dashed lines signify inputs (x) and outputs (h) at time t−1 and t+1. A dropout rate of 20% was applied to
the input layer of the network and a dropout rate of 40% was applied to the output of the Bidirectional
LSTM layer to limit network overfitting. For each prediction of the normal ground reaction force (GRF)
at a given time (t ), the network received 13 features as inputs (xt ; Fig. 1), passed the output from the Bidi-
rectional LSTM layer (ht ) to the MLP, and predicted a single value (yt ) with a linear activation function in
the output layer.

Full-size DOI: 10.7717/peerj.12752/fig-2

(Li et al., 2018) on the data of two randomly selected subjects. The LSTM network was
trained using a batch size of 32, learning rate of 0.001, and mean square error loss function.
Network weights and biases were updated using the adaptive moment estimation (Adam)
optimization algorithm at the end of each epoch (Kingma & Ba, 2017) and training lasted
a maximum of 1,000 epochs or until the mean square error failed to decrease by 0.001
BW after 30 consecutive epochs. The neural network was developed using the Tensorflow
(v2.2.0) python library (Abadi et al., 2016).

Network validation
We assessed the accuracy and generalizability of the network using a Leave-One-Subject-
Out (LOSO) cross validation method (Halilaj et al., 2018). LOSO cross validation is a
variation of K-fold cross validation that requires the dataset to be subset by subject, with
one subject’s data withheld for testing purposes and the rest of the subjects’ data used
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Figure 3 Ground reaction force waveform prediction error for each subject across all conditions. The
average root mean square error (RMSE) across subjects was 0.16 BW (dotted line). Filled circles represent
each trial, and the color indicates slope (0◦,±5◦,±10◦) at three speeds (2.5, 3.33, 4.17 m/s). Open circles
represent each subject’s average RMSE, horizontal bars are the median RMSE, box plot edges indicate the
interquartile range (IQR; 25th and 75th percentile), and the whiskers encompass values that fall within
1.5*IQR. Subjects are sorted from lowest to highest RMSE.

Full-size DOI: 10.7717/peerj.12752/fig-3

to train the network. This process is repeated until the network has been tested on every
subject’s data, ultimately providing an ensemble of networks and their respective accuracy
metrics. Performing LOSO cross validation can be computationally costly, as the network
must be trained and tested a number of times equal to the number of subjects (n= 19),
but the benefits of this method include the ensemble of accuracy metrics and assurance
that a given subject’s data are not included in both the training and testing subsets, which
can artificially increase the reported accuracy of a network (Saeb et al., 2017; Chaibub Neto
et al., 2019).

In addition to the LOSO cross validation method, we performed a test-train split
of one representative subject’s data according to slope (±5◦ trials reserved for testing,
0◦ and ±10◦ slopes used for training) to test the accuracy of the model when predicting
speed-slope combinations that were not present during training.We selected Subject 14 as a
representative subject because their RMSE during LOSO cross validation was similar to the
average RMSE across all subjects (Fig. 3) and their GRFwaveforms illustrated an interaction
between running slope and normal GRF impact peak magnitude (Gottschall & Kram,
2005). This single-subject validation method prioritizes accuracy over generalizability
(ability to make accurate predictions for a variety of individuals) and represents a potential
circumstance where an LSTM network is trained on data collected from a single athlete
prior to their competitive season and later used to predict only that athlete’s GRF data
from wearable device data during their competitive season.

Prediction error for each trial’s GRF waveforms was quantified as the root mean square
error (RMSE) and relative RMSE (rRMSE), which is RMSE normalized to the average
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range of compared waveforms, expressed as a percentage and defined as

rRMSE =
RMSE

0.5×
∑2

i=1(max(xi)−min(xi))
×100, (1)

where x1 and x2 are the GRF waveforms predicted by the LSTM network and measured
by the force-measuring treadmill (Ren, Jones & Howard, 2008). Additionally, we used a
threshold of 5% BW to identify stance phase and calculated the active peak of the normal
GRFwaveform, normal impulse, normal GRF loading rate, contact time, and step frequency
from the predicted and measured GRF data. The normal GRF active peak was calculated
as the maximum normal GRF value occurring between 40–60% of stance phase because
the magnitude of the impact peak can exceed the active peak during downhill running and
occurs during early stance phase (0–30%) (Gottschall & Kram, 2005; Vernillo et al., 2020).
We calculated impulse as the integral of the normal GRF waveform during the stance
phase with respect to time, loading rate as the average slope of the normal GRF waveform
during the first 25 ms of stance phase (Yong et al., 2018), contact time as the duration when
the normal GRF was greater than 5% BW, and step frequency as the number of initial
foot-ground contacts per second. We report the mean absolute percent error (MAPE) of
these discrete variables for each subject. Data analysis was performed in python (v3.6.9)
and R (v4.0.4) using custom libraries (Wickham, 2009; Wickham, 2019; Alcantara, 2019;
Pandas Development Team, 2020; R Core Team, 2020; Wickham et al., 2020; Virtanen et al.,
2020; Harris et al., 2020).

We enforced two biomechanical boundaries upon the predicted GRF waveforms to
ensure that data fell within established biomechanical limits and could be used to calculate
the discrete biomechanical variables of interest. First, the predicted GRF waveform had
to have an equal number of foot-ground contacts as the GRF waveform measured by the
force-measuring treadmill, determined using the same 5% BW threshold. Second, the step
frequency over the duration of the predicted GRF waveform had to be≤ 4 Hz. We selected
these criteria based on previous research of running biomechanics, as thresholds of 5%
BW have been previously used to identify the stance phase for the calculation of kinetic or
kinematic variables (Day et al., 2021; Alcantara et al., 2021) and during uphill and downhill
running, step frequency is ≤ 4 Hz (Cavagna et al., 1997; Snyder & Farley, 2011). Trials that
failed to meet either of these criteria were used to calculate the LSTM network’s overall
prediction failure rate and removed from subsequent analyses.

RESULTS
We analyzed 529 trials for the present study. The predicted GRF waveforms for 32 trials
(6%) failed to meet one or both criteria and were considered failed predictions. Specifically,
we identified 22 trials (4%) that required a threshold greater than 5% BW to identify an
equal number of steps between predicted and measured GRF waveforms and 10 trials (2%)
that had a step frequency greater than 4 Hz. Thus, 94% of GRF waveforms predicted by
the LSTM network fell within the imposed biomechanical boundaries.

Leave-One-Subject-Out cross validation revealed that the LSTM network predictions
of each subject’s normal GRF waveforms had an average ± SD RMSE of 0.16 ± 0.04
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Table 1 Mean± SD root mean square error (RMSE) and relative RMSE (rRMSE) for normal GRF
waveforms predicted by the LSTM network compared to the measured normal GRF waveforms for each
subject.

Subject RMSE [BW] rRMSE [%]

1 0.11± 0.04 4.0± 1.1
2 0.11± 0.02 4.1± 0.7
3 0.12± 0.02 4.4± 0.9
4 0.12± 0.03 4.6± 1.2
5 0.12± 0.04 4.7± 0.9
6 0.12± 0.03 5.2± 1.4
7 0.13± 0.03 5.1± 1.2
8 0.15± 0.08 5.3± 3.3
9 0.15± 0.03 5.4± 1.0
10 0.15± 0.04 5.2± 1.3
11 0.15± 0.03 5.8± 0.8
12 0.16± 0.03 6.1± 1.1
13 0.16± 0.06 5.7± 1.5
14 0.17± 0.07 6.9± 2.5
15 0.17± 0.04 7.9± 2.0
16 0.19± 0.05 6.7± 1.7
17 0.21± 0.07 7.2± 2.5
18 0.29± 0.03 14.0± 1.7
19 0.31± 0.07 13.7± 2.7
Mean± SD 0.16± 0.04 6.4± 1.5%

BW (Fig. 3) and rRMSE of 6.4 ± 1.5% compared to GRF waveforms measured by the
force-measuring treadmill across all conditions (Table 1). RMSE values were generally
lower during slow uphill running (2.5 m/s, +10◦; 0.13 BW) compared to fast downhill
running (4.17 m/s, −10◦; 0.20 BW) (Fig. 4 and 5). The MAPE for step frequency was
0.1 ± 0.1%, contact time was 4.9 ± 4.0%, impulse was 6.4 ± 6.9%, normal GRF active
peak was 8.5 ± 8.2%, and loading rate was 27.6 ± 36.1% (Table 2).

The prediction error for one representative subject’s (Subject 14) normalGRFwaveforms
at±5◦ during single-subject validation was lower than those resulting from the LOSO cross
validation, with an average± SD RMSE of 0.08± 0.02 BW and rRMSE of 3.3± 0.9%. The
MAPE of step frequency (0.1 ± 0.1%), contact time (3.0 ± 2.3%), impulse (2.5 ± 1.9%),
normal GRF active peak (2.7 ± 2.0%), and loading rate (17.6 ± 16.9%) calculated from
predicted GRF waveforms were also generally lower than those resulting from LOSO cross
validation.

DISCUSSION
We developed a recurrent neural network capable of predicting continuous normal GRF
waveforms across a range of running speeds (2.5–4.17 m/s), slopes (0◦, ±5◦, ±10◦), and
step frequencies (preferred,±10%) from accelerometer data. Our findings indicate that an
LSTM network with the runner’s mass, height, running speed, slope, foot strike pattern,
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Figure 4 Ground reaction force waveform prediction error for each condition. The average± SD root
mean square error (RMSE) of the predicted ground reaction force (GRF) waveforms compared to the
GRF waveform measured by the force-measuring treadmill for each condition during leave-one-subject-
out (LOSO) cross validation.

Full-size DOI: 10.7717/peerj.12752/fig-4

and sacral acceleration as input features can predict normal GRF waveforms across a range
of speeds and slopes with an RMSE of 0.12–0.20 BW and rRMSE of 5.4–7.3% (Fig. 4). For
comparison, previous studies report an RMSE of 0.39 ± 0.26 BW (Wouda et al., 2018),
an RMSE of 0.21 ± 0.03 BW (Dorschky et al., 2020), and an rRMSE of 13.92% (Johnson et
al., 2021) when using neural networks to predict the stance phase vertical GRF waveform
during level-ground running. In contrast to previous studies, the LSTM network does not
require preliminary stance phase identification or time normalization, which preserves
the temporal component of the predicted GRF waveform. This characteristic of the LSTM
network allowed us to calculate stride kinematic variables like step frequency and contact
time with aMAPE < 5%. Additionally, the recurrent nature of the LSTM network facilitates
frame-by-frame predictions of GRF waveforms and can be used to make predictions over
any duration of running. Thus, an LSTM network could be used to quantify changes in
normal GRF waveforms over the course of a prolonged run (e.g., a marathon race).

The accuracy of predicted GRF waveforms varied across speeds and slopes, with a
combination of faster running speeds and negative slopes producing greater RMSE values
than slower running speeds and positive slopes (Fig. 4). The greater RMSE values during
downhill running may be due to the LSTM network’s inability to account for changes in
impact peakmagnitude across slopes (Fig. 5). Previous studies have found that the presence
of an impact peak in the normal GRF waveform is subject-specific, affected by changes in
running slope, and associated with acceleration of the effective mass of the lower extremity
during early stance phase (McMahon, Valiant & Frederick, 1987; Gottschall & Kram, 2005;
Vernillo et al., 2020). Thus, predictions of normal GRF waveforms across slopes may be
further improved by incorporating accelerations measured at the feet or lower legs.
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Table 2 Mean± SD of the discrete biomechanical variables.Values were calculated from normal ground reaction force (GRF) waveforms predicted by the LSTM net-
work (‘‘Predicted’’) and normal GRF waveforms measured from the force-measuring treadmill (‘‘Measured’’) across all speeds and subjects for each slope.

Step frequency [Hz] Contact time [ms] Impulse [BW*s] Active peak [BW] Loading rate [BW/s]

Slope Predicted Measured Predicted Measured Predicted Measured Predicted Measured Predicted Measured

−10◦ 3.1± 0.3 3.1± 0.3 215± 26 214± 29 0.33± 0.03 0.33± 0.05 2.38± 0.24 2.36± 0.40 64.7± 19.9 68.4± 20.6
−5◦ 3.1± 0.3 3.1± 0.3 222± 23 223± 27 0.34± 0.04 0.34± 0.04 2.41± 0.25 2.45± 0.36 54.9± 16.7 60.6± 19.4
0◦ 3.1± 0.3 3.1± 0.3 228± 24 229± 27 0.33± 0.04 0.34± 0.04 2.42± 0.22 2.51± 0.36 42.0± 12.8 49.0± 17.2
+5◦ 3.2± 0.3 3.2± 0.3 228± 25 232± 26 0.32± 0.03 0.33± 0.04 2.36± 0.21 2.40± 0.33 34.8± 8.5 39.3± 13.3
+10◦ 3.4± 0.3 3.4± 0.3 223± 26 227± 26 0.30± 0.04 0.30± 0.04 2.24± 0.22 2.20± 0.29 30.1± 8.3 31.3± 12.7
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Figure 5 Predicted andmeasured normal GRF waveforms across slopes for a representative subject.
Normal ground reaction force (GRF) waveforms predicted by the recurrent neural network (dashed red
lines) and measured by the force-measuring treadmill (solid blue lines) at 3.33 m/s and all slopes (0◦,
±5◦,±10◦) are presented for Subject 14. Subject 14 was selected because they had similar RMSE values
(0.17± 0.07 BW) as the average across all subjects (0.16± 0.04 BW) and their GRF waveforms illustrate
an interaction between running slope and normal GRF impact peak magnitude.

Full-size DOI: 10.7717/peerj.12752/fig-5

We also quantified the accuracy of the LSTM network when trained and tested on
data from the same subject. Although not a valid method of determining the LSTM
network’s generalizability, single-subject validation provides insight into how well a
personalized neural network could predict an individual’s GRF waveforms for unknown
combinations of speed and slope in the future. We found that predicted GRF waveforms of
a representative subject (Subject 14) during the±5◦ slope conditions had an average± SD
RMSE of 0.08 ± 0.02 BW, compared to 0.16 ± 0.03 BW during LOSO cross validation.
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These findings indicate that a subject-specific LSTM network was twice as accurate as
the LOSO cross validated LSTM network. A single-subject approach may be particularly
beneficial for researchers, coaches, or clinicians who have the resources to train personalized
LSTM networks and wish to monitor a specific athlete’s biomechanics over the course of a
competitive season. For example, an athlete could run at a variety of speeds and slopes while
wearing accelerometers during a baseline data collection on a force-measuring treadmill
at the start of their competitive season and a personalized LSTM network could be trained
on their data. Then, if accelerometer data were collected from an athlete during training
runs, their normal GRF waveforms and a variety of discrete values could be predicted and
monitored longitudinally.

TheMAPE values for step frequency, contact time, impulse, and normal GRF active peak
were ≤ 8.5%, but the loading rate MAPE was 27.6 ± 36.1%. The lower MAPE values for
step frequency, contact time, impulse, and normal GRF active peak indicate that the LSTM
network consistently identified the general shape of the GRF waveform and the boundaries
of the stance phase despite changes in speed, slope, and step frequency. However, the
network did not consistently predict the presence of an impact peak during early stance
phase (Fig. 5, −10◦ trial), which affected the predicted slope of the GRF waveform during
early stance phase and thus the accuracy of loading rate values. Although the prominence
of an impact peak in the normal GRF waveform is affected by foot strike pattern and slope
(Gottschall & Kram, 2005), two of the inputs for the LSTM network, the decreased accuracy
when estimating loading rate may be because we did not include accelerometer data from
the lower extremities and impact accelerations are attenuated at the sacrum compared
to the tibia (Baggaley et al., 2019). A previous study found moderate-strong correlations
between axial tibial acceleration and vertical GRF impact peak magnitude (r = 0.76) and
timing (r = 0.94) during running (Hennig & Lafortune, 1991), and future research aimed
at improving the accuracy of loading rate estimates should include tibial acceleration as
an input feature. We did not include accelerometer data from the shoes as inputs for the
LSTM network because the data were not available for both feet.

Recurrent neural networks represent a promising strategy for predicting continuous
normal GRFs fromwearable devices in outdoor environments. The LSTMnetwork required
data from three accelerometers (one on the sacrum and two on the right shoe to determine
foot strike pattern), but we also performed a post-hoc analysis of prediction accuracy
without the foot strike pattern data to quantify the network’s accuracy when only using
data from one sacral accelerometer. The post-hoc analysis revealed that excluding foot
strike pattern data slightly increased the average ± SD RMSE from 0.16 ± 0.04 BW to
0.17 ± 0.05 BW and rRMSE from 6.4 ± 1.5% to 6.7 ± 1.7%. Excluding foot strike pattern
data affected the MAPE of discrete variables by < 3% (Table 3). These findings indicate that
the LSTM network can predict normal GRF waveforms from a single accelerometer on the
sacrum more accurately than neural networks implemented in previous studies (RMSE =
0.21–0.39 BW, rRMSE= 13.92%), which required data from 3–7 wearable devices (Wouda
et al., 2018; Dorschky et al., 2020; Johnson et al., 2021).

We further analyzed the importance of input features to the LSTMnetwork by calculating
prediction accuracy after systematically permuting each input feature across the trials for
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Table 3 Error metrics for the predicted waveforms and discrete variables when training the long
short-termmemory (LSTM) network with and without foot strike pattern as an input feature. Root
mean square error (RMSE) and relative RMSE (rRMSE) are presented for predicted normal ground
reaction force (GRF) waveforms. Mean absolute percent error (MAPE) values are presented for the
discrete variables calculated from normal GRF waveforms predicted by both LSTM networks.

LSTMwith foot strike
(Sacral + Right foot
accelerometers)

LSTMwithout foot strike
(Only sacral
accelerometer)

GRF waveform
RMSE [BW] 0.16± 0.04 0.17± 0.05
rRMSE 6.4± 1.5% 6.7± 1.7%
Discrete variables MAPE
Step frequency 0.1± 0.1% 0.1± 0.1%
Contact time 4.9± 4.0% 5.6± 4.5%
Impulse 6.4± 6.9% 6.0± 7.1%
Active peak 8.5± 8.2% 7.7± 6.3%
Loading rate 27.6± 36.1% 30.3± 41.6%

the representative subject. This process of calculating Permutation Feature Importance
(PFI) effectively severs the learned relationship between an input feature for a given trial
and the corresponding GRFwaveform (Molnar, 2019). PFI is calculated as the ratio between
the RMSE of the LSTM network with a given feature permuted and the original prediction
RMSE of the LSTM network. After 100 permutations for each input feature, we found
that the input feature with the highest PFI was vertical acceleration (6.29), followed by
anteroposterior acceleration (1.62), foot strike pattern (1.14), slope, (1.13), speed (1.07),
height (1.00), and body mass (1.00). These findings indicate that the inclusion of body
mass and height did not improve prediction accuracy and that the LSTM network relies
most on the acceleration data when predicting the normal GRF waveform across a range
of speeds and slopes.

Using a recurrent neural network in combination with accelerometers and a global
positioning system (GPS) device to obtain speed and slope data could potentially allow
runners to receive biomechanical feedback during an outdoor run. Watches with GPS
capabilities are commonly used by runners (Janssen et al., 2020), have been used to provide
real-time feedback of step frequency (Willy et al., 2016), and could provide running
speed and slope data to the LSTM network to predict GRF waveforms in near-real time
(Scott, Scott & Kelly, 2016). Discrete biomechanical variables could then be calculated
from predicted normal GRF waveforms and sent to a clinician, coach, researcher, or the
runner themselves. A similar approach has been implemented during outdoor walking and
running using an integrated IMU-GPS device placed in a backpack, but it is unclear how
accurate or generalizable this approach is as the network was trained and tested on data
from three subjects and the reported accuracy metrics were combined for walking and
running (Davidson et al., 2019). To facilitate calculation of GRF-based variables during
outdoor running using accelerometers, we have made the LSTM networks, which were
trained on all subjects, with and without the need for foot strike data, publicly available at
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http://www.github.com/alcantarar/Recurrent_GRF_Prediction. We have included a tutorial
on how to use an LSTM to continuously predict a signal from wearable device data, an
approach that may be used to improve a clinician’s ability to remotely quantify a patient’s
GRFs or monitor rehabilitation progress (Gurchiek, Cheney & McGinnis, 2019).

There are potential limitations to consider alongside our findings. The accelerometers
used in the present studywere biaxial and the inclusion ofmediolateral sacrum accelerations
may have further improved prediction as the mediolateral behavior of the center of mass is
sensitive to changes in running speed (Nilsson & Thortensson, 1989) and slope. Additionally,
accelerometers were adhered to subjects using tape and a less secure attachment method
may introduce movement artefact into the accelerometer data. Previous research suggests
that attachment method can affect peak tibial acceleration during running (Johnson et
al., 2020), but the lower leg experiences larger accelerations than the sacrum during
running (Baggaley et al., 2019) and thus is more sensitive to different attachment methods.
However, variations in accelerometer orientation between subjects may have contributed
to the range of RMSE values (0.11–0.31 BW) during LOSO cross validation (Tan et al.,
2019). Additionally, variations in soft tissue movement artefact between the subjects
used to train the LSTM network and other populations may introduce prediction error
(Peters et al., 2010). Using the LSTM network to predict normal GRF waveforms from a
sacral accelerometer adhered differently than in the present study may affect prediction
accuracy, but the 20 Hz low-pass filter we applied to the accelerometer data can potentially
mitigate this effect. Additionally, predictions made with the LSTM network may not be
generalizable for speeds or slopes that fall outside the range of the training data (2.5–4.17
m/s and ±10◦), for different running surfaces, as biomechanics change when running
on steep slopes (e.g., 20–40◦) (Giovanelli et al., 2016; Whiting et al., 2020), for prolonged
runs, on variable terrain (Voloshina & Ferris, 2015), with changes in speed (Alcantara et
al., 2021), or in response to muscle fatigue (Derrick, Dereu & McLean, 2002). Lastly, the
LSTM network was trained on data collected on a stiff force-measuring treadmill and thus
accelerometer data collected during running on less stiff surfaces (e.g., grass) may result in
greater prediction errors given the effects of surface stiffness on running biomechanics and
thus energy absorption (Derrick, Hamill & Caldwell, 1998; Ferris, Louie & Farley, 1998).

CONCLUSIONS
We developed a recurrent neural network that used accelerometer data to predict
continuous normal GRF waveforms across a range of running speeds (2.5–4.17 m/s)
and slopes (0◦, ±5◦, ±10◦) with an average ± SD RMSE of 0.16 ± 0.04 BW and rRMSE
of 6.4 ± 1.5%. Unlike neural networks implemented in prior studies, the recurrent neural
network does not require preliminary identification of the stance phase or temporal
normalization and allows for near real-time predictions of normal GRF waveforms during
running. Accurate predictions of normal GRF waveforms using wearable devices will
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improve the ability to longitudinally monitor biomechanical variables in non-laboratory
environments.
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