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Reciprocal communication of the central and peripheral nervous systems is compromised during spinal cord injury due to
neurotrauma of ascending and descending pathways. Changes in brain organization after spinal cord injury have been
associated with differences in prognosis. Changes in functional connectivity may also serve as injury biomarkers. Most studies
on functional connectivity have focused on chronic complete injury or resting-state condition. In our study, ten right-handed
patients with incomplete spinal cord injury and ten age- and gender-matched healthy controls performed multiple visual motor
imagery tasks of upper extremities and walking under high-resolution electroencephalography recording. Directed transfer
function was used to study connectivity at the cortical source space between sensorimotor nodes. Chronic disruption of
reciprocal communication in incomplete injury could result in permanent significant decrease of connectivity in a subset of the
sensorimotor network, regardless of positive or negative neurological outcome. Cingulate motor areas consistently contributed
the larger outflow (right) and received the higher inflow (left) among all nodes, across all motor imagery categories, in both
groups. Injured subjects had higher outflow from left cingulate than healthy subjects and higher inflow in right cingulate than
healthy subjects. Alpha networks were less dense, showing less integration and more segregation than beta networks. Spinal cord
injury patients showed signs of increased local processing as adaptive mechanism. This trial is registered with NCT02443558.

1. Introduction

Reciprocal communication of the central and peripheral
nervous systems is compromised during spinal cord injury
(SCI), a condition that often causes permanent disability
due to massive neurotrauma of ascending and descending
pathways [1, 2]. While changes in brain activity and brain
organization may seem trivial, when compared to the
underlying injury of the pathways, they have nevertheless
been consistently associated with SCI [3–5]. Such changes
have also been observed at the early stages after the injury
and have been associated with differences regarding the
prognosis of SCI patients’ recovery [4–6]. Demonstrated
structural changes of the brain include atrophy of afferent

neural pathways, microstructural changes of efferent
axons, and disorder of white matter integrity in multiple
nodes of the sensorimotor cortex that involve the primary
motor and somatosensory areas [7] and also diffuse neuro-
nal degeneration [8].

Functional connectivity (FC) after SCI has been studied
by means of electroencephalography (EEG) [9–15] and func-
tional magnetic resonance imaging (fMRI) [6, 16–21]. Poor
recovery after SCI has been associated with decreased FC
strengths between midline sensorimotor network nodes dur-
ing resting state, while the opposite pattern has been associ-
ated with good recovery [6]. Supplementary and cingulate
motor areas have been shown to play important roles during
the sensorimotor neurophysiological process [9, 11], while
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unique interactions and temporal dynamics have been iden-
tified in the functional networks of SCI patients [12, 14].
Connectivity changes have been hypothesized to be able to
serve as injury biomarkers [22] while novel methods have
been developed and have been proposed in order to study
the brain’s connectome following SCI in hopes of providing
more reliable evidence of these changes [23].

Most studies on functional connectivity after SCI have
focused on patients with chronic complete injury, including
the majority of EEG studies. Only a couple of studies employ-
ing fMRI as a modality to detect brain activity have assessed
patients with incomplete injury but those have only studied
connectivity during resting-state condition so far [6, 16–18].
Moreover, the pioneer EEG studies on functional cortical con-
nectivity of SCI patients duringmotor imagery have employed
a robust but rather limited study design [9]. In this design, the
motor imagery task involved an attempt to move the para-
lyzed right foot and was performed simultaneously with one
motor execution task (lip protrusion), while the functional
networks were subsequently analyzed using a variety of tools.
So far, to the authors’ best knowledge, no study has been
performed employing multiple motor imagery tasks, espe-
cially of the upper extremities, aiming to analyze differences
in the formed networks. Moreover, incomplete injury at the
chronic phases remains understudied compared to chronic
complete injury with regard to functional connectivity net-
works. Despite the clinical and social impact of SCI, so far
published studies have been unable to form a complete
model regarding the effect of the injury on brain networks,
although effort has been made into modeling-specific
aspects, like resting-state connectivity and chronic injury
[3, 22]. It can be hypothesized—and there are also indica-
tions—that even incomplete spinal cord injury may show
measurable effects on the functional sensorimotor network
[24] that could be important for modeling the condition in
relation to prognosis [3, 6, 16].

Motor imagery, apart from its importance to the study of
brain activity after neurotrauma, has shown great potential in
motor skill learning and in rehabilitation of upper and lower
limb paralysis [25, 26]. It has been established that motor
imagery produces patterns of brain activation and brain con-
nectivity similar to those of motor execution [27, 28], while
the visual motor imagery class also activates a distinct task-
dependent neural system [29, 30]. Motor imagery has been
used as a modality to induce plasticity and recovery in a
range of conditions [31], including complete cervical spinal
cord injury [32] and stroke [33]. Moreover, motor imagery
has been also used as a control modality for brain-
computer interface implementations of exoskeletons for
complete [34] and incomplete spinal cord injury [35]. Func-
tional recovery has been induced even in the case of complete
injuries using such an approach [34]. Such results demon-
strate the importance of motor imagery functional networks
studies to accurately model the plastic changes that occur
after SCI.

In our previous work, we have presented our study with a
cohort of SCI patients and healthy control subjects that exer-
cised motor imagery to achieve control of anthropomorphic
robotic arms in various movement tasks. We have accounted

for development [36], pilot experiments, and brain network
analysis [37, 38], and we have presented a detailed user per-
ception and performance assessment study, based on neuro-
logical and psychometric evaluation [39]. In the current
paper, we present an elaborate analysis of the functional con-
nectivity networks formed on the sensorimotor cortex during
visual motor imagery of multiple motor tasks performed by
subjects with SCI and healthy controls. In Materials and
Methods, we briefly present the experimental setup and
detail our signal processing computational workflow, net-
work analysis, and statistical comparisons. In Results, we
detail important findings with regard to the effect of injury,
motor imagery category, brainwave rhythm, and timing of
imagery. In Discussion, we attempt to interpret our results
in the context of already published studies in the field, and
we note the limitations of this approach.

2. Materials and Methods

2.1. Experimental Setup

2.1.1. Recruitment and Subject Assessment. The experimental
setup has been previously described in detail, including
subject assessment [39] and procedures [36, 37], so we will
hereby provide only a brief overview. Our experimental
protocol was approved by the institutional ethical commit-
tee [40], and all subjects signed an informed consent form.
We recruited 8 male and 2 female patients with SCI (age:
mean 46.0, SD 17.64, range 28–74 years) and ten gender-
and age-matched healthy controls. All participants were
right-handed and reported no prior experience in mental
imagery (Table 1).

For both groups, we collected demographics and med-
ical history; also, a specialist physician performed neuro-
logical examination using the International Standards for
Neurological Classification of Spinal Cord Injury, to docu-
ment classification in American Spinal Injury Association
Impairment Scale (AIS) and the Neurological Level of Injury
(NLI). Subject assessment also included subjective reporting
of imagery capacity, using Vividness of Visual Imagery Ques-
tionnaire (VVIQ) [41] with eyes open (Table 1). Within the
SCI group, 60% of the patients were grouped into positive
outcome based on the neurological assessment (4 AIS D, 2
AIS E), and 40% of the patients were grouped into negative
outcome (1 AIS A, 2 AIS B, and 1 AIS C).

2.1.2. Experimental Procedure. The experiment took place
inside a magnetic shielded room for EEG recording, specially
designed for presentation capability and audiovisual moni-
toring of the participants. The subjects sat at a 1m distance
across a 21″ computer monitor. They wore an active elec-
trode cap (Brain Products, Germany) and were connected
to a 128-channel EEG (Nihon-Kohden, Japan) according to
the high-resolution EEG 10–5 international electrode system
[42]. Recordings were taken at a sampling rate of 1000Hz
and an impedance threshold of 10 kohm [36]. Initially, we
recorded resting-state activity, 1.5min with open eyes and
1.5min with closed eyes.
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In the main experimental part, the subjects watched
videos of 32 different arm motor tasks, a walking task video,
and an oddball video. The videos were presented in random
order. All arm motor task videos were presented from the
perspective of the participant watching his or her own arms
and were gender-matched. The walking task video presented
a pair of gender-matched legs walking, while seeing them

from the perspective of watching one’s own legs. The oddball
video showed a wildlife documentary. The videos lasted 5 sec,
each followed by a black screen with duration of 4 sec. A trig-
ger channel was recorded at the onset of each visual cue (the
start of each video) through an optic diode. The presentation
was separated in three parts of about 17min each, with 5min
of rest between them (Figure 1). At conclusion, each task had

Table 1: Demographic data and reported imagery capacity of subject groups (SCI and healthy).

(a)

SCI group Age Gender Cause AIS NLI VVIQ

CSI-02-001 28 f MVA C C4 54

CSI-02-002 52 m MVA D C4 69

CSI-02-003 42 m MVA D C8 68

CSI-02-004 70 m Fall D C5 76

CSI-02-005 60 m Fall E C6 70

CSI-02-006 28 m MVA D C5 56

CSI-02-007 30 m MVA E C5 67

CSI-03-001 47 m Fall A T7 72

CSI-03-002 29 f MVA B T4 60

CSI-03-003 74 m Other B T4 65

Mean (SD) 46.00 (17.64) 65.70 (7.04)

(b)

Healthy group Age Gender VVIQ

CSI-04-001 27 f 77

CSI-04-007 51 m 75

CSI-04-003 43 m 56

CSI-04-006 71 m 70

CSI-04-009 63 m 70

CSI-04-004 28 m 46

CSI-04-005 31 m 58

CSI-04-008 47 m 80

CSI-04-002 27 f 75

CSI-04-010 74 m 63

Mean (SD) 46.20 (18.27) 67.00 (10.09)
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Figure 1: Flow diagram of the experimental procedure of one part of the visual motor imagery presentation. Each presented video lasted 5
seconds and was followed by 4 seconds of black resting screen. The videos were presented 9 times each, in a random order. The presentation
was divided into three parts, lasting approximately 17 minutes each, with an intermission between them.
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been presented 9 times in total. The subjects were asked to
perform visual motor imagery (VMI), while watching a
motor task, without actually moving their limbs (regardless
of neurological status or group) and were instructed to rest
while watching the black screen. They already knew that
the videos would be presented at random but not of the pres-
ence of an oddball video (video showing wildlife). Moreover,
the subjects’ arms, torso, and legs were covered with a black
curtain during the whole procedure in order to facilitate
mental registration of the presented arms and legs into their
perceived body schema [43].

The 32 upper extremity motor tasks consisted of 8 inde-
pendent movements (degrees of freedom) ∗ 2 directions of
movement ∗ 2 extremities, comprising the full range of
motion of the human arms and were classified into categories
for further analysis [39]. In short, the 8 categories of motor
tasks were “Hands,” “Left,” “Right,” “Proximal,” “Distal,”
“Rotational,” “Linear,” and “Walking.”

The “Hands” category included all 32 tasks of both upper
extremities. The “Left” and “Right” categories included 16
motor tasks each of the respective upper extremity (left or
right). The “Proximal” category included 16 motor tasks of
the shoulder and elbow joints of both extremities, while the
“Distal” category included the remaining 16 motor tasks of
wrist joints and fingers. Further, the “Rotational” category
included those 8 motor tasks that result in rotational motion,
and the “Linear” category included those 24 motor tasks of
both extremities that resulted in linear motion (Table 2).
Finally, the “Walking” category was also defined as a separate
category of motor imagery, consisting only of the walking
motor imagery task, for a total of 8 categories. Table 2 lists in
summary all presented motor tasks of one upper extremity
(16 tasks), for each showing the degree of freedom, direction
of movement, classification by proximity, and resulted
motion.

2.2. Signal Analysis

2.2.1. Signal Preprocessing. Signal analysis was performed on a
subset of the 10–5 international electrode system that is over-
lying the cortical sensorimotor areas [44] that were later
defined as regions of interest (ROIs) for this study (Figure 2).
This subset included 64 electrodes: AFF5h, AFF3h, AFF1h,
AFz, AFF2h, AFF4h, AFF6h, F5, F3, F1, Fz, F2, F4, F6, FFT7h,
FFC3h, FFC1h, FFC2h, FFC4h, FFT8h, FT7, FC5, FC3, FC1,
FC2, FC4, FC6, FT8, FTT7h, FCC5h, FCC3h, FCC1h, FCC4h,
FCC6h, FTT8h, C5, C3, C1, Cz, C2, C4, C6, CCP3h, CCP1h,
CCP2h, CCP4h, CP5, CP3, CP1, CPz, CP2, CP4, CP6, CPP3h,
CPP1h, CPP2h, CPP4h, P3, P1, Pz, P2, P4, PPO1h, and
PPO2h. As scalp electrodes capture mixed activity from
unknown cortical and subcortical brain sources, recording
brain activity related to motor tasks only from the sensors
overlying the sensorimotor area presents some risk for loss
of information but also presents certain advantages. This
approachhasbeenused inEEGsource imaging studies regard-
ing motor tasks with good results [45–48], as the signal of
interest is less attenuated and signal to noise ratio is higher
than in distant sensors, while contaminated channels closer
to muscular artifact generators are excluded.

All signal preprocessing was performed using a custom
script on the FieldTrip toolbox for MATLAB [49]. Raw
data from those selected channels was band-pass filtered
at 0.5–30Hz using a zero-phase FIR filter and subse-
quently downsampled at 100Hz.We visually examined con-
tinuous EEG signal time series of each subject to detect bad
electrodes that showed large drifts from their mean value
and then removed these electrodes. Epochs were then ini-
tially extracted from −2000msec to +5000msec centered on
the trigger (visual cue). Subsequently, independent compo-
nent analysis was performed on the concatenated continuous
data (of each session) using the second-order blind identifi-
cation method [50]. Independent components correspond-
ing to eye blinks and muscle artifacts were identified and
removed from the epoched data. Bad electrodes were then
interpolated using spherical splines interpolation [51].
Finally, the epoched data were split into two time intervals
(Figure 3), which will be referred to as “early” (early onset
imagery from −1000msec to +2000msec around the trigger)
and “late” (late continuous imagery from +2000msec to
+5000msec after the trigger). While shorter time windows
have also been used in similar analyses [52], differences in
the behavior of alpha and beta rhythms between the window
around the imagery onset and later windows have been iden-
tified with regard to networks [53], relative power [54], and

Table 2: Presented motor tasks for one upper extremity (left or
right): 16 motor tasks were presented (8 independent movements
(degrees of freedom) ∗ 2 directions of movement) and were then
classified by proximity (proximal or distal tasks) and resulting
motion (linear or rotational). For both upper extremities, the
subjects watched and performed visual imagery of 32 motor tasks
in total.

Independent
movement

Direction
Proximal/
distal

Linear/
rotational

Shoulder Arm down Proximal Linear

Shoulder Arm up Proximal Linear

Shoulder Arm left Proximal Linear

Shoulder Arm right Proximal Linear

Elbow
Forearm
down

Proximal Linear

Elbow Forearm up Proximal Linear

Forearm
External
rotation

Proximal Rotational

Forearm
Internal
rotation

Proximal Rotational

Wrist Hand down Distal Linear

Wrist Hand up Distal Linear

Wrist
External
rotation

Distal Rotational

Wrist
Internal
rotation

Distal Rotational

Thumb Open Distal Linear

Thumb Close Distal Linear

Fingers Open Distal Linear

Fingers Close Distal Linear
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event-related desynchronization [55]. The data from one
subject (from the healthy group) was exempted from further
analysis, as this preprocessing methodology did not result in
sufficiently clean epoched data.

2.2.2. Current Cortical Density. The solution of the forward
problem, the lead field matrix that best describes the con-
duction from the current cortical density (CCD) source
model (Table 3) to scalp potentials, is based on the
following equation:

m = Ld + b, 1

where m refers to the M simultaneous electrode voltage
recordings, d refers to the N current dipoles in the current
cortical density model, b is the noise vector, and L is the
abovementioned lead field matrix [56]. We used the solution
applied in eConnectome toolbox for MATLAB [57, 58] of the
forward problem which is a high-resolution lead field matrix
relating 2054 scalp triangles to 7850 cortical dipoles. The lead
field matrix is derived using a three-layer block element mod-
ifier model based on the Colin27 Montreal Neurological
Institute brain [59]. The dipoles were constrained to the gray

matter with orientations perpendicular to the local cortical
surface, under the assumption that the primary source of
measured EEG signal is local groups of pyramidal neurons
of the cortex firing synchronously and is arranged perpendic-
ular to its surface [60]. In our case, a subset of the lead field
matrix was used for the 64 selected EEG electrodes.

Weighted minimum norm estimate was used to solve the
ill-posed inverse problem (Table 3) by minimizing the source
space energy based on the fact that the power of the source
dipoles is limited by the cortex physiology [61]. Minimum
norm estimate aims at minimizing the following equation:

J d = m − Ld 2 + λ d 2, 2

where m refers to the actual recordings from the scalp, d is
the simultaneous current dipoles to be calculated, L is the
lead field matrix, λ is the regularization parameter, and d 2

is the regularization term which in our case refers to the
energy of the solution’s dipoles. The first term in the above
equation represents the error between the actual and pre-
dicted electrode recordings. The second term is the penaliza-
tion term, which aims at enforcing the abovementioned

L R LA

A

L

A
R

AA

L

1 1

1
1

2 2

2 2

3 3

3

4 4

4

5

6 6

6 6

7 7

7 7

3

8 8

8

9 9

9 9

10 10

10 10

11
11

11

12 12

12 12

Figure 2: Regions of interest (ROIs) of the sensorimotor cortex and the overlying subset of electrodes that was used for signal analysis in our
study. 1: presupplementary motor area (pSMA); 2: supplementary motor area (SMA); 3: dorsal premotor area (PMd); 4: ventral premotor area
(PMv); 5: cingulate motor area (CMA); 6: primary foot motor area (M1F); 7: primary hand motor area (M1H); 8: primary lip motor area
(M1L); 9: primary foot somatosensory area (S1F); 10: primary hand somatosensory area (S1H); 11: secondary somatosensory area (S2); 12:
somatosensory association area (SAC).
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energy restriction. Lastly, λ, which balances the effect of the
penalization term, was calculated using the L-curve method
[62]. The solution of minimum norm estimate was derived
using Tikhonov regularization in the regularization toolbox
[63]. 24 custom-defined ROIs were created at the surface of
the cortex model, in order to proceed to connectivity analy-
sis, as illustrated in Figure 2. The ROI time series signal

(Figure 3) was calculated by averaging the amplitude from
all included cortical current dipoles.

2.2.3. Functional Connectivity. In total, 24 ROIs were
defined on the cortical source model, consisting of the
following areas bilaterally: presupplementary motor area
(pSMA), supplementary motor area (SMA), dorsal premotor

Table 3: Summary presentation and description of the most important models and connectivity metrics or measures that were used in the
methodological section of this study.

Metric or model name Acronym Description

Current cortical
density

CCD
Forward problem

solution
A model that aims to explain the correspondence of cortical source activity
to scalp electrical potentials, taking account of skull and scalp conductivity.

Weighted minimum
norm estimate

wMNE
Inverse problem

solution
An estimation of how signals captured at the scalp correspond to source

activations, with their power limited by the cortical physiology.

Directed transfer
function

DTF
Granger causality

measure

A metric of effective network connectivity (functional connectivity that
incorporates causal relations instead of statistical inference alone)

that produces directed networks with weighted edges.

Characteristic path
length

CPL
Network
integration

A representative measure of shortest distances between network
nodes that are connected to each other.

Clustering coefficient CC
Network

segregation
A measure of the tendency of network nodes to become organized

into functionally separated clusters.

Density D Network density
A measure of existing connections against the theoretical maximum
number of possible connections if the network was fully connected.

Small-worldness SW
Overall network
effectiveness

A model of network behavior, where short paths and increased forming of
functional clusters lead to optimization and resilience of information transfer.

Out-strength
and in-strength

OS and
IS

The total nodal sum of weights from outgoing and incoming connections,
respectively.

0
Epoch time (msec)

3500 7000
Trigger (video) at 2000 msec

−1000
msec 

+2000
msec 

+5000
msec Early Late

0 (trigger)Interval time (msec)

S1F_L
S1F_R
S1H_L
S1H_R
SAC_L
SAC_R

S2_L
S2_R

M1F_L
M1F_R
M1H_L
M1H_R
M1L_L
M1L_R

CMA_L
SMA_L

pSMA_L
CMA_R
SMA_R

pSMA_R
PMd_L
PMd_R
PMv_L
PMv_R

Figure 3: Activation time series of all regions of interest (ROIs) of the sensorimotor cortex during a random epoch and definition of time
intervals around the trigger (onset of the video presenting the motor imagery task).
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area (PMd), ventral premotor area (PMv), cingulate motor
area (CMA), primary foot motor area (M1F), primary hand
motor area (M1H), primary lip motor area (M1L), primary
foot somatosensory area (S1F), primary hand somatosensory
area (S1H), secondary somatosensory area (S2), and somato-
sensory association area (SAC) (Figure 2). Their average acti-
vation time series were computed for every time interval.

Directed transfer function (DTF) [64] was used (Table 3)
in order to calculate functional cortical connectivity of the
sensorimotor network consisting of the 24 ROIs as nodes
[44], computing causal relations among the nodal activation
time series. The produced connectivity matrices were thre-
sholded, using the surrogate data method with testing of sig-
nificance of connections, instead of using absolute or relative
thresholding [65–67]. During computation of DTF, a number
of 1000 surrogate permutations and a significance level of 0.05
were set, resulting in partially connected matrices with only
the most significant causal connections. DTF is a measure
based on Granger causality [68] that uses the multivariate
autoregressive model described by the following function:

X t = 〠
p

j=1
A j X t − j + E t , 3

where p is the model order, X t contains the ROIs values at
time t, E t is the residual noise vector, and A is a coefficient
k× k-sized matrix [44]. Using the above equation, the A
matrices are computed by means of the minimalization of
the residual noise E.

The order of the multivariate autoregressive model
[69] was chosen to be 8 after considering the following
criterions [70]: (a) tests that demonstrated an optimal
order of 10 for a sampling rate of 128Hz for modeling
EEG spectra [71, 72]; (b) the model order should be
smaller than τ×Fs, where τ is the expected lag between
two brain processes and Fs the sampling rate; (c) better
to err on the side of selecting a larger model order, (d)
using the same model order for all DTF computations.

Equation (3) is described in the frequency domain as

E f = A f X f ,

X f = A−1 f E f =H f E f ,
4

where H f is a transfer matrix of the system, and it contains
information about the relationships between signals. It is
nonsymmetric, so it allows for finding causal dependencies.
DTF is then computed by the equation:

DTF2j→i f =
Hij f

2

〠k
m=1 Him f 2 5

DTF describes casual influence of channel j on channel i
at frequency f. For our analysis, DTF was computed for the
networks formed at the frequency bands of alpha rhythm at
8–12Hz (“alpha networks”) and beta rhythm at 13–30Hz
(“beta networks”), as those are considered the brainwaves
most relevant to the sensorimotor processes [73].

2.2.4. Network Analysis.Network analysis in terms of descrip-
tors of the weighted directed graphs (“network properties”)
was performed with the brain connectivity toolbox for
MATLAB [74] for the alpha and beta networks formed during
early and late time intervals. Out-strength (OS), in-strength
(IS), and clustering coefficient were computed for each of the
24 nodes of the network during each task of imagery. Charac-
teristic path length (CPL), mean clustering coefficient (CC),
and density (D) were also computed at the level of graphs of
each task of imagery. Topology of small-worldness (SW) was
then derived from these network properties for each task of
imagery [44]. To facilitate further analysis, all properties were
averaged for the 8 imagery categories mentioned in Experi-
mental Procedure. A summary of the interpretation of these
network properties is also presented in Table 3.

CPL, a measure of integration, calculates the sum of the
shortest distances among connected graph nodes, divided
by the number of nodes [75, 76]. It is described by (6), where
Li is the average distance between node i and the other node,
and dij is the shortest path between nodes i and j. The dis-
tance matrix was computed using the logarithmic conversion
of weights by the Floyd-Warshall algorithm [77], as imple-
mented in the BCT [78].

CPL =
1
n
〠
i∈N

Li =
1
n
〠
i∈N

〠j∈N ,j≠idij
n − 1

6

Global CC, a measure of segregation, estimates the ten-
dency of the graph nodes to organize into clusters [79, 80].
It is described by (7), where Ci is the clustering value for a
node i, ki is the node’s degree, and ti is the number of neigh-
boring nodes that connect to each other in triangles around
node i.

CC =
1
n
〠
i∈N

Ci =
1
n
〠
i∈N

2ti
ki ki − 1

7

D is the ratio of a network’s actual connections to the
maximum possible connections. In our example, the graphs
were only partially connected, and the connection weights
were ignored, since all connections were considered signifi-
cant as computed by DTF with testing for statistical signifi-
cance (p = 0 05) by surrogate data. It is therefore described
by (8), where E is the ensemble of the network’s connections,
and V is the ensemble of the network’s nodes.

D =
E

V V − 1
8

SW is defined as the combination of short paths and high
clustering in a network, when compared to random networks
with comparable paths constructed by the same number of
nodes and connections. This property has commanded atten-
tion as an important brain network characteristic that models
the brain’s effective communication patterns [81–83]. It is
described by (9), and in our study, the comparison of CPL
and CC was made against 10,000 random networks. These
randomnetworksweredirectedgraphs,with the samenumber
of nodes and edges as the original, and they were generated
using the brain connectivity toolbox [84]. CPL and CC were
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computed for each randomnetwork and compared against the
original, in a process that was iterated 10,000 times to produce
a range of SWvalues. The range of values was then averaged to
produce a single robust value of the SW property for each
original network.

SW =
CC/CCrand
CPL/CPLrand

9

The strength of node strength is the sum of the weights of
connections to or from that node. The IS, therefore, is the
sum of incoming connection weights, and the OS is the
sum of outgoing connection weights [74]. They are described
by (10) and (11), respectively, where Cij is the weighted
directed N∗M connectivity matrix, with a direction of i→ j,
N is the number of columns, and M is the number of rows.

IS = 〠
N

j=1
Cij, 10

OS = 〠
M

i=1
Cij 11

2.3. Statistical Analysis. Adjacency matrices computed by
directed transfer function were compared between healthy
and patient groups using the network-based statistic toolbox
for MATLAB [85]. We performed the statistical analysis
using the false discovery rate on the general linear model with
t-test [86], a significance level of 0.05 and 50,000 permuta-
tions. Using a between-group design, we compared alpha
and beta networks of healthy subjects to alpha and beta net-
works of SCI subjects for each imagery category, elaborating
the comparisons for the effect of early and late intervals. We
also compared alpha to beta networks of each category and
time interval using a within-group design. Differences in
networks were visualized using the BrainNet Viewer for
MATLAB [87].

Statistical analysis of age, imagery capacity, and computed
network properties was performed in IBM SPSS Statistics
(version 23), and we set a significance level of 0.05 for all
statistical tests. All variables were explored for normality
assumption (healthy and SCI groups as grouping factor) using
visual inspection of histograms, normal Q-Q plots and box-
plots, skewness and kurtosis [88–90], and normality tests
(Shapiro-Wilk test and Kolmogorov-Smirnov test) [91, 92].
Depending on normality assumption, different analyses were
performed (paired t-tests or Wilcoxon signed-rank tests).
Normality assumption was met for the variable age and for
the VVIQ score for both groups. Independent sample t-tests
were performed to reveal significant age andVVIQdifferences
between the two groups. As the groups did not differ either for
age distributions (healthy-skewness: 0.407 (SE= 0.687), kur-
tosis: −1.418 (SE= 1.334); SCI-skewness: 0.651 (SE=0.687),
kurtosis: −0.752 (SE=1.334)) or for their reported imagery
capacity (VVIQ: t = −1 094, df = 8, and p = 0 306), the rest
of the statistical analysis was planned accordingly.

We planned within-group comparisons of brain net-
work properties using as grouping factor the rhythm
(alpha, beta). Differences of variables between the two

rhythms were calculated for the categories of visual motor
imagery tasks, separately at early and late time intervals.
Subsequently, we calculated within-group comparisons of
brain network properties using as grouping factor the time
interval (early, late). Between-group comparisons were
performed using the calculated differences of variables at
the two time intervals with either independent samples
t-tests or Mann–Whitney U tests.

Nodal strengths, both incoming and outgoing, were
averaged across different motor imagery tasks, rhythms,
and time intervals, and total nodal strengths were calcu-
lated. They were tested for normality assumption for both
groups and analyzed within groups using descriptive
statistics and between groups (SCI, healthy) using Mann–
Whitney U test. Targeted differences between nodes
CMA_L and CMA_R were tested for statistical significance
using either Pearson or Spearman correlation coefficient
depending on normality assumption.

3. Results

3.1. Functional Connectivity. Visualizations of connectivity
maps for the two groups (SCI, healthy) were made using
the eConnectome toolbox for alpha and beta networks dur-
ing both time intervals averaged across the motor imagery
categories (Figure 4). The highest information transfer in
all examined networks came from the bilateral cingulate
motor areas including their reciprocal communication. In
both groups, the maximum incoming nodal strength was
observed in right CMA (Table 4), whereas the maximum out-
going nodal strength was found in left CMA (Table 5).
Between-group comparisons revealed significant differences
in total nodal strengths, both incoming and outgoing.

More precisely, significant differences in incoming
strengths were found bilaterally in CMA, SMA, S1H, PMd,
and PMv as well as in the left S1F. Healthy participants
showed higher incoming strengths in all aforementioned
nodes apart from the left CMA (Figure 5) compared to the
SCI participants (Table 4).

Outgoing strengths were found to be significantly differ-
ent between groups in all nodes (Table 5) apart from the right
S1F. In more detail, SCI group showed considerably higher
outgoing strengths in the S1F and SAC in the left hemi-
sphere, in S1H and CMA in the right hemisphere as well as
in S2, PMd and PMv bilaterally. In the remaining nodes,
healthy participants were found to have increased outgoing
strengths compared to SCI participants.

When calculating differences of group averages (healthy
group-SCI group) of in-strength (IS) and out-strength (OS)
of cingulate motor areas (CMAs) during all motor imagery
categories, a possible trend was revealed. OS of CMA_R was
consistently higher in the healthy group, while OS of CMA_L
was consistently higher in the SCI group. The opposite held
true for IS of those nodes (Figure 6). Between-group differ-
ences in CMA_R were negatively correlated to those in
CMA_L in targeted imagery categories (early alpha walk-
ing (r = −0 867, p = 0 002), late alpha walking (r = −0 250
p = 0 517), early beta walking (r = −0 502, p = 0 169), and
late beta walking (r = −0 827, p = 0 006)).
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3.2. Network-Based Statistics between Groups and within
Groups. Important differences of connectivity were found
only in between groups (SCI against healthy), where a subset
of connections had significantly higher FC in the healthy
group than in the SCI group in the hands motor imagery
category (Figure 7). This subset included connections with

lower FC in the SCI group of M1H_R to bilateral primary
foot motor areas (M1F), primary foot and hand sensory
areas (S1H, S1F), the somatosensory association areas
(SAC), and the secondary sensory areas (S2). This finding
persisted in both alpha and beta networks when testing
with t-test.

Table 4: Descriptive statistics of nodal incoming strengths with statistically significant differences between healthy and SCI participants and
between-group comparison results.

Nodes
Median Mean ranks IQR: [Q1, Q2] Healthy versus SCI

Healthy SCI Healthy SCI Healthy SCI

SIF L 0.235 0.230 37.72 27.28 [0.231, 0.253] [0.226, 0.238] U = 345 0, p = 0 025

SIH L 0.263 0.246 44.13 20.88 [0.258, 0.270] [0.239, 0.256] U = 140 0, p < 0 001

SIH R 0.256 0.233 40.94 24.06 [0.243, 0.265] [0.229, 0.248] U = 242 0, p < 0 001

CMA L 0.410 0.438 18.84 46.16 [0.402, 0.419] [0.431, 0.445] U = 75 0, p < 0 001

CMA R 0.486 0.473 38.38 26.63 [0.475, 0.509] [0.458, 0.489] U = 324 0, p = 0 012

SMA L 0.236 0.217 41.34 23.66 [0.230, 0.243] [0.213, 0.229] U = 229 0, p < 0 001

SMA R 0.305 0.289 39.50 25.50 [0.296, 0.314] [0.281, 0.297] U = 288 0, p = 0 003

PMd L 0.309 0.272 46.84 18.16 [0.296, 0.320] [0.260, 0.278] U = 53 0, p < 0 001

PMd R 0.299 0.284 37.78 27.22 [0.290, 0.304] [0.274, 0.299] U = 343 0, p = 0 023

PMv L 0.252 0.232 40.53 24.47 [0.236, 0.259] [0.220, 0.243] U = 255 0, p = 0 001

PMv R 0.262 0.247 41.81 23.19 [0.254, 0.267] [0.240, 0.255] U = 214 0, p < 0 001

Alpha Beta

SCI

Healthy

0.4

0

DTF

Early imagery time interval
(−1000 and +2000 msec)—hands 

RL RL

RL RL

Figure 4: Average information transfer (calculated by directed transfer function) of healthy and SCI groups calculated for alpha (left) and
beta (right) rhythm networks during the early imagery time interval, for the hands motor imagery category. Connections between the
bilateral cingulate motor areas (CMA_R ← → CMA_L) presented the highest information transfer. Only connections with at least 25% of
max information transfer among all statistically significant connections are displayed.
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When we further tested the networks of our participants
by grouping the SCI subjects by outcome (positive and nega-
tive), no differences were found between the networks of the
two groups. During all permutations, the p value of the false
discovery rate did not approach statistical significance (p >
0 05). Also, testing for other imagery categories did not reveal
significant differences, with the exception of the walking
category. Comparing the networks of healthy and patients
during the walking imagery category, significantly greater
S2_L-PMv_R connectivity was found in the SCI group.

Furthermore, when testing for main effect of within time
interval and brainwave rhythm within the healthy and
patient groups, no further statistical significant differences
of the connectivity weights of the network were observed.

3.3. Analysis of Network Properties

3.3.1. Within-Group Comparisons of Graph Properties
between Alpha and Beta Showed Less Segregation, Less
Integration, Greater Density, and Less Effectiveness of Beta
Networks.When exploring within-group differences of graph
properties using as grouping factor the rhythm (alpha, beta),

beta networks showed less segregation, less integration, and
less overall effectiveness compared to alpha networks. CPL,
CC, and SW showed significantly lower values in beta com-
pared to alpha networks, in both early and late time intervals.
These findings were observed during nearly all imagery cate-
gories in both SCI and healthy group.

On the opposite, beta networks showed greater density
compared to alpha networks. D was significantly greater in
beta networks in both early and late time intervals of all imag-
ery categories inboth SCI andhealthy group (Figure 8).Aggre-
gated statistical test results and p values for abovementioned
findings can be found in supplementary material (available
here). Specific exemptions are detailed below, as differences
of graph properties in beta network compared to alpha did
not reach statistical significance only in walking category, in
the following cases: (a) in SCI group, CPLduring the late inter-
val, (b) in SCI group, CC and SWduring the early interval, and
(c) in healthy group, CC during the late interval.

3.3.2. Within-Group Comparisons of Graph Properties
between Early and Late Time Intervals Showed (1) Less SCI
Network Integration during Late Walking Imagery, (2)

Table 5: Descriptive statistics of nodal outgoing strengths with statistically significant differences between healthy and SCI participants and
between-group comparison results.

Nodes
Median Mean ranks IQR: [Q1, Q2] Healthy versus SCI

Healthy SCI Healthy SCI Healthy SCI

S1F L 0.073 0.084 21.34 43.66 [0.080, 0.095] [0.080, 0.095] U = 155 000, p < 0 001

S1F R 0.131 0.133 31.81 33.19 [0.123, 0.146] [0.123, 0.146] U = 490 000, p = 0 768

S1H L 0.090 0.084 38.38 26.63 [0.084, 0.100] [0.077, 0.091] U = 324 000, p = 0 012

S1H R 0.091 0.166 16.50 48.50 [0.086, 0.096] [0.153, 0.181] U = 0 000, p < 0 001

SAC L 0.071 0.087 18.28 46.72 [0.069, 0.074] [0.084, 0.092] U = 57 000, p < 0 001

SAC R 0.025 0.015 47.41 17.59 [0.023, 0.027] [0.014, 0.016] U = 35 000, p < 0 001

S2 L 0.010 0.022 17.41 47.59 [0.009, 0.012] [0.020, 0.024] U = 29 000, p < 0 001

S2 R 0.128 0.148 20.91 44.09 [0.124, 0.138] [0.139, 0.159] U = 141 000, p < 0 001

M1F L 0.078 0.073 38.13 26.88 [0.072, 0.088] [0.069, 0.076] U = 332 000, p = 0 016

M1F R 0.294 0.236 47.69 17.31 [0.286, 0.324] [0.230, 0.263] U = 26 000, p < 0 001

M1H L 0.311 0.170 47.59 17.41 [0.283, 0.339] [0.163, 0.181] U = 29 000, p < 0 001

M1H R 0.061 0.059 38.34 26.66 [0.059, 0.066] [0.058, 0.061] U = 325 000, p = 0 012

M1L L 0.003 0.003 26.25 38.75 [0.003, 0.003] [0.003, 0.004] U = 312 000, p = 0 007

M1L R 0.011 0.010 42.78 22.22 [0.010, 0.013] [0.009, 0.010] U = 183 000, p < 0 001

CMA L 2.927 2.519 47.28 17.72 [2.805, 3.008] [2.404, 2.581] U = 39 000, p < 0 001

CMA R 0.879 1.156 18.41 46.59 [0.784, 0.973] [1.082, 1.261] U = 61 000, p < 0 001

SMA L 0.350 0.276 46.25 18.75 [0.326, 0.375] [0.267, 0.295] U = 72 000, p < 0 001

SMA R 0.206 0.187 41.72 23.28 [0.191, 0.226] [0.176, 0.194] U = 217 000, p < 0 001

pSMA L 0.044 0.031 46.50 18.50 [0.040, 0.048] [0.030, 0.035] U = 64 000, p < 0 001

pSMA R 0.026 0.031 19.28 45.72 [0.024, 0.027] [0.030, 0.033] U = 89 000, p < 0 001

PMd L 0.149 0.187 21.13 43.88 [0.141, 0.167] [0.179, 0.201] U = 148 000, p < 0 001

PMd R 0.484 0.577 18.25 46.75 [0.448, 0.521] [0.559, 0.606] U = 56 000, p < 0 001

PMv L 0.014 0.024 16.50 48.50 [0.013, 0.014] [0.022, 0.025] U = 0 000, p < 0 001

PMv R 0.016 0.032 17.91 47.09 [0.014, 0.018] [0.028, 0.035] U = 45 000, p < 0 001
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Greater SCI Network Segregation and Stable Effectiveness for
Distal Tasks during Late Imagery, and (3) Less Healthy
Network Segregation and Effectiveness for Distal Tasks
during Late Imagery. When exploring within-group
differences of graph properties using as grouping factor
the time interval (early, late), few significant differences
were observed.

Regarding network integration, significant difference of
CPL values was shown only SCI group’s alpha networks
during the walking task (t = 2 743, df = 9, and p = 0 023).
More precisely, SCI subjects were characterized by lower
path lengths at the second stage of the task (late) (early
alpha walking CPL: 7.809; late alpha walking CPL:
7.032). Changes in the CPL in the beta rhythm comparing
the two time intervals were not observed. Also, no signif-
icant difference was found for healthy subjects.

Regarding network segregation, significantly higher CC
values in the SCI group were observed in the alpha band of
distal imagery category (t = −2 574, df = 9, and p = 0 030;
early alpha distal CC: 0.0076; late alpha distal CC: 0.0082).
Considerable differences in mean CC at the beta band
were not found. In healthy participants, considerably lower
CC value was found only in alpha band of the left cate-
gory (t = 2 435, df = 8, and p = 0 041; early alpha left CC:
0.0094; late alpha left CC: 0.0086).

Regarding network density, healthy group showed signif-
icantly higherD values at the late stage of linear imagery tasks
in alpha rhythm (t = −2 543, df = 8, and p = 0 035; early alpha
linear D: 0.3595; late alpha linear D: 0.3713), whereas density
was considerably less at the late stage of proximal tasks in beta
rhythm (t = 3 038, df = 8, and p = 0 016; early beta proximal

D: 0.5904; late beta proximal D: 0.5784). SCI group showed
greater density when comparing the two time intervals of
right imagery category in alpha band (t = −2 962, df = 9,
and p = 0 016; early alpha right D: 0.3663; late alpha right
D: 0.3801), but no alterations were found in beta networks.

Regarding overall network effectiveness, significant
results of SW were found for healthy subjects at distal imag-
ery tasks in both alpha and beta rhythms (alpha: t = 2 201,
df = 8, and p = 0 059; beta: t = 3 044, df = 8, and p = 0 016).
In more detail, significantly lower values of SW were
observed in distal imagery tasks between the two time inter-
vals (early alpha distal SW: 1.553; late alpha distal SW: 1.406;
early beta distal SW: 1.159; late beta distal SW: 1.137). For the
SCI group, considerable differences were not observed.

3.3.3. Between-Group Comparisons of Graph Properties
Showed Not Only Similar Network Integration and Density
But Also Greater Segregation and Effectiveness of Alpha
Band Networks in Some Imagery Categories for the Patients.
When exploring between-group differences of graph proper-
ties, few significant differences were observed. Comparisons
of CPL and D did not reveal any considerable difference
across any imagery category (supplementary material),
showing similar network integration and network density
of the networks of healthy and patient subjects.

Regarding network segregation, significant changes in CC
were observed at the left imagery tasks (t = 2 672, df = 17, and
p = 0 016), at the rotational imagery tasks (t = 2 104, df = 17,
and p = 0 051), and at distal imagery tasks (U = 20 00,
p = 0 041), all appearing in alpha band. In more detail, SCI
subjects seem to show greater CC of alpha networks in the
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Figure 5: Nodal strengths (a: out-strength, b: in-strength) of bilateral cingulate motor areas for both subject groups. Left cingulate motor area
(CMA_L) showed the highest out-strength and right cingulate motor area (CMA_R) showed the highest in-strength in the network. SCI
subjects presented significantly higher CMA_R out-strength and CMA_L in-strength than healthy subjects. “∗ ” represent extreme values
and “o” represent outliers.
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late part of the aforementioned imagery tasks (alpha left dif
(mean)—SCI: 0.00019, healthy: −0.00084; alpha distal dif
(median)—SCI: 0.00049, healthy: −0.00075; alpha rotational
dif (mean)—SCI: 0.00061, healthy: −0.0010). Significant dif-
ferences were not found between groups in the beta networks
of all tasks.

Regarding overall network effectiveness, the SCI group
seems to have only a significant change in mean SW of alpha
network while performing VMI on distal imagery tasks com-
pared to healthy (t = 2 365, df = 17, and p = 0 030).More pre-
cisely, SCI group seems to show greater SW of alpha networks
in the late part of the distal tasks (alpha distal dif (mean)—SCI:
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Figure 6: Differences of group averages (healthy-SCI) of in-strength (IS) and out-strength (OS) of cingulate motor areas (CMAs) during all
motor imagery categories. A trend was revealed, in which OS of CMA_R was consistently higher in the healthy than the SCI group. OS of
CMA_L was consistently lower in the healthy than the SCI group. The opposite held true for IS of those nodes. This trend reached
statistical significance only for early alpha walking (p = 0 002) and late beta walking (p = 0 006) tasks.
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0.0253, healthy: −0.1467). Other between-group differences
were not observed (supplementary material).

4. Discussion

4.1. Functional Connectivity. A subset of the sensorimotor
network during hands motor imagery was shown to have
significantly lower functional connectivity power in the SCI
group compared to the healthy group, a finding from
analyses of the general linear model. This subset included
connections of the M1H_R cortical area (theoretically
the nondominant hand primary motor area for right-
handed subjects) with other motor and sensory cortical
areas. This subset also excluded the “assistive” motor nodes
(CMA/SMA/pSMA/PMv/PMd). Interestingly, among these
excluded nodes were also the ones that were shown to have
consistently higher OS and IS, for all imagery categories, as
we will discuss later on. The subset of connected nodes to
M1H_R included bilateral primary foot motor areas (M1F),

primary foot and hand sensory areas (S1H, S1F), the somato-
sensory association areas (SAC) located in superior parietal
cortex (SPC), and the secondary sensory areas (S2). Small
differences between alpha and beta rhythm networks can be
observed, whereas most of those connections’ lower FC
reached statistical significance for either rhythm. These
cortical areas can be identified as the point of origin of the
pyramidal tract and the point of conclusion of the major
somatosensory tracts. This finding could suggest that chronic
disruption of reciprocal communication between the brain
and spinal cord, even in noncomplete injuries, could result
in permanent significant decrease of connectivity between a
subset of the functional sensorimotor network at the cortical
level. This effect was observed regardless of positive or nega-
tive neurological outcome since grouping SCI subjects by
outcome did not reveal any differences regarding this finding.
While the lack of difference between those two clinically and
functionally different subgroups of patients could be affected
by a lack of statistical power when comparing small samples,
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group) at the “Hands” motor imagery category
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Figure 7: From the comparison of the networks of healthy and SCI subjects, a subset of network connections emerged as significantly
stronger in the healthy group than in the SCI group for both the alpha and beta networks of “hands” motor imagery category, as
calculated by network-based statistics—false discovery rate methodology.
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a possible explanation could also be explored along the lines
of mental imagery capacity. Motor execution and motor
imagery do present differences in the level of neural networks
that are affected by the subjects’ quality and intensity of
imagination [93]. In our study, the patients did not report
differences in vividness of visual imagery to that of the
healthy participants, as measured by the VVIQ question-
naire at the time of the experimental procedure. A degree
of “though extinction process” has been reported in
chronic paralysis [94], but since this is not the case in
our investigation, it is possible that the lack of difference
in the networks of patients with positive and negative out-
comes could be due to the unaffected mental capacity of
the participants.

Further significant differences between the healthy and
patient groups were found with regard to nodal strengths.
Almost all nodes had significantly different out-strength
between the two groups. An interesting pattern can be iden-
tified. Primary motor areas, supplementary motor areas, left
presupplementary motor area, and left cingulate motor area
show significantly higher out-strength in the healthy group.
On the contrary, premotor areas, right presupplementary
motor area, and right cingulate motor area show significantly
higher out-strength in the SCI group. Incoming connection
strengths to primary somatosensory areas, premotor areas,
supplementary motor areas, and right cingulate motor area
are higher for healthy participants, while in-strength of left
cingulate motor area is higher for SCI participants. Despite
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the differences in strengths of those nodes, similar patterns of
connectivity were found for both groups [12, 13]. The
significantly reduced nodal strengths could reflect the dis-
connection itself and the reduced input and output of
the sensorimotor pathways in spinal cord injury. Nonethe-
less, the higher in-strengths of left cingulate motor area
and out-strengths of premotor areas and right pSMA
and CMA in SCI group could indicate an attempt of the
sensorimotor network to compensate for the impaired
function [10, 11, 95].

CMA areas have been previously identified as important
information hubs for sensorimotor networks, especially
those of beta rhythm [9, 11]. In our study, this attribute is
confirmed, since bilateral CMA areas consistently received
the greater inflow and contributed the greater outflow in
terms of connection strengths for all categories of motor
imagery. Moreover, their reciprocal communication consti-
tuted the most powerful connections of every examined net-
work. On the other hand, an important role has been
identified for the SMAs [11–13] that have been shown to
present notable outflow during motor imagery tasks and
form clusters with the CMAs. Their role was asserted in
our work previously too [44, 96], but it is not so apparent
in our current study, where the SMAs were not among the
top contributors in either outflow or inflow. Although not
easily explained, the meaning of this finding can be
explored along possible factors: (a) the random-oddball
(unexpected imagery task) paradigm of presentation, (b)
the MVAR model order set, and (c) the definitions of
the midline network nodes themselves. The degree that
each factor possibly contributed to this finding is an issue
for further investigation. An example of SMAs and primary
motor areas not presenting the greatest strength during
hands motor imagery has also been recently reported in a
study [97] where the authors used transcranial direct current
stimulation to affect the connectivity of a broader definition
of sensorimotor ROIs.

With regard to differentiating different upper limb motor
imagery tasks, our results did not produce significant differ-
ences in terms of spatial patterns specific to certain tasks.
Moreover, network-based differences between healthy and
patients, although significant for the all-inclusive upper limb
imagery category, did not reach statistical significance for
specific categories, suggesting possibly a lack of statistical
power for these categorical differences. This is not unex-
pected, since connectivity features, in general, have so far
shown only moderate success in classification of motor
imagery tasks [98, 99]. It should be also noted that some
effort has been made in analyzing effective networks of com-
pound motor imagery tasks [100]. Differentiating anatomical
levels and consecutive classification should perhaps be bet-
ter explored along the lines of time-varying connectivity
[95, 101–103] instead of spatial pattern analysis.

Walking motor imagery, while it also did not reveal
specific connectivity patterns, produced the most promis-
ing results in terms of classification, in accordance to
previous studies suggesting that maximally different condi-
tions should be explored [98]. Walking motor imagery
category was the only one where the negative correlation

between-group differences of the two cingulate motor
area strengths reach statistical significance in half of
the studied cases, those of early alpha rhythm walking
networks (p = 0 002) and of late beta walking networks
(p = 0 006). Moreover, the comparison of networks of
healthy and patient subjects produced at least one signif-
icantly stronger connection, between the right ventral
premotor area and the left secondary somatosensory area,
although it is unclear whether this can be attributed to
plasticity or merely to SCI-induced disconnection sequelae.
To the best of the authors’ knowledge, this is the first
electroencephalographic study of functional cortical connec-
tivity after incomplete spinal cord injury, and it is also the
first functional cortical connectivity study examining
multiple motor imagery tasks in those patients regardless of
recording modality.

4.2. Analysis of Network Properties. Analysis of within-group
effect of rhythm produced the most consistent results.
According to the revealed pattern, alpha networks present
lower integration (as measured by CPL), higher segregation
(as measured by CC), while being less dense and more
“effective” (as measured by SW) than beta networks. These
findings are present across all motor imagery categories and
they closely match findings from our previous study on the
role of alpha and beta rhythms in sensorimotor networks
[44, 104]. Our previous work suggested a pattern where alpha
rhythm engaged local information processing using greater
wiring costs [105], and that beta rhythm assumes a coordina-
tive role during the sensorimotor process [106]. These
findings were then observed on different ROI models and
during simpler but far more repetitive motor imagery and
motor execution tasks. They are also now replicated on a
wider definition of the model of ROIs and during multiple,
more complex, random motor imagery tasks. More impor-
tantly, these findings have now also been confirmed on
networks of SCI patients with incomplete injury, allowing
us to attempt to model the behavior of other between-
group and within-group findings based on this pattern of
alpha and beta organization.

Between the two groups, the fact that CPL andDwere not
significantly different, neither in alpha nor in beta networks,
allows us to make direct comparisons of their sensorimotor
network organization since they reach the same level of
wiring costs and node integration. Moreover, the few
between-group differences were observed mostly in alpha
rhythm, which could be interpreted as differences only in
local processing in the sensorimotor network of SCI patients.
Increased functional segregation (CC in left, rotational and
distal categories) and increased “effectiveness” of the network
(SW in distal) were found for certain categories of motor
imagery. More importantly, they were observed for distal
arm imagery tasks, those that correspond to spinal cord levels
below the level of injury, as the majority of the SCI subjects
included in our study suffered from mid to low cervical SCI
(C4–C8). As those differences were also observed during
the late time interval, they can possibly be interpreted as an
effect for delayed adaptation (compensation) of the sensori-
motor network at the cortical level. This could possibly fall

15Neural Plasticity



in line with reported increased network fault tolerance [10]
and an increase of local efficiency and communication
between closest cortical areas [15] during paralyzed foot
motor imagery that has been reported in chronic complete
SCI subjects.

Regarding the walking imagery category in our study,
walking networks were the only where alpha and beta
rhythm differences did not reach statistical significance in
certain cases. Indeed, this previously reported increase of
local efficiency and close communication in complete SCI
appears to also be possible in incomplete injuries as well.
The walking beta networks did not show less segregation
and effectiveness than the walking alpha networks of
incomplete SCI subjects during the early imagery part and
also did not show less integration during the late imagery
part, as was the case with the upper limb imagery categories.
These findings suggest the presence of a phenomenon that
has been attributed to adaptive plasticity and compensation
when it regards patients with complete injuries [10, 15].
Within-group effect of time interval for upper limb motor
imagery categories was far more sporadic, showing greater
network segregation and less network integration of the
alpha rhythm network in the patient group during the late
imagery in some categories. What could interestingly fall into
place with the rest of the interpretation is that healthy
subjects display a drop of overall network effectiveness (as
depicted by SW) in both alpha and beta networks during
the late imagery part. In the SCI group, such a difference
was not observed, an observation that could possibly be
attributed to the same delayed compensatory effect induced
by the injury. Since indeed the rest of the observed effects
are not consistent, our reported findings cannot be obligatory
attributed to neuroplasticity effects. Therefore, it is evident
that more investigation in the direction of modeling the effect
of spinal cord injury on the effective connectivity of the brain
during different time points and injury severity conditions is
needed before drawing accurate conclusions.

4.3. Limitations and Future Work. Among limitations of our
study, one investigating functional connectivity should
remain wary when the analysis reveals significant differences
between the groups, as those differences are usually very
small and not always clear if functionally or clinically mean-
ingful. As such, it remains difficult to identify compelling
advantages of graph theory-based analysis of brain activity
over other approaches to provide additional important
insight into the effects of SCI on brain activity. Functional
connectivity at the source level also suffers from certain
disadvantages including localization error, smoothing effect,
and a degree of uncertainty of the connectivity between
spatially close nodes [107]. There are several factors contrib-
uting to source localization errors, induced most importantly
by the forward model but also by the inverse. The resolution
of the source reconstruction is determined by the source
space, with 4.69mm of average source spacing and
22.04mm2 average surface area per source. Nonetheless,
resolution of the source space is considered sufficient for
the purpose of the study, and the same model has been
previously used by similar studies [9–15]. The 3-layer block

element modifier forward model introduces errors through
the use of a general template anatomy, modeling of skull con-
ductivity as isotropic, not modeling cerebrospinal fluid and
conductivity ratios. Moreover, it is known that EEG boasts
great temporal but suffers from low spatial resolution and
has been traditionally considered able to detect rapid brain
dynamics in a trade-offwith source estimation and low signal
to noise ratio due to volume conduction effect [108, 109].
EEG in general greatly suffers from anisotropic conductivity
of skull leading to signals blurring and to low EEG spatial
resolution. In accordance, the localization error of deeper
sources is considered greater than swallower ones. An inter-
esting approach to address these problems would be the
investigation of time-adaptive connectivity with a focus on
temporal alterations of important connections rather than
spatial [64], while using individual subject anatomy, an
approach that we aim to explore in our future work.

5. Conclusions

We observed that chronic disruption of reciprocal communi-
cation between the brain and spinal cord, even in the context
of incomplete injuries, could result in permanent significant
decrease of connectivity between a subset of the functional
sensorimotor network at the cortical level. This effect was
observed regardless of positive or negative neurological out-
come since grouping SCI subjects by outcome did not reveal
any further difference. Cingulate motor areas were identified
as important information hubs in different categories of
motor imagery as they consistently showed the highest in-
strengths (CMA_L) and out-strengths (CMA_R) in both
groups of participants. While SCI subjects also followed
the same pattern, they had higher outflow from left CMA
and higher inflow to right CMA than healthy subjects. For
both groups, alpha networks were less dense while having
both longer average paths and more clustering than beta
networks in almost all imagery categories. SCI patients
showed signs of increased local processing in the late part
of imagery, possibly an adaptive compensatory mechanism
of injury-induced neuroplasticity.
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