
Toxins 2012, 4, 1500-1516; doi:10.3390/toxins4121500 
 

toxins 
ISSN 2072-6651 

www.mdpi.com/journal/toxins 

Article 

In Vitro Antiplasmodial Activity of Phospholipases A2 and a 
Phospholipase Homologue Isolated from the Venom of the 
Snake Bothrops asper  

Juan Carlos Quintana Castillo 1,*, Leidy Johana Vargas 2, Cesar Segura 3,  

José María Gutiérrez 4 and Juan Carlos Alarcón Pérez 2 

1 Center for the Study of Biological Systems, Cooperative University of Colombia,  

Medellín 050012, Colombia 
2 Ophidism/Escorpionism Program, University of Antioquia, Medellín 050012, Colombia;  

E-Mails: johana2104@gmail.com (L.J.V.); juan.alarcon@siu.udea.edu.co (J.C.A.P.) 
3 Malaria Group, School of Medicine, University of Antioquia, Medellín 050012, Colombia;  

E-Mail: cesar.segura@siu.udea.edu.co 
4 Clodomiro Picado Institute, School of Microbiology, University of Costa Rica, San José 1000, 

Costa Rica; E-Mail: jose.gutierrez@ucr.ac.cr 

* Author to whom correspondence should be addressed; E-Mail: juan.quintanac@ucc.edu.co;  

Tel.: +57-4-219-6536; Fax: +57-4-263-1914. 

Received: 2 November 2012; in revised form: 23 November 2012 / Accepted: 30 November 2012 / 

Published: 14 December 2012 

 

Abstract: The antimicrobial and antiparasite activity of phospholipase A2 (PLA2) from 

snakes and bees has been extensively explored. We studied the antiplasmodial effect of the 

whole venom of the snake Bothrops asper and of two fractions purified by ion-exchange 

chromatography: one containing catalytically-active phospholipases A2 (PLA2) (fraction 

V) and another containing a PLA2 homologue devoid of enzymatic activity (fraction VI). 

The antiplasmodial effect was assessed on in vitro cultures of Plasmodium falciparum. The 

whole venom of B. asper, as well as its fractions V and VI, were active against the parasite 

at 0.13 ± 0.01 µg/mL, 1.42 ± 0.56 µg/mL and 22.89 ± 1.22 µg/mL, respectively. 

Differences in the cytotoxic activity on peripheral blood mononuclear cells between the 

whole venom and fractions V and VI were observed, fraction V showing higher toxicity 

than total venom and fraction VI. Regarding toxicity in mice, the whole venom showed the 

highest lethal effect in comparison to fractions V and VI. These results suggest that  

B. asper PLA2 and its homologue have antiplasmodial potential. 
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1. Introduction  

Malaria is responsible for approximately 1.5 million deaths every year in the world. Over 85% of 

them occur in Africa, with Plasmodium falciparum as the leading species involved in mortality [1,2]. 

The 2010 WHO report confirmed almost 1 million deaths during the previous year [3]. Malaria is 

caused by parasites of the genus Plasmodium and is a public health problem in tropical and  

sub-tropical regions of the world. The most widely used treatment of the clinical syndrome includes 

artemisinin-based combined therapies [3]. High rates of antimalarial treatment failure have led to the 

investigation of possible therapeutic alternatives, among which toxins and poisons of animal and plant 

extracts are included [4–9]. 

The viperid snake species Bothrops asper is widely distributed throughout America, from southern 

Mexico to northern Ecuador [10]. Its venom is a complex mixture of peptides, enzymes and toxins, 

including metalloproteases (41%–44%), phospholipases A2 (PLA2) (29%–45%), serine proteases  

(4%–18%), L-amino acid oxidases (5%–59%), disintegrins (1%–2%) C-type lectin-like proteins 

(0.5%) and cysteine-rich secretory proteins (CRISP) (0.1%) [11], which are responsible for the  

toxicity of the venom and result in the complex pathophysiology provoked by these envenomations, 

characterized by coagulopathy, hemorrhage, blistering, edema, nephrotoxicity, shock and  

myotoxicity [12]. 

The PLA2 (E.C 3.1.1.4) superfamily includes enzymes that hydrolyze phospholipids, specifically 

the sn-2 ester bond, to produce fatty acids and lysophospholipids. Secreted PLA2s (sPLA2) share 

several characteristics: low molecular mass (13–18 kDa), numerous disulfide bonds, histidyl and 

aspartyl catalytic residues and a highly conserved calcium (Ca2+) binding region [13,14]. PLA2s from 

snake venom exhibit a variety of pharmacological/toxicological activities, such as myotoxicity, 

neurotoxicity, anticoagulant activity, edema-forming activity, cardiotoxicity, antibacterial activity, 

antiparasite effect and anti-aggregation activity on platelets, among others [15–25]. 

Based on the already described antimicrobial and anti-parasitic activity of PLA2 [17,25–28] from 

snake venoms, the antimalarial potential of the venom of B. asper and PLA2s from this venom were 

explored. Two PLA2s from the whole venom were purified and characterized, and their in vitro 

antiplasmodial activity against P. falciparum was investigated. Cytotoxicity on peripheral blood 

mononuclear cells (PBMC) and acute toxicity in mice were also evaluated. Results indicate that 

catalytically-active and inactive PLA2s isolated from B. asper venom are cytotoxic against  

P. falciparum and, thus have the potential as antimalarials. 



Toxins 2012, 4 1502 

 

2. Results 

2.1. Isolation of Phospholipase A2 Fractions 

Six fractions obtained by fractionating B. asper venom on ion exchange chromatography on  

CM-Sephadex C-25 were evaluated for PLA2 activity. It was found that fraction V was the only 

positive fraction for PLA2 activity (see Figure 1A). However, fraction VI, corresponding to a PLA2 

homologue devoid of enzymatic activity (see Section 3.2), was also analyzed for antiplasmodial 

activity to determine the possibility of catalytically-independent actions. Fractions V and VI were 

subjected to further separation by RP-HPLC on a C18 column. This separation revealed that fraction V 

had four subfractions (see Figure 1B,C), only one of which (V-4) showed PLA2 activity, whereas 

fraction VI showed only one peak. These two fractions were used to assess antiplasmodial activity. 

Figure 1. (A) Chromatographic elution profile on CM Sephadex C-25 at 280 nm from the 

venom of B. asper; fractions V and VI (shaded) were further characterized; (B) Elution 

profile on RP-HPLC on a C18 column of fraction V; (C) Elution profile on RP-HPLC on a 

C18 column of fraction VI; (D) SDS-PAGE (12%) separation of venom and fractions: MW, 

molecular weight markers; lane 1, crude venom; lane 2, fraction V under non-reducing 

conditions; lane 3, fraction V under reducing conditions; lane 4, fraction VI under  

non-reducing conditions; lane 5, fraction VI under reducing conditions. 
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2.2. Indirect Hemolytic Activity  

Fraction V had a minimal indirect hemolytic dose of 1.35 µg, while fraction VI showed no such 

activity. The PLA2 isolated by HPLC from fraction V showed a minimum indirect hemolytic dose of 

0.82 µg, while the peak obtained by HPLC separation of fraction VI lacked activity (data not shown). 

The hemolysis test with different substrates (egg yolk, plasma or human serum) yielded similar results 

in all assays. When indirect hemolytic activity was determined in solution, 100% hemolysis was 

observed using concentrations of 25 µg/mL for whole venom and 12.5 µg/mL for fraction V, whereas 

fraction VI lacked PLA2 activity in all tests (see Figure 2). 

Figure 2. Indirect hemolytic activity in solution of venom and fractions V and VI. 

Analysis on erythrocyte suspensions containing (A) egg yolk; (B) inactivated human 

plasma and (C) inactivated human serum. * p ≤ 0.05. 

 

 

2.3. Antiplasmodial Activity of the Venom, Fractions and Purified PLA2s  

Both venom and fractions V and VI exhibit antiplasmodial activity on the FCB1 strain of  

P. falciparum, with fraction V being more active than fraction VI (see Table 1). On the other hand, the 

venom was more active than the two fractions evaluated. Guillaume et al. showed that removal of 

phospholipids from cultures of P. falciparum reduced the antiplasmodial activity of PLA2 [27], 

confirming the crucial role of PLA2 enzymatic activity to control the growth of parasites in this test. 

Our data demonstrate the antimalarial efficacy of fraction with PLA2 activity. However, a PLA2 

homologue devoid of enzymatic activity also resulted in restriction of P. falciparum multiplication, 
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confirming a catalytically-independent antiplasmodial activity. This effect could be due to the 

perturbing action exerted by the PLA2 homologue in the plasma membrane, thus resulting in an 

increase in permeability [29]. It has been shown that the C-terminal region of these PLA2 homologues 

is responsible for this catalytically-independent membrane perturbation, as demonstrated in  

bacteria [16,30,31], being, therefore, a different mechanism from the one described for other  

PLA2s [26,27].  

Table 1. Antimalarial activity, cytotoxic activity on peripheral blood mononuclear cells 

and acute toxicity of B. asper venom and isolated PLA2s. ND: not determined. £ No deaths 

were recorded at this dose. € p ≤ 0.05 when compared with the other treatments. 

Compound Antimalarial activity IC50 (µg/mL) LD50 (µg/kg) Cytotoxicity CC50 (µg/mL) 

B. asper venom  0.13 ± 0.01 € 3566 (2561 to 3693) 38.46 ± 0.95 Ω 

Fraction V  1.42 ± 0.56 € £ > 15000 26.98 ± 0.51 Ω 

Fraction VI  22.89 ± 1.22 € £ > 15000 67.43 ± 1.03 Ω 

CQ * 323.35 ± 6.97 ND ND 

* CQ: chloroquine. These results are expressed in nM concentration; CC50: Dose that induces 50% cytotoxicity in 

peripheral blood mononuclear cells. Results are expressed as mean ± S.E.M.; Ω p ≤ 0.05 when compared with the  

other treatments. 

The changes observed in the intraerythrocytic development of Plasmodium indicate that structural 

changes occur, as well as modifications in membrane functions in parasitized red blood cells. In 

addition, increments and changes in the permeability of the membrane have been described, together 

with the appearance of new parasite-derived proteins and changes in the composition of membrane 

lipids [32,33]. The observed increased permeability could also be responsible for the PLA2 activity on 

the parasite, as demonstrated by Moll et al., who noted that in the absence of serum in the culture  

in vitro, PLA2 lysed parasitized cells [34]. This increase in membrane permeability could also enhance 

the antimalarial activity of the PLA2 homologue observed in our experiments. 

2.4. SDS-PAGE 

Electrophoresis showed that proteins of fractions V and VI (lanes 2 and 4, respectively) had 

molecular weights ranging from 25 kDa and 14 kDa, when fractions were separated in non-reducing 

conditions, thus evidencing the presence of monomers and dimers, whereas only bands of around  

14 kDa were observed (lanes 3 and 5 in Figure 1D, respectively) when these fractions were subjected 

to reducing conditions, thus corresponding to PLA2 monomers (Figure 1D). 

2.5. Mass Spectrometry and Identification of the Protein  

We determined the molecular mass of each of the fractions obtained by RP-HPLC: Fraction V 

(fractions V-1, V-2, V-3 and V-4) and VI. Mass spectrometric analysis showed that V-1 was of 

13786.9 Da, V-2 was of 13950.1 Da, V-3 was of 13972.4 Da, V-4 was of 13974.6 Da and VI was of 

13725 Da. The tandem mass MS/MS analysis indicated that the PLA2s isolated corresponding to the 

fractions V-1, V-2, V-3 and VI were K49 PLA2 homologs, and V-4 was D49 PLA2 (Table 2). 
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Table 2. Protein identification results for B. asper-PLA2 by ESI MS/MS peptide sequence obtained from mass tandem MS/MS. 

Fraction MH+ (monoisotopic mass ) z MS/MS-derived sequence Data base ID Species 
Score 

Reference 
Spectrum mill Mascot 

P V-1 1944.87 3+ NPVTSYGAYGCNCGVLGR Q9PVE3.1 B. asper M1-3-3 17.76 52 [35] 

1394.64 2+ TIVCGENNSCLK AAF66702.1 B. moojeni Myotoxin II precursor 14.21 87 [36] 

460.74 2+ MILQETGK Q9PRT7.1 B. asper Myotoxin IV - 37 [37] 

434.05 2+ CCYVHK AAF66702.1 B. moojeni Myotoxin II precursor - 25 [36] 

P V-2 1944.87 3+ NPVTSYGAYGCNCGVLGR Q9PVE3.1 B. asper M1-3-3 12.65 68 [35] 

1394,57 2+ TIVCGENNSCLK 1CLP_B B. asper Myotoxin II - 53 [38] 

1637.76 3+ DKTIVCGENNSCLK AAF66702.1 B. moojeni Myotoxin II precursor 12.23 24 [36] 

952.78 2+ ELCECDK AAF66702.1 B. moojeni Myotoxin II precursor - 27 [36] 

996.80 1+ ENLDTYNK AAF66702.1 B. moojeni Myotoxin II precursor 12.69 31 [36] 

802.36 2+ AVAICLR Q9PRT7.1 B. asper Myotoxin IV - 36 [37] 

P V-3 1944.87 3+ NPVTSYGAYGCNCGVLGR Q9PVE3.1 B. asper M1-3-3 10.85 43 [35] 

1394.64 2+ TIVCGENNSCLK AAF66702.1 B. moojeni Myotoxin II precursor - 57 [36] 

1637.74 3+ DKTIVCGENNSCLK AAF66702.1 B. moojeni Myotoxin II precursor 17.52 31 [36] 

952.78 2+ ELCECDK AAF66702.1 B. moojeni Myotoxin II precursor - 27 [36] 

802.36 2+ AVAICLR Q9PRT7.1 B. asper Myotoxin IV - 32 [37] 

1533.66 2+ SYGAYGCNCGVLGR AAF66703.1 B. neuwiedi pauloensis PLA2 homolog 17.32 63 [39] 

P V-4 2064.41 2+ DATDRCCFVHDCCYGK P20474.2 B. asper Myotoxin III 9.51 30 [35] 

1728.75 2+ EICECDKAAAVCFR 1GMZ_A B. pirajai Piratoxin III 8.61 - [40] 

1506.59 2+ SGVIICCEGTPCEK P20474.2 B. asper Myotoxin III - 64 [35] 

862.56 2+ MILEETK P20474.2 B. asper Myotoxin III - 35 [35] 

794.57 2+ AAAVCFR P86974.1 B. leucurus blD-PLA2 - 26 [41] 

1273.31 2+ YMAYPDLLCK P20474.2 B. asper Myotoxin III - 42 [35] 

675.45 2+ YSYSR P20474.2 B. asper Myotoxin III - 23 [35] 

P VI 1329.72 2+ MILQETGKNPAK Q9IAT9.2 B. neuwiedi pauloensis BnSP-7 11.63 42 [39] 

1533.66 2+ SYGAYGCNCGVLGR AAF66703.1 B. neuwiedi pauloensis PLA2 homolog 17.92 52 [39] 

790.04 1+ LTGCNPK P86453.1 B. alternatus BaTx - 28 [42] 

1637.56 2+ DKTIVCGENNSCLK AAF66702.1 B. moojeni Myotoxin II precursor - 21 [36] 

1394.57 2+ TIVCGENNSCLK 1CLP_B B. asper Myotoxin II - 77 [38] 
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Figure 3. Multiple sequence alignment of Fraction P V-1. The boxes represent conserved 

amino acids. B. asper M1-3-3 Swiss Protein ID: Q9PVE3.1, GenBank ID: 

AAF14241.1|AF109911, Myotoxin B. asper PDB ID: 1CLP_A, Myotoxin-II B. asper 

Swiss Protein ID: P24605.3, Bothropstoxin-Ia B. jararacussu GenBank ID: CAA55334.2, 

BnSP-7 B. neuwiedi Q9IAT9.2, Piratoxin-II Bothrops pirajai P82287.1, Piratoxin-I  

B. pirajai Swiss Protein ID: 58399.2, Myotoxin-I B. atrox Swiss Protein ID: P82287.1. 

 

Figure 4. Multiple sequence alignment of Fraction P V-2. The boxes represent conserved 

amino acids. Myotoxin- IV B. asper Swiss Protein ID: P0C616, M1-3-3 B. asper Swiss 

Protein ID: SP|Q9PVE3.1, GenBank ID: AAF14241.1|AF109911, Piratoxin-Ii B. pirajai 

PDB ID: 2QLL_A, Bothropstoxin-Ia B. jararacussu GenBank ID: CAA55334.2, BnSP-7 

B. neuwiedi Swiss Protein ID: Q9IAT9.2, Piratoxin-II B. pirajai Swiss Protein ID: 

P82287.1, BnIV B. neuwiedi PDB ID: 3MLM_A, Piratoxin-I B. pirajai Swiss Protein  

ID: 58399.2. 

 

Additionally, the identified peptides were subjected to BLAST analysis to determine their identity 

with other phospholipases. The results confirmed the high identity of these peptides with PLA2s from 
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the venoms of B. asper, B. neuwiedi, B. jararacussu, B. pirajai and Cerrophidion godmani, among 

others (see Figures 3–7). 

Figure 5. Multiple sequence alignment of Fraction P V-3. The boxes represent conserved 

amino acid. M1-3-3 B. asper Swiss Protein ID: Q9PVE3.1, Myotoxin-II B. asper Swiss 

Protein ID: P24605.3, piratoxin-II B. pirajai Swiss Protein ID: P82287, Piratoxin-I  

B. pirajai Swiss Protein ID: 58399.2, Bothropstoxin-Ia B. jararacussu GenBank ID: 

CAA55334.2, BnSP-7 B. neuwiedi Swiss Protein ID: Q9IAT9.2. BOJU-I B. jararacussu 

Swiss Protein ID: Q90249.3, Myotoxin-II B. moojeni GenBank ID: AAF66702.1. 

 

Figure 6. Multiple sequence alignment of Fraction P V-4. The boxes represent conserved 

amino acid. Myotoxin-III B. asper Swiss Protein ID: P20474.2, BthTx-II B. jararacussu 

Swiss Protein ID: P45881.1, PLA2 S. miliarius GenBank ID: ABY77926.1, N6 PLA2  

C. godmani. GenBank ID: AAR14161.1, N6 PLA2 B. schlegelii GenBank ID: 

AAR14162.1, PLA-N T. flavoviridis GenBank ID: BAC56893, PA2B_AGKAG D. acutus 

Swiss Protein ID: Q1ZY03, Variant ammodytoxin-B V. aspis GenBank ID: CAE47279.1, 

PLA2 S. c. tergeminus Accession number GenBank ID: ABY77930.1. 
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Figure 7. Multiple sequence alignment of Fraction P VI. The boxes represent conserved 

amino acid. Myotoxin-II B. asper Swiss Protein ID: P24605.1, Piratoxin-I B. pirajai Swiss 

Protein ID: P58399.2, Piratoxin-II B. pirajai Swiss Protein ID: P82287.3, BthTx-Ia  

B. jararacussu GenBank ID: CAA55334, BnSP-7 B. neuwiedi Swiss Protein ID: 

Q9IAT9.2, myotoxin-II B. moojeni PDB ID: 1XXS_2, MjTx-I B. moojeni Swiss Protein 

ID: P82114.1, BaTx B. alternatus Swiss Protein ID: P86453.1. 

 
The results of the alignments show that the PLA2s and PLA2 homologues purified from the venom 

of B. asper from Colombia are similar to other PLA2s and PLA2 homologues present in other Bothrops 

snakes. In addition, the PLA2 D49 shows homology with other PLA2s from Bothrops, being higher 

with those of B. asper from Costa Rica (see Figure 5). 

2.6. Cytotoxic Activity 

Analysis of the cytotoxic effect of the whole venom and the different fractions tested showed that 

fraction V was more cytotoxic than whole venom or fraction VI on PBMC cells (see Figure 8). 

Figure 8. Cytotoxic activity of B. asper venom and isolated fractions on human peripheral 

blood mononuclear cells. VT venom, Fraction V, fraction VI. * p ≤ 0.05 compared to 

different doses. 
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The cytotoxic activity of venoms and PLA2s is a problem in using these in future biomedical 

applications. However, our results show that the PLA2 isolated exerts an antimalarial effect at a lower 

dose than that required to induce cytotoxicity in PBMC and indirect hemolysis. 

Other authors have shown that cytotoxic activity is dependent on serum in suspensions of tumor 

cells and red blood cells [43]. In some experiments, we cultured cells with fetal bovine serum 2% 

(FBS) and inactivated serum or plasma, and in these conditions, the cytotoxic dose was still higher 

than the antimalarial dose (results not shown). 

2.7. Acute Toxicity 

The LD50 of the whole venom of B. asper was 3566 µg/kg (2561 to 3693), whereas no lethality was 

observed in mice injected with fractions V and VI at doses as high as 15,000 µg/kg (see Table 1).  

The envenoming of B. asper induces local and systemic symptoms, such as edema, pain and 

bleeding, among others, due to the effect of different toxins in the venom, such as PLA2, serine 

proteinases and metalloproteases, among others [19,44–49]. The low toxicity of fraction V and of the 

PLA2 homologue isolated from fraction VI compared with the venom indicates their low overall 

toxicity in mice and reinforces the concept that these fractions are good lead compounds in the search 

for antimalarial activity. This is in agreement with reports on the use of snake venom PLA2s to inhibit 

microorganisms, such as bacteria and fungi, as well as parasites including Giardia duodenalis, 

Trypanosoma cruzi, Leishmania spp and P. falciparum [17,30,31,50–52]. 

3. Materials and Methods 

3.1. Venom and Reagents  

The venom was obtained by manual milking of 40 adult specimens from different regions of 

Colombia held in captivity at the Serpentarium of the University of Antioquia (Medellín, Colombia). 

Once extracted and pooled, the venoms were centrifuged (3000 rpm, 15 min), and the resulting 

supernatants were lyophilized and stored at −20 °C until use. 

Acetonitrile (CH3CN) and trifluoroacetic acid (CF3COOH) HPLC grade were purchased from 

Fisher Scientific (Loughborough, UK). Histopaque®-1077, RPMI-1640 medium culture, Thiazolyl 

Blue Tretrazolium Bromide (MTT) and dimethyl sulfoxide (DMSO) were purchased from Sigma 

(Sigma-Aldrich, St Louis, MO, USA). Water for HPLC was deionized to a degree of purity of 17 Ω. 

3.2. Venom Fractionation 

PLA2s were purified from 50 mg of whole venom of B. asper dissolved in phosphate-buffered saline 

(PBS), pH 7.2, and passed through a CM-Sephadex C25 ion exchange column (1.8 × 120 cm) at the 

flow rate 1.0 mL/min on a low-pressure chromatography system (Econo-System, BioRad, Hercules, 

CA, USA). The resulting fractions were analyzed for their PLA2 activity and then PLA2 positive 

fractions submitted to a reverse phase HPLC (RP-HPLC) (Shimadzu, Model Prominence, Shimadzu 

Corporation, Kyoto, Japan) in a C18 column (pore 5 µm, 250 mm × 4.6 mm mark RESTEK Bellefonte, 

PA, USA) using a linear gradient (0%–100%) acetonitrile (v/v) in 0.1% (v/v) trifluoroacetic acid at a 

flow rate 1.0 mL/min. Finally, fractions were lyophilized and stored at −20 °C until use. 
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3.3. Electrophoresis and Molecular Mass Determination 

Protein homogeneity of the obtained fractions were determined by electrophoresis under reducing 

and non-reducing conditions in SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 15% [53]. 

Protein molecular weight was estimated according to a molecular weight markers range of 97.4 to  

14.4 kDa (BioRad, Philadelphia, PA, USA). The gels were stained with Coomassie Brilliant Blue  

G-250. The molecular masses of PLA2 fractions were confirmed by direct-infusion mass spectrometry 

in an IonTrap (series 6310, Agilent Technologies, Santa Clara, CA, USA).  

3.4. Protein Iidentification by HPLC-nESI-MS/MS  

The PLA2s and PLA2 homologues isolated from B. asper venom (fractions V and VI see results, 

Figure 1B,C) were digested in solution with trypsin (0.1 ng) at 30 °C (Agilent Technologies, Santa 

Clara, CA, USA) overnight, according to the manufacturer’s instructions, and injected onto a nano  

LC-ESI-MS/MS system (Agilent Technologies, Santa Clara, CA, USA) using a nano column C18 

(Agilent Zorbax 300SB-C18, 150 × 0.075mm, 3.5 μm) coupled to a mass spectrometer IonTrap MSD 

series 6300 (Model 6310, Agilent Technologies, Santa Clara, CA, USA) [54]. MS/MS mass spectra 

were obtained in positive mode, dynamic range 200–1200 Da; Electrospray at 2 kV and 230 °C dry 

temperature, trap drive 200 ms. Charged state deconvolution of the MS/MS spectra were determined 

using the ChemStation G2070-91126 (Agilent Technologies, Santa Clara, CA, USA).  

3.5. Search Database  

Deconvoluted profile spectra were used to search online the MASCOT [55] and Spectrum Mill 

(Agilent Technology, Santa Clara, CA, USA) in the NCBInr database for protein identification. The 

parameters of the search included digestion with trypsin and Carbamidomethyilation modified (C) as 

fixed modification. The minimum score for the intensity of each fraction was 50%, monoisotopic 

mass, mass tolerance of 2.5 Da and a way to search for identity. 

3.6. BLAST Search of the Identified Peptides 

The identified peptides were subjected to a BLAST search [56] to determine the homology with 

other PLA2 family proteins. This homology was performed in BLASTP, the search parameters being  

non-redundant protein sequence (nr) and a snake organism. 

3.7. Acute Toxicity of the Venom and Fractions  

The Median Lethal Dose (LD50) was determined by the Spearman-Karber method (World Health 

Organization, 1981) using groups of four mice (Swiss-Webster mice strain) injected intraperitoneally 

(IP) with varying doses of either fractions or whole B. asper venom, previously dissolved in 0.5 mL 

PBS, pH 7.2. Fatalities were recorded within 48 h, and the results were expressed as the average of 

three repetitions. 
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3.8. Cytotoxic Activity 

Peripheral blood mononuclear cells (PBMC) were separated by centrifugation of citrated human 

blood (400g, 30 min) with Histopaque®-1077 (Sigma-Aldrich, St Louis, MO, USA), washed with PBS 

and transferred to 96 well plates at a concentration of 3 × 105 cells/well. Cells were cultured with 

different concentrations of fractions (37 °C, 5% CO2) for 24 h. After this time, 40 µL of MTT was 

added and incubated for 3 h (same conditions as described). The reaction was halted by adding 130 µL 

of dimethyl sulfoxide (DMSO) and readings were performed in a microplate reader at 420 nm. The 

50% cytotoxic dose was calculated by linear regression [57]. 

3.9. Indirect Hemolysis 

This was evaluated following the method that uses agarose gel-erythrocyte-egg yolk [58,59]. We 

estimated the minimum indirect hemolytic dose (MIHD), defined as the dose of venom producing a 

hemolytic halo of 20 mm in diameter after 20 h. In addition, indirect hemolytic activity was assessed 

on red blood cells in suspension. For this, different doses of either the whole venom or fractions V and 

VI were incubated with fresh human red blood cells for 30 min at 37 °C in the presence of 250 µL of 

inactivated human serum, inactivated human plasma, egg yolk or PBS. Afterwards, samples were 

centrifuged, and the percentage of lysis was determined by recording the absorbance at 540 nm as an 

index of released hemoglobin. As a control of 100% hemolysis, 2%Triton X-100 was used. The results 

were expressed as percentage of lysis, and the venom or toxin concentration producing 100% 

hemolysis was determined. 

3.10. Cultivation of Plasmodium falciparum 

Based on the procedure described by Trager and Jensen [60], parasites were grown at 37 °C in  

A+ human erythrocytes to a hematocrit of 2% and 3%–6% parasitemia under an atmosphere of 3% 

CO2, 6% O2 and 91% N2.  

3.11. Determination of Percentage of Growth Inhibition of P. falciparum by B. asper PLA2 Fractions  

Increasing concentrations of PLA2 fractions V and VI in complete medium were plated in 96-well 

plates (100 µL/well) and incubated with asynchronous P. falciparum FCB1 (1.5% parasitemia, 4% 

hematocrit, 100 µL/well). Parasites were incubated as previously described [60]. After 24 h, 0.5 mCi 

of 3H-hypoxanthine was added to the culture, and parasites were cultured for further 24 h at the same 

conditions. Finally, the plates were freeze-thawed, and parasites were harvested onto filter paper, 

added to liquid scintillation cocktail and the incorporation of 3H-hypoxanthine determined in a 

Microbeta counter 1450 (Wallac, Perkin Elmer, Waltham, MA, USA). 

The percentage of growth inhibition was calculated based on 100% uptake of the 3H-hypoxanthine 

of controls (parasites in culture medium, incomplete RPMI). Growth inhibition was calculated based 

on 100% uptake of the 3H-hypoxanthine control in parasites in the absence of PLA2s or PLA2 

homologues. The IC50 values correspond to the venom or toxin concentration required to kill 50% of 

the parasites within 48 h, and was determined from dose-response curves according to Desjardins  

et al. [58].  
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3.12. Statistical Analysis  

The results are presented as mean ± S.E.M of three replicates, and experimental differences 

between means were determined by analysis of variance followed by Dunnett’s test for intragroup 

comparisons. Significance was set up at p < 0.05. 

4. Conclusions  

Our observations suggest that PLA2s and PLA2 homologues present in the venom of Bothrops asper 

represent promising lead compounds in the search for novel antimalarial agents. Further studies should 

be performed on the identification of the molecular determinants of this activity. 
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