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Abstract

We examined oscillatory power in electroencephalographic recordings obtained while youn-

ger (18-30 years) and older (60+ years) adults studied lists of words for later recall. Power

changed in a highly consistent way from word-to-word across the study period. Above 14

Hz, there were virtually no age differences in these neural gradients. But gradients below 14

Hz reliably discriminated between age groups. Older adults with the best memory perfor-

mance showed the largest departures from the younger adult pattern of neural activity.

These results suggest that age differences in the dynamics of neural activity across an

encoding period reflect changes in cognitive processing that may compensate for age-

related decline.

Introduction

Memory impairments are among the most common complaints of older adults [1]. Much

effort has been devoted to identifying the neurocognitive causes of age-related memory decline

[2, 3]. But one potential source of age differences has received little attention: the ability to sus-

tain encoding processes across a series of events or items that unfold over time [4]. For exam-

ple, the people you meet during a job interview, the grocery list your spouse dictates over the

phone, or which of your medications you have already taken today.

Researchers have studied this aspect of memory using the free recall task, in which subjects

study a list of sequentially presented items (e.g., words) and then recall the items in any order.

The nature of the encoding processes in which subjects engage changes from item-to-item as

the list is studied [5]. These changes unfold in the brain without any obvious behavioral corre-

lates—they can only be inferred from which items are subsequently remembered and forgot-

ten. Perhaps for this reason, most cognitive aging theories are silent about the contribution of

encoding dynamics to memory impairments [3, 6–8].

We argue, however, that there are two general categories of item-to-item changes in cogni-

tive processing that are likely to show age differences. The first category includes processes

that become less efficient as the list progresses with time due to fatigue [9]. The second cate-

gory includes processes that ramp up as the list goes on, such as rehearsing early items in the
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list [10]. Although differences in such processes are difficult to detect from behavior, they

should leave a signature in how neural activity changes while studying a list. Indeed, recent evi-

dence suggests that long periods of cognitive engagement are associated with specific neural

substrates [11].

We sought to provide an initial test of the hypothesis that there are age differences in

the dynamics of neural activity across the encoding period of a free recall list and that these

processing differences may either contribute to, or compensate for, age-related memory

impairment. Our approach was to examine electroencephalographic (EEG) recordings taken

while subjects study lists for free recall. We analyzed the data by converting raw EEG into the

frequency domain and examining how spectral power changes across time during the study

period. We then tested for age differences in these across-time changes in spectral power.

Finally, we tested whether the neural age differences could predict behavioral age differences

in memory performance.

Materials and methods

This study was approved by the University of Pennsylvania Institutional Review Board. Writ-

ten informed consent was obtained from all subjects. The data are from the Penn Electrophysi-

ology of Encoding and Retrieval Study (PEERS), an ongoing project aiming to assemble a large

database on memory ability in older and younger adults.

Subjects

Subjects were recruited for PEERS through a two–stage process. First, we recruited right-

handed native English speakers for a single session. Older adults were pre-screened for signs of

pathology using a detailed medical history and the Short Blessed Test [12]. The second stage of

recruitment focused only on subjects who did not make an excess of eye movements during

item presentation epochs of the introductory session and had a recall probability of less than

0.8. These criteria were used to reduce the chance that subjects’ recall performance would

reach ceiling across the seven sessions of Experiment 1. Approximately half of the subjects

recruited for the preliminary session satisfied these criteria and agreed to participate in the

full study. The present analyses are based on the 172 younger adults (age 17–30) and 36 older

adults (age 61-85 years) who had entered the full study and had completed Experiment 1 of

PEERS as of September 2015. See [9] for details on these samples.

PEERS experiment

The analyses reported here focus on the free recall data from PEERS Experiment 1, which con-

sisted of seven sessions each of which included 16 free recall lists. For each list, 16 words were

presented one at a time on a computer screen followed by an immediate free recall test. Each

session ended with a recognition test. The first session and half of the remaining sessions were

randomly chosen to include a final free recall test before recognition, in which participants

recalled words from any of the lists from the session. The recognition data are not examined

here, but details on these data can be found in prior publications [9].

Each word was accompanied by a cue to perform one of two judgment tasks (“Will this

item fit into a shoebox?” or “Does this word refer to something living or not living?”) or no

encoding task. The current task was indicated by the color and typeface of the presented item.

There were three conditions: no-task lists (subjects did not have to perform judgments with

the presented items), single-task lists (all items were presented with the same task), and task-

shift lists (items were presented with either task). The first two lists were task-shift lists, and

each list started with a different task. The next 14 lists contained 4 no-task lists, 6 single-task

Neural dynamics of memory encoding

PLOS ONE | https://doi.org/10.1371/journal.pone.0227274 January 16, 2020 2 / 12

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0227274


lists (3 of each of the task), and 4 task-shift lists. List and task order were counterbalanced

across sessions and subjects.

Each stimulus was drawn from a pool of 1638 words. Lists were constructed such that vary-

ing degrees of semantic relatedness occurred at both adjacent and distant serial positions.

Semantic relatedness was determined using the Word Association Space (WAS) model [13].

WAS similarity values were used to group words into four similarity bins (high similarity: cosθ
between words > 0.7; medium-high similarity, 0.4< cosθ< 0.7; medium-low similarity, 0.14

< cosθ< 0.4; low similarity, cosθ< 0.14). Two pairs of items from each of the four groups

were arranged such that one pair occurred at adjacent serial positions and the other pair was

separated by at least two other items. This semantic manipulation has been analyzed elsewhere

[14] and will not be considered here as it is not relevant to our present focus and the distribu-

tion of these pairs across serial positions ensures that they are not confounded with age differ-

ences in neural dynamics. For each list, there was a 1500 ms delay before the first word

appeared on the screen. Each item was on the screen for 3000 ms, followed by jittered (i.e., var-

iable) inter-stimulus interval of 800-1200 ms (uniform distribution). If the word was associated

with a task, subjects indicated their response via a keypress. After the last item in the list, there

was a jittered delay of 1200-1400 ms, after which a tone sounded, a row of asterisks appeared,

and the subject was given 75 seconds to attempt to recall aloud any of the just-presented items.

Electrophysiological recordings and data processing

We used Netstation to record EEG from Geodesic Sensor Nets (Electrical Geodesics, Inc.)

with 129 electrodes digitized at 500 Hz by either the Net Amps 200 or 300 amplifier and refer-

enced to Cz. Recordings were then rereferenced to the average of all electrodes except those

with high impedance or poor scalp contact. We identified electrodes that likely had high

impedance or poor scalp contact by dividing the epochs of interest into 1000 ms bins and

excluding those electrodes for which the range was above 200 μV in more than 20% of bins.

To eliminate electrical line noise, a fourth order 2 Hz stopband butterworth notch filter was

applied at 60 Hz.

To correct artifacts such as eye blinks or electrodes with poor contacts, we used indepen-

dent component analysis (ICA [15]) and an artifact detection/correction algorithm based on

[16]. Manual identification of artifactual independent components (IC) can be unreliable [16]

and would be impractical given the number and length of sessions in the current study. There-

fore, we used an automatic artifact correction algorithm [16]. The algorithm starts with raw

EEG. For each channel, several statistics were used to identify channels with severe artifacts.

First, electrodes should be moderately correlated with other electrodes due to volume conduc-

tion, thus the mean correlation between the channel and all other channels was calculated, and

these means were z-scored across electrodes. Channels with z-scores less than -3 were rejected.

Second, electrodes with very high or low variance across a session are likely dominated by

noise or have poor contact with the scalp; therefore, the variance was calculated for each elec-

trode and z-scored across electrodes. Electrodes with a |z|� 3 were rejected. Finally, we expect

many electrical signals to be autocorrelated, but signals generated by the brain versus noise

likely have different forms of autocorrelation. Therefore, the Hurst exponent, which is a

measure of long-range autocorrelation was calculated for each electrode and electrodes with a

|z|� 3 were rejected. Electrodes that were marked as bad by this procedure were interpolated

using EEGLAB’s [17] spherical spline interpolation algorithm. The median number of elec-

trodes interpolated per session was 1 and the maximum number interpolated for any session

was 10. The maximum number of ICs that can be reliably estimated depends on the number of

samples recorded for each channel. We extracted c ¼ floorð
ffiffiffiffiffiffiffiffi
L=k

p
Þ ICs where L is the number
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of samples in the session and k is a constant set to 25 (for a discussion of k, see [16, 18]) or the

number of non-interpolated channels, whichever was smaller. We then ran EEGLAB’s imple-

mentation of infomax ICA [15, 17] on the first c principal components of the EEG matrix to

decompose it into ICs.

ICs that capture blinks or saccades should be highly correlated with the raw signal from the

EOG electrodes. Therefore, for each IC we computed the absolute value of its correlation with

each of the six EOG electrodes, retained the maximum of those values and z-scored the maxi-

mum correlations across ICs. ICs with |z|� 3 were rejected. ICs that capture artifacts isolated

to single electrodes (e.g., an electrode shifting or “popping off”) should have high weights for

the implicated electrodes but low weights for other electrodes. To identify such ICs, we calcu-

lated the kurtosis of the weights across electrodes and excluded any IC with a z-score above

+3. Finally, ICs capturing white noise should have a nearly flat power spectrum (versus the 1/f
spectrum expected for neural signals). Therefore, we calculated the absolute value of the slope

of the power spectrum for the frequencies included in the analyses (2–200 Hz) and rejected

ICs with z� −3 (i.e., the ones closest to zero slope). Rejected ICs were removed from the

matrix and the remaining IC activation time courses were projected back into electrode space.

All subsequent analyses were carried out on this corrected EEG data.

To compute spectral power, the corrected EEG data time series for an entire session was

convolved with Morlet wavelets (wave number = 6) at each of 60 frequencies logarithmically

spaced between 2 Hz and 200 Hz. The resulting power time series were downsampled to 10

Hz. We then defined encoding events by extracting the time period from -200 ms to 3000 ms

relative to each item’s presentation. For each frequency, a subject’s raw power values were z-

scored across encoding events separately for each session and each encoding task (no-task,

single-task, and task-shift) to remove the effects of these variables which are known to affect

power [19]. Z-scored power was then averaged across the -200 ms to 3000 ms encoding inter-

val to provide one power value for each study event.

Results

To test for age differences in the dynamics of encoding, we examined EEG signals recorded

while the subjects studied the lists. We analyzed spectral power derived from the EEG signals

as past research has shown that effective memory encoding is correlated with spectral power

in specific frequency bands [20] and that spectral power shows reliable age differences during

memory tasks [2].

Fig 1A shows the gradient of spectral power across serial positions in six frequency bands.

For younger adults, these gradients are in close agreement with those found in previous work

[21]. In the 16–26 Hz, 28–42 Hz, and 44–200 Hz bands, both younger and older adults show

high initial power followed by a rapid decline across serial positions, with little age difference.

By contrast, the 2–3 Hz, 4–8 Hz, and 10–14 Hz bands all show clear age differences. Just as

at higher frequencies, older adults exhibit a steep decline in power across serial positions at

lower frequencies, but younger adults exhibit a shallower decline (in the 2–3 Hz band) or a net

increase across serial positions (in the 4–8 Hz and 10–14 Hz bands). That is, older adults show

higher power than younger adults early in a study list, but the age difference reverses for late-

list items.

To determine if these neural gradients reliably predict age, we began by condensing the gra-

dients into a single number for each subject by computing the change from the power level at

the first serial position to the average power of the last 5 items:

DEEG ¼

PLL
i¼k SPi

LL � kþ 1
� SP1; ð1Þ

Neural dynamics of memory encoding
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where SPi is power during the ith list item, LL is the total number of items in a list (here

LL = 16), and k is the first item included in the late-item average (k = 5 for the analyses

reported here). We then tested whether ΔEEG distinguishes older from younger adults by

examining receiver operating characteristic (ROC) curves created by varying the criterion

value of ΔEEG used to classify a subject as older if they are above the criterion and younger if

they are below. To create the ROC for a given band, we started with a very high criterion value

of ΔEEG such that a younger adult is never misidentified as an older adult (i.e., zero false alarm

rate) but older adults are also never correctly classified as older adults (i.e., zero hit rate) and

then gradually decrease the criterion, tracing out a curve that shows how hit and false alarm

rates change until the criterion is so low that all subjects are classified as older adults (i.e., per-

fect hit rate but also a 100% false alarm rate). Area under the curve (AUC) can be computed as

a measure of sensitivity, with higher values indicating more sensitivity to age group and values

near 0.5 indicating the measure is uninformative as to age group. The ROCs and AUCs (Fig

1B) show that the 2–3 Hz, 4–8 Hz, and 10–14 Hz gradients were all highly reliable biomarkers

Fig 1. Age differences in spectral power gradients. A: Spectral power in six frequency bands across serial positions for younger adults versus older adults. Error bars are

one standard error of the mean. B: ROC curves created by varying the threshold value of ΔEEG (the change from the power level at the first serial position to the average

power of the last 5 items) used to classify a subject as a younger or older adult. Significance was assessed by comparing the observed AUC value with a null distribution

created by permuting ΔEEG values across subjects 50000 times and running the analysis on each permuted dataset, with a strict Bonferoni correction to control α across

the six comparisons, any AUC with p< (0.05/6) = 0.008 is significant. Note that the y-axis scale differs across panels (see the supplemental material for a version of the

figure that uses a common scale for each band). C: AUC values from electrodes within six regions of interest (see insert of head map for locations). Here, error bars are

95% confidence intervals.

https://doi.org/10.1371/journal.pone.0227274.g001
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of age group. Significance was assessed by finding where the AUC for the actual ROC curves

lay in a null AUC distribution formed by permuting ΔEEG across subjects 50000 times and

computing a ROC for each permuted dataset. The bottom row of Fig 1 shows the results of the

ROC analysis conducted separately for six regions of interest (three areas each on the left and

right sides: an anterior superior area, an anterior inferior area, and a posterior inferior area)

commonly used in scalp EEG studies [19, 22, 23]. The results revealed that for the frequency

bands that showed a whole-head effect, the effect was also present across all regions of interest.

How do these age differences in neural dynamics relate to age age differences in memory abil-

ity? To explore this question, we conducted a median split analysis comparing the older adults

with the highest memory scores to the older adults with the lowest memory scores (see the insert

in the first panel of Fig 2). Previously analyzed free recall data, including studies that have far less

data/subjects than our data set, have been shown to be highly reliable measures of individual dif-

ferences that predict a variety of factors including age, IQ, memory ability, and clinical variables

[24–32] suggesting that free recall is good measure of differences in memory ability between

sub-groups of older adults. As shown in Fig 2, these subgroups showed distinct neural gradients.

In the 2–3 Hz, 4–8 Hz, and 10–14 Hz bands, the older adults with the largest memory

impairments showed neural gradients that were more similar to the younger adult pattern of

shallowly decreasing (2–3 Hz) or gradual increasing (4–8 Hz and 10–14 Hz) power across serial

positions. That is, the best performing older adults looked least like younger adults at the neural

level. A similar situation is observed at higher frequencies. Young adults show a steep decrease

in power in the 28–42 Hz and 46–200 Hz bands, as do the low-performing older adults. But

the high-performing older adults show a shallower decrease. Again, the high-performing older

adults depart most strikingly from the younger adult pattern of neural dynamics.

ROC analyses on ΔEEG values, analogous to those reported in Fig 1, revealed that no indi-

vidual frequency band reliably discriminated low-performing from high-performing older

adults (.06< p< .20). However, the younger adult pattern is not fully described by any indi-

vidual frequency band, instead it is characterized by gradual increases across serial positions at

10–14 Hz and sharp decreases for higher frequencies. To capture this pattern, we computed

the difference between ΔEEG in each lower frequency band, Fi, and the 46–100 Hz band:

DEEGFi
� DEEG44� 200Hz

: ð2Þ

Fig 2. Spectral power in six frequency bands across serial positions for older adults with recall probabilities above (high-performing) versus below (low-

performing) the older adult median. Error bars are one standard error of the mean. The insert in the first panel shows kernel density estimates of the distributions of

overall probability of recall values for each group. Note that the y-axis scale differs across panels.

https://doi.org/10.1371/journal.pone.0227274.g002
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Fig 3A compares this measure among younger adults, low-performing older adults, and

high-performing older adults for each of the frequency bands. To ease interpretation the

DEEGFi
� DEEG44� 200Hz

values, the small curves next to each data point show the full gradients

across serial positions for the current frequency (Fi, solid lines) and 44–200 Hz (dotted

lines). DEEGFi
� DEEG44� 200Hz

represents the difference in the rate of change of these two gradi-

ents. At all frequencies, the low-performing older adults are numerically closer to the youn-

ger adult pattern than are the high-performing older adults. We conducted an ROC analysis

on the ability of this measure to distinguish the two older adult subgroups. The measure for

the 2–3 Hz, 4–8 Hz, and 10–14 Hz bands reliably discriminated low-performing from high-

performing older adults (Fig 3B). It is critical to note that because this measure incorporates

information about the 44–200Hz band into the lower frequency bands, it is impossible to

attribute these effects to a single frequency band. They must be interpreted as the difference

in rate of change across-serial positions of a given band versus the 44–200 Hz band. With

this caveat in mind, we can see that larger deviation from the younger adult pattern of

neural dynamics across an encoding episode is a biomarker of relatively preserved memory

performance.

The reason the two sub-subgroups of older adults show different neural patterns may be

that the high-performing older adults are compensating for age-related decline. Alterna-

tively, it may be that the pattern exhibited by the low-performing older adults is simply a

general feature of low-performing individuals that is not unique to age-related decline. We

can test these possibilities by conducting the same median split analysis on the younger adult

Fig 3. Spectral power distinguishes between low-performing and high-performing older adults. A: Mean values of DEEGFi
� DEEG44� 200Hz

for the 2–3 Hz, 4–8 Hz, 10–14

Hz, 16–26 Hz, and 28–42 Hz bands for the younger adults and older adults with recall probabilities above (high-performing) the older adult median, and older adults

below (low-performing) the older adult median. Error bars are one standard error of the mean. To ease interpretation of the DEEGFi
� DEEG44� 200Hz

values, the small curves

next to each data point show the full gradients across serial positions for the current frequency (Fi, solid lines) and 44–200 Hz (dotted lines). DEEGFi
� DEEG44� 200Hz

represents the difference in the rate of change of these two gradients. B: ROC curves created by varying the threshold value of DEEGFi
� DEEG44� 200Hz

used to classify a subject

as an low-performing versus a high-performing older adult. Significance was assessed by comparing the observed AUC value with a null distribution created by

permuting DEEGFi
� DEEG44� 200Hz

values across subjects 50000 times and running the analysis on each permuted dataset, with a strict Bonferoni correction to control α

across the five comparisons, any AUC with p< (0.05/5) = 0.01.

https://doi.org/10.1371/journal.pone.0227274.g003
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group. If the differences between the older adult sub-groups are due to age-related decline

and compensation, then the younger adults, who of course have no age-related decline to

compensate for, should not show these differences. Thus, we conducted the same median

split analysis on on the younger adult group. The results of this analysis are presented in Fig

4 and confirm that whereas the neural patterns of low-performing versus high-performing

older adults were quite distinct, the patterns of high-performing versus low-performing

younger adults were quite similar. This suggests that the effects in the older adult group are

specifically related to aging.

Discussion

We found evidence of age differences in how neural activity changes while encoding a series

of events. For both older and younger adults, high frequency oscillatory power (16–200 Hz)

Fig 4. Spectral power does not distinguish between high- and low-performing younger adults. A: Mean values of DEEGFi
� DEEG44� 200Hz

for the 2–3 Hz, 4–8 Hz, 10–14

Hz, 16–26 Hz, and 28–42 Hz bands for the younger adults with recall probabilities above the younger adult median, and younger adults below the median. Error bars are

one standard error of the mean. DEEGFi
� DEEG44� 200Hz

represents the difference in the rate of change of these two gradients. B: ROC curves created by varying the threshold

value of DEEGFi
� DEEG44� 200Hz

used to classify a subject as a high- versus a low-performing younger adult. Significance was assessed by comparing the observed AUC value

with a null distribution created by permuting DEEGFi
� DEEG44� 200Hz

values across subjects 50000 times and running the analysis on each permuted dataset, with a strict

Bonferoni correction to control α across the five comparisons, any AUC with p< (0.05/5) = 0.01.

https://doi.org/10.1371/journal.pone.0227274.g004
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declined rapidly across events [21]. By contrast, power at lower frequencies showed marked

age differences. Whereas older adults exhibited rapid power declines at both high and low fre-

quencies, younger adults exhibited shallower decreases (2–3 Hz) and even rapid increases (10–

14 Hz) at low frequencies. The rate and direction of change of the gradient at these low fre-

quencies was a highly reliable biomarker of age, as revealed by ROC analyses. These results

add neural dynamics across encoding periods to the growing list of age differences in electro-

physiology [2, 33–37]. Intriguingly, older adults who performed best on the memory task

showed the largest deviation from the younger adult pattern, particularly in the 4–14 Hz

range. This finding complements previous work that has suggested that some aspects of

age-related differences in processing compensates for, rather than contributes to, behavioral

impairments [38–42].

Here, we provide evidence for the general hypothesis that there are age differences in the

neural dynamics of encoding. We hope these preliminary results will be useful both in guiding

basic science and in designing assessments to detect signs of memory impairment. To con-

clude, we highlight two important questions for future work and provide some speculations

on promising answers.

The first question is which cognitive processes are linked to the observed age difference in

neural dynamics? Two general categories of processes strike us as likely candidates: processes

that become less efficient as the list progresses with time due to fatigue [5] and processes that

ramp up as the list goes on such as rehearsing early items in the list. Although we have empha-

sized cognitive processes, such as attention and rehearsal, it is important, of course, to consider

other possibilities. One possibility is that age-related anatomical changes such as a change in

the ratio of white to gray matter may change how EEG signals propagate and thereby produce

age differences in the patterns observed at the scalp. Future work, perhaps combining imaging

techniques, will be needed to pursue these possibilities.

The second question is why would age differences in such processes compensate for, rather

than exacerbate, memory impairment? In the case of fading efficiency, if older adults are aware

they will fatigue across a list, it might make sense for them to strongly engage encoding pro-

cesses for early items to ensure that at least some items are well-encoded. In the case of

rehearsal, it is known that older adults are less likely to rehearse items [10], perhaps because

they are impaired on the retrieval processes [4, 43] needed to think back to early list items [44].

If rehearsal is likely to fail, older adults may be well-served by instead focusing on encoding

the current item. Indeed, alpha power (corresponding to the 10–14 Hz band used here) has

been linked to holding more items in mind [45] and increases in 10–14 Hz power younger

adults show across a list may be an index of elaborative encoding or rehearsal [21]. Alpha

(and beta) power have also been linked to age-related differences in memory [46]. Therefore,

the smaller increase of 10–14 Hz power in high-performing older adult group relative to the

low-performing group may indicate that they are not attempting to engage in elaborative

encoding or rehearsal. Future research should focus on determining whether the effects we

have reported here do indeed reflect compensation and, if so, identifying which specific mem-

ory processes are involved.

Supporting information

S1 Fig. Age differences in spectral power in six frequency bands across serial positions for
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