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Patterns of DNA variation 
between the autosomes, 
the X chromosome and the Y 
chromosome in Bos taurus genome
Bartosz Czech1*, Bernt Guldbrandtsen2,3 & Joanna Szyda1,4

The new ARS-UCD1.2 assembly of the bovine genome has considerable improvements over the 
previous assembly and thus more accurate identification of patterns of genetic variation can be 
achieved with it. We explored differences in genetic variation between autosomes, the X chromosome, 
and the Y chromosome. In particular, variant densities, annotations, lengths (only for InDels), 
nucleotide divergence, and Tajima’s D statistics between chromosomes were considered. Whole-
genome DNA sequences of 217 individuals representing different cattle breeds were examined. The 
analysis included the alignment to the new reference genome and variant identification. 23,655,295 
SNPs and 3,758,781 InDels were detected. In contrast to autosomes, both sex chromosomes had 
negative values of Tajima’s D and lower nucleotide divergence. That implies a correlation between 
nucleotide diversity and recombination rate, which is obviously reduced for sex chromosomes. 
Moreover, the accumulation of nonsynonymous mutations on the Y chromosome could be associated 
with loss of recombination. Also, the relatively lower effective population size for sex chromosomes 
leads to a lower expected density of variants.

DNA variation refers to differences in DNA sequence among individuals. Decreasing costs and reducing the time 
of whole-genome sequencing using the Next-Generation Sequencing (NGS) technology brings the opportunity to 
sequence many samples. The analysis of differences in DNA variation between autosomes and sex chromosomes 
plays an important role in understanding the evolution of chromosomes. In terms of studying variation, cattle is 
an interesting model, since for several generations it has undergone strong artificial selection toward increased 
milk (Holstein, Jersey, Jysk, Rd Dansk Malkerace anno 1970, Sortbroget Dansk Malkerace anno 1965) or beef 
(Danish Shorthorn) production. Besides, modern cattle is composed of breeds with distinct phenotypic charac-
teristics. We used the new ARS-UCD 1.0.25 assembly that is the latest and the most accurate (less gaps) version 
of the cattle reference genome1. However, this assembly, like the UMD3.12, does not contain the bovine Y chro-
mosome (BTY), so most analyzes ignored the Y chromosome. As a result it has been omitted from most studies, 
so that in livestock, only one association was identified between genetic variants from BTY and phenotypes (in 
particular in pigs, source AnimalQTdb www.anima​lgeno​me.org/cgi-bin/QTLdb​/index​; Release 41). Recently the 
1000 Bull Genomes Project3 added the Y chromosome sequence from the Btau 5.0.1 to the ARS-UCD, creating 
the ARS-UCD1.2_Btau5.0.1Y assembly. Thereby has become feasible to use all nuclear bovine chromosomes.

According to the ARS-UCD1.2_Btau5.0.1Y reference genome assembly, the bovine genome spans 
2,759,153,975 bps with 30,278 genes (GeneBank assembly accession: GCA_002263795.2 and GCA_000003205.6) 
and consists of 29 autosomes and two sex chromosomes—X and Y (Table 1). The hemizygous Y chromosome in 
Bos taurus is short and contains only a few genes. In contrast, the bovine X chromosome (BTX) contains many 
more genes and its length is similar to the BTA2. Chromosome 1 is the longest bovine chromosome, spanning 
158,534,110 bps with 1,218 genes, while chromosome 25 is the shortest bovine chromosome (949,746 bps shorter 
than BTY), spanning 42,350,435 bps with 1,611 genes. Regarding the ratio of the number of genes to the total 
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contig length (chromosome), we can see that BTA25 has the highest ratio (38.04), while the Y chromosome has 
the lowest ratio (4.76). It is also worth to mention, that the karyogram of cattle chromosomes reports BTA29 
as the shortest chromosome. BTY contains the lowest number of genes (206), while chromosome 23 contains 
the highest number of genes (1,708). Clearly, chromosome length is not linearly related to the number of genes. 
Moreover, 29 autosomes are acrocentric, while both sex chromosomes (X and Y) are submetacentric. Since 
recombination that generates new combinations of alleles is characteristic to autosomes, on sex chromosomes, 
this phenomenon is reduced in males to only small homologous regions shared between BTX and -Y, called 
the pseudoautosomal regions (PARs). BTY is poorly characterized because it is difficult to sequence due to the 
occurrence of a high proportion of repetitive sequences4.

Differences in genetic variation patterns arise from variable recombination and mutation rates, genetic drift, 
demography, selection, and population history. Therefore the focus of our study was on the comparison of pat-
terns of genetic variation between autosomes, the X chromosome, and the Y chromosome in the context of the 
bovine genome.

Results
Alignment to the reference genome.  The quality of alignment was expressed by the total percent of 
mapped reads and the percent of properly paired mapped reads (both reads are mapped close to each other in 
opposite directions on the same chromosome). The percent of mapped reads for each individual was very high 
and ranged from 91.4% to 99.9% with mean 99.7% ( ±0.6 ) and very similar mode 99.9%. The percent of properly 
paired mapped reads was also high and varied between 89.3% and 99.1% with mean 97.1% ( ±1.7 ) and mode 
97.9%. Average genome coverage was calculated separately for each individual and ranged from 5.28 to 46.79 
with mean and mode both equal to 25 (Fig. 1). Individuals average genome coverage less than 15, while two 
individuals have the average genome coverage above 40. The individual with the lowest average genome cover-
age (5.28) contains 99.6% of mapped reads and 97.8% of properly paired mapped reads. The individual with the 
highest average coverage (46.79) contain 99.9% of mapped reads and 97.9% of properly paired mapped reads.

Table 1.   Summary of ARS-UCD1.2_Btau5.0.1Y reference genome.

Chromosome Length of chromosome [bp] Number of genes Number of genes/Mbp ratio

1 158,534,110 1216 7.67

2 136,231,102 1284 9.43

3 121,005,158 1287 10.64

4 120,000,601 593 4.94

5 120,089,316 1080 8.99

6 117,806,340 692 5.87

7 110,682,743 1264 11.42

8 113,319,770 898 7.92

9 105,454,467 800 7.59

10 103,308,737 1554 15.04

11 106,982,474 1620 15.14

12 87,216,183 1194 13.69

13 83,472,345 479 5.74

14 82,403,003 864 10.49

15 85,007,780 738 8.68

16 81,013,979 1127 13.91

17 73,167,244 446 6.10

18 65,820,629 948 14.40

19 63,449,741 526 8.29

20 71,974,595 387 5.38

21 69,862,954 412 5.90

22 60,773,035 845 13.90

23 52,498,615 1708 32.53

24 62,317,253 1048 16.82

25 42,350,435 1611 38.04

26 51,992,305 849 16.33

27 45,612,108 1665 36.50

28 45,940,150 982 21.38

29 51,098,607 733 14.34

X 139,009,144 1222 8.79

Y 43,300,181 206 4.76
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Variation.  Overall, 27,414,076 variants were identified (Fig. 2). Of these, 86.3% were SNPs, and 13.7% were 
InDels. BTA1 contained the highest number of variants (1,689,556), while the BTY contained the lowest num-
ber of variants (49,591). The total number of SNPs was 23,655,295, 0.9% of the total genome length. 9,848,025 
SNPs were located within coding sequences (CDS). BTA1 contained the highest number of SNPs (1,455,295 
with 530,272 SNPs in coding regions), but the highest SNP density, expressed by the proportion of the number 
of SNPs to chromosome length, was highest for BTA25 (2.6%). BTY was characterized by the lowest number of 
SNPs (41,500; 4,185 in coding regions) and the lowest SNP density (0.1%). 3,758,781 of InDels were identified 
including 1,591,937 in coding regions. BTA1 had the highest number of InDels (234,261), whereas BTY had the 
lowest number of InDels (8,091) (Fig. 2).

The length of InDels varied between 1 and 281 bps on autosomes, from 1 to 233 bps on BTAX, and from 1 
to 156 bps on BTY and is not uniformly distributed ( P < 0.001 ). The most frequently observed length of InDels 
was one bp, but the median length was two bps (Fig. 3). InDel median length differed significantly ( P < 0.001 ) 

Figure 1.   Average genome coverage.

Figure 2.   The distribution of variants. Blue bars with the y-axis on the left side represent SNPs, while red bars 
with the y-axis on the right side represent InDels. Values above bars represent the percent of the total length of 
chromosome covered by SNPs.
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between autosomes and BTX as well as between autosomes and BTY. 12%, 19%, and 98% of indels located 
respectively on autosomes, BTX and, BTY, was longer or equal 10bps.

Distribution of polymorphisms.  The analysis of variant distribution was carried out by counting the 
number of variants within 100 kbp non-overlapping windows (Fig. 4). The number of SNPs per 100 kbp bin 
was heterogeneous across windows within the same chromosome ( P < 0.001 ). The highest number of SNPs in 
one window (16,184) was observed on BTA12. On the other hand, on four chromosomes we identified windows 
without SNPs: BTA8 (one window), BTA9 (eight windows), BTA10 (eight windows), and BTY (58 windows). All 
of the windows were annotated as intergenic. However, 27 out of the total 58 windows on BTY corresponded to 
gaps in the reference genome marked by stretches of Ns. Conversely, windows with the number of SNPs exceed-
ing 10,000 were found on BTA4 (one window with 10,838 SNPs) 8% of window length overlapped with genes, 
BTA12 (four windows with 10,431, 11,487, 15,097 and 16,186 SNPs) in 3% of windows length overlapped with 
genes, and BTA23 (three windows with 11,706; 12,452 and 13,229 SNPs) in which 100% of windows length over-
lapped transcription regions. Interestingly, the functional annotation showed that four out of the eight SNP-rich 
windows overlapped with lncRNA genes.

The highest overall number of InDels was identified on BTA23 (2,930 InDels). InDel density (Fig. 5) was 
not uniform across the genome ( P < 0.001 ). We identified 122 windows without InDels—seven on BTA9, eight 
on BTA10, and 107 on BTY. All the windows on BTA7 and BTA8 were intergenic. On BTY, 64 of the windows 
were intergenic, whereas 35 windows corresponded to gaps in the reference assembly. However, eight windows 
intersected 10 genes. 1% to 13% of these windows overlapped with the sequence of a gene. Windows harboring 
more than 2,000 InDels were found on BTA4 (one window with 2,162 InDels), BTA12 (two windows with 2,405 
and 2,792 InDels), and BTA23 (three windows with 2,022; 2,258, and 2,930 InDels). Each of these windows 

Figure 3.   Length distribution of deletions and insertions for autosomes and sex chromosomes.
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overlapped with genes comprising from 33% of a window length to 100% of length, both on BTA23. As for SNP-
rich windows, three out of the six InDel-rich windows overlapped with lncRNA genes.

Variant annotation.  The annotation of variants expressed as the percent of polymorphic bases located 
in non-coding and coding regions in relation to their length was summarized in Fig. 6. For each chromosome, 
the proportion of number of polymorphic sites to the length of the specific region (coding or non-coding) 
was higher for coding regions in comparison to non-coding regions. The proportion of the number of variants 

Figure 4.   The distribution of SNPs across chromosomes.
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overlapping coding regions to the total length of this region was the highest on autosomes (9.90 ± 3.20), while 
the lowest on BTY (1.83). The proportion of the number of variants overlapping non-coding regions to the total 
length of this region was also observed on autosomes (0.65 ± 0.09) with the lowest proportion on BTY (0.10).

Focusing only on genes, on autosomes and BTX we observed the highest percent of variants was located 
in introns (41.8% ± 2.9% and 42.6%, respectively) and in non-coding transcripts (41.7% ± 2.4% and 41.7%, 
respectively). The Y chromosome showed the highest percent of variants in regions annotated up to 5,000 bps 
upstream of the 3’ end of gene start (25.3%) and up to 5,000 bps downstream of the 5’ end of gene end (24.8%). 
It was accompanied by a proportion of intronic and non-coding transcript variants being by 20% lower than in 
BTA and BTX. Moreover, variants with high (splice acceptor, splice donor, stop gained, frameshift variant, stop 
lost, start lost) and moderate (missense) impacts on proteins occurred more frequently on BTY than on BTA 
and BTX, while the latter had the lowest percent of variants with high or moderate impacts. Interestingly, on 
BTY 0.11% of variants in transcription regions were frameshift, which is much higher than on BTA (0.02%) and 

Figure 5.   The distribution of InDels across chromosomes.
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BTX (0.01%). The same tendency was observed for stop gained variants, which constituted 0.03% of BTY, but 
only 0.004% of BTA and 0.003% of BTX.

Nonsynonymous and missense variants were examined in order to predict whether an amino acid substitution 
affects protein function. For this purpose, the SIFT score was predicted. A variant with score 0 to 0.05 is consid-
ered deleterious while > 0.05 are considered tolerated. Figure  7 reports the distribution of SIFT scores among 
nonsynonymous and missense variants. We can see, that the distributions of SIFT scores for autosomes and the 
X chromosome are the same ( P = 0.76 ), while differences between the X chromosome and the Y chromosomes 
as well as between the autosomes and the Y chromosomes are different ( P < 0.001 ). The Y chromosome has the 
highest median of the SIFT score.

Population genetics.  The ratio of nonsynonymous to synonymous SNPs ( Ka/Ks ratio) was the highest for 
BTY (2.00) and the lowest for BTX (0.62). Autosome averaged ratio was also below unity (0.79 ± 0.15) and varied 
between 0.57 for BTA22 and 1.10 for BTA4, BTA15, BTA18, and BTA23. Tajima’s D statistic significantly differed 
between all three chromosome groups ( P < 0.001 ) and was positive for autosomes and negative for both sex 
chromosomes (Fig. 8). Nucleotide diversity had the highest median for autosomes, followed by BTX and BTY 
(Fig. 9). All differences in distributions of nucleotide divergence between chromosome groups were significant 
( P < 0.001 ). Furthermore, windows with extremely high diversity and windows with extreme values of Tajima’s 
D statistic were examined for their SNP density. These windows do not overlap regions with high SNP density.

Discussion
Our goal with this study was to compare patterns of genetic variation between autosomes, the BTX, and the 
BTY. A high percent of mapped reads, a high percent of properly mapped paired reads, and the fact that the 
most of individual genomes were sequenced with a genome average coverage exceeding twenty, demonstrated 
high quality of our data allowing for reliable inferences. Interestingly, individuals with low percent of mapped 
reads and low percent of properly mapped reads had high genome average coverage. This implies no correlation 
between genome average coverage and percent of mapped and properly mapped reads.

Altogether, over 23.6 million SNPs and over 3.7 million InDels were identified, among them 24% of SNPs and 
94% of InDels were novel. Such proportion between novel SNPs and InDels can be caused by the fact that many 
more studies have been related to SNPs and thus the SNP database is more complete5. A larger number of SNPs 
than InDels is not an uncommon observation. InDels in transcription regions are highly deleterious to gene func-
tion as they can completely alter protein amino acid sequence by changing the open reading frame (frameshift 
mutation). BTY contains the lowest number of variants, which is not only due to its length. For instance, BTA25 
is the shortest autosome, but it contains much higher number of variants. Taking into account the length of each 
chromosome, we observed that only 0.1% of the whole length of the BTY contained SNPs, where it is 0.45% for 

Figure 6.   The annotation of variants in coding (CDS) and non-coding (non-CDS) regions.
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Figure 7.   SIFT score for nonsynonymous and missense variants on autosomes, the BTX, and the BTY.

Figure 8.   Tajima’s D for autosomes, the BTX chromosome, and the BTY chromosome.
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BTX. On the other hand, the shortest chromosome (BTA25) exhibited the highest SNP density of 2.58%. One of 
the factors affecting DNA variation is the effective population size ( Ne ). Estimated based on autosomes, the effec-
tive population size is higher than based on sex chromosomes—3/4 of autosomal Ne for X and 1/4 of autosomal 
Ne for Y6. The lower Ne , the more important role of genetic drift, so we expect that the effect of genetic drift is 
the highest for the Y chromosome, which furthermore implies lower neutral diversity of Y7. This observation 
contradicts the theory of male mutation bias that assumes that more mutations accumulate in male germline 
due to a greater number of male germline cell divisions, which is especially pronounced for BTY which “spends 
more time” in male germline than the other chromosomes8. A difference observed in our study is possibly due 
to gaps in the BTY chromosome assembly of the bovine genome (i.e. a high number of unknown nucleotides), 
which humper an accurate comparison of variant density between autosomes, BTX and BTY.

However, more recent studies emphasize that the comparison of mutation patterns on a general, chromosome-
wide scale, is not valid due to a strong variation in local mutation rates9,10. Also in our study SNP and InDel 
distribution showed a non-random pattern, characterized by mutation hotspots with very high variant density, 
albeit only on autosomes. We observed that SNP density is positively correlated with indel density, which is in 
agreement with results obtained for humans by Hodgkinson et al.11. Estivill et al.12 showed that regions with high-
density of SNPs are correlated with segmental duplications in the human genome. Varela and Amos13 declared 
that regions with unusually high recombination rates tend to have a high density of SNPs, while Aggarwala and 
Voight14 estimated the effect of DNA sequence k-mers on SNP probability.

Based on the annotation of transcription regions, it can be shown that there is a tendency that variants in 
transcription regions on BTX have less severe consequences as compared to Y and autosomes. Fewer extreme 
variants are consistent with purging due to the hemizygous state in males. On autosomes, these would most of 
the time be hidden in males due to diploidy. Based on Ka/Ks ratio, we also observed that on the BTY there is a 
tendency to accumulate more nonsynonymous than synonymous substitutions (Ka/Ks = 2.00). In contrast, BTX 
shows a much lower ratio (Ka/Ks = 0.62). Such differences might arise from the tendency for the degeneration 
of the Y chromosome—Haldane’s rule, which indicates faster male evolution and reason of accumulation of 
nonsynonymous variants, mainly due to the lack of the recombination15. In males, BTX is hemizygous, so any, 
even slightly deleterious mutation has an effect on the phenotype. For mammalian genomes such situation was 
demonstrated in a simulation study by Mackiewicz et al.16

Methods
Material.  The material comprised whole-genome DNA sequences of 217 individuals representing Holstein 
(69 bulls and 6 cows), Jersey (41 bulls), Jysk (5 bulls), Rd Dansk Malkerace (46 bulls), Rd Dansk Malkerace 
anno 1970 (15 bulls and 5 cows), Sortbroget Dansk Malkerace anno 1965 (15 bulls and 5 cows) and Danish 

Figure 9.   Nucleotide divergence for autosomes, the BTX chromosome, and the BTY chromosome.
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Shorthorn (5 bulls and 5 cows) breeds available courtesy of the Center for Quantitative Genetics and Genomics 
at the Aarhus University. Animals were not closely related. There can be found some distant relationship within 
the breeds.

Whole-genome DNA sequences were obtained by the Illumina HiSeq 2000 Next Generation Sequencing 
platform and similar short-read sequencing platforms. Access to this data was available via the computer cluster 
of the Center for Quantitative Genetics and Genomics at Aarhus University. ARS-UCD1.2_Btau5.0.1Y1 refer-
ence genome was used to processing whole-genome sequence data. This genome represents the latest reference 
genome of Bos taurus additionally assembled with the Y chromosome (Btau5.0.1) from Baylor College17. In this 
study two GFF (General Feature Format) files were used for the annotation of identified variants. Btau_5.0.1 
and ARS-UCD1.2 GFF were merged to obtain a complete annotation file for each chromosome. Those files 
were downloaded from the NCBI database (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/
GCF/002/263/795/GCF_002263795.1_ARS-UCD1.2/ and ftp://ftp.ncbi.nlm.nih.gov/
genomes/all/GCF/000/003/205/GCF_000003205.7_Btau_5.0.1/). The actual assembly file 
used was downloaded from https​://sites​.ualbe​rta.ca/~stoth​ard/1000_bull_genom​es/ARS-UCD1.2_Btau5​.0.1Y.
fa.gz.

Processing the next‑generation sequencing data.  The FastQC software was used to summarize and 
visualize sequence quality18. Sequence quality metrics measure the probability that a given base is called incor-
rectly. Low quality bases were trimmed from reads using Trimmomatic19 with options SLIDINGWINDOW:3:15, 
LEADING:3, TRAILING:3, and a minimum read length of 70 bp. Cleaned reads were aligned to the reference 
genome by using the Burrows-Wheeler Aligner (BWA) with the MEM algorithm20. After alignment, the flag-
stat tool in SAMtools21 was used to calculate the percent reads correctly mapped to the reference genome. The 
genome average coverage, representing the number of times that a base in the reference genome was covered by 
aligned reads22, was calculated for each individual, using the genomecov tool in bedtools23. It was expressed by 
coverage= R·L

G  , where R is the total number of aligned reads, L is average read length and G is the genome size. 
The output from BWA-MEM was piped to SAMtools21 and then compressed to the BAM format (Binary Align-
ment Map)—a binary version of the SAM format. Afterwards, SAMtools fixmate21 was run to adjust the mate-
read position. BAM files were sorted using SAMtools21. PCR duplicates were marked using MarkDuplicates 
from Picard24. Finally, Base quality scores were recalibrated using Genome Analysis Toolkit (GATK)25.

Variant calling.  Variant calling allows the identification of differences between analyzed sequences and 
the reference genome, i.e., of polymorphic sites. First, GATK’s HaplotypeCaller25 was used to create files (gVCF 
files) that summarize information on sites potentially deviating from the reference. Specifically, the tool identi-
fies genomic regions, so-called ActiveRegions, which contain significant differences from the reference genome. 
Those regions are then processed by HaplotypeCaller. Other variations (non ActiveRegions) are skipped in order 
to accelerate the analysis. Afterward, ActiveRegions are used to construct haplotypes by building a De Bruijn-
like graph26 and calculate haplotype frequencies. Haplotypes were realigned against the reference haplotype 
using the Smith-Waterman algorithm27 to identify potentially polymorphic sites. Then a matrix of likelihoods of 
haplotypes given the DNA sequence of reads was calculated using Hidden Markov Models. Thereafter, Haplo-
typeCaller assigned the most likely genotypes25. The standard phred-scaled confidence threshold of 30 was used 
to remove the potential false-positive variants. The last step of variant calling comprised merging gVCF files 
representing different individuals. For this purpose, GATK GenotypeGVCFs was used25. This step resulted in 
raw variant call files (VCF), which contained summary information of each detected variant.

After variant calling, the identified polymorphisms were annotated with predicted biological consequences 
and functions. For each polymorphic variant the associated Sequence Ontology (SO)28 terms, which categorize 
genomic functions of the coding sequence, were assigned. For this purpose, the snpEff software was used29. The 
program uses information included in the annotation file (GFF) to assign an annotation to each detected variant. 
In addition, we predicted effects of nonsynonymous and missense variants on protein functions using the SIFT 
score. For prediction of effect of amino acid substitution we used SIFT4G software30. Variants with SIFT score 
≤ 0.05 were classified as deleterious, while > 0.05 were considered tolerated31.

Statistical analysis.  The Shapiro–Wilk test.  The Shapiro–Wilk32 was used to test whether a sample was 
obtained from a normal distribution, comparing the following hypotheses: 

H0 :	� The distributions of Tajima’s D and nucleotide divergence follow the normal distribution
H1 :	� The distributions of Tajima’s D and nucleotide divergence do not follow the normal distribution

 The corresponding test statistic is given by:

where ai is the tabulated Shapiro–Wilk coefficient, x(i) is the ith smallest value of the Tajima’s D/nucleotide diver-
gence and x̄ is the mean of Tajima’s D/nucleotide divergence. We reject H0 at the significance level ( α = 0.05 ) if 
W < Wα , where Wα is tabulated critical threshold for Shapiro–Wilk.

W =
(
∑n

i=1 aix(i))
2

∑n
i=1(xi − x̄)2

,

https://sites.ualberta.ca/%7estothard/1000_bull_genomes/ARS-UCD1.2_Btau5.0.1Y.fa.gz
https://sites.ualberta.ca/%7estothard/1000_bull_genomes/ARS-UCD1.2_Btau5.0.1Y.fa.gz
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The χ2 goodness‑of‑fit test.  The χ2 goodness-of-fit test was used to check whether the observed variable in the 
general population follows the uniform distribution. Corresponding hypotheses were defined as follows33: 

H0 :	� The distribution of the observed variable is uniform
H1 :	� The distribution of the observed variable is not uniform

 The χ2 goodness-of-fit statistic is given by34:

where Oi is the observed count of observations in the ith group, Ei is the count of observations expected under 
the uniform distribution, and k is the number of groups. Under H0 , the test follows the χ2 distribution with 
k − 1 degrees of freedom.

The Kruskal–Wallis test.  The Kruskal–Wallis test is a non-parametric equivalent of the F test in the analysis of 
variance for non-normal data. Corresponding hypotheses are35: 

H0 :	� There is no difference among k populations’ median
H1 :	� At least one population’s median differs from the median of the other populations

 The Kruskal–Wallis statistic is given by36:

where N is the total sample size, k is the number of groups, Ri is the sum of ranks in the ith group, and ni is the 
size of the ith group. Under H0 , the distribution of this test can be approximmated by the χ2 distribution with 
k − 1 degrees of freedom.

The Mann‑Whitney U test.  The Mann-Whitney U test is the non-parametric equivalent of the t-test for two 
independent samples with the corresponding hypotheses37: 

H0	� There is no difference between the two populations’ medians
H1	� There is a difference between the two populations’ medians

 The statistic is given by38,39:

where n is the size of the first group, m is the size of the second group, and R(Xi) is the rank assigned to the first 
group (Wilcoxon statistic). We reject the null hypothesis H0 at the significance level α if tn,m,1− α

2
< U < tn,m, α

2
 , 

where tn,m,1− α
2
 and tn,m, α

2
 are quantiles of the Mann-Whitney distribution. For large sample sizes, U ∼ N (µU , σ

2
U ) , 

where µU = mn
2

 , σ 2
U =

mn(N+1)
12

 , where N = n+m . This test was applied to test multiple, simultaneous hypoth-
eses; therefore the Bonferroni correction was used to account for multiple testing40.

Genetic statistics.  Nucleotide divergence.  One of the statistic most widely used to measure the degree 
of polymorphism in a chromosome is a nucleotide divergence ( π ). It is a measure proposed by Nei and Li41. π 
quantifies the nucleotide diversity among several sequences. In our case, we estimated π along each chromosome 
in 100 kb non-overlapping windows. The estimator π̂ of nucleotide divergence calculated based on information 
from VCF files is defined as:

where k is the number of variants within a given 100 kb window, ANi is the total number of alleles in called 
genotypes of ith variant, w denotes the window size [100 kbs], p is the number of pairwise windows comparisons, 
and ACi is the allele count in genotypes of ith variant (for each alternative allele).

Tajima’s D.  Another statistic used in this study is Tajima’s D. It allows for the detection of the evidence of selec-
tion. Tajima42 proposed this statistic as a measure of a rate of a random (neutral) evolution of DNA sequence. In 
this study, Tajima’s D was estimated over a 100 kbs non-overlapping windows as follows:

χ2 =

k
∑

i=1

(Oi − Ei)
2

Ei
,

H =
12

N(N + 1)

k
∑

i=1

R2
i

ni
− 3(N + 1),

(1)U = MN +
N(N + 1)

2
−

N
∑

i=1

R(Xi),

π̂ =

∑k
i=1 [ANi(ANi − 1)]+ (w − k)p

2
∑k

i=1 [ACi(ANi − ACi)]
,
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where θ̂π is the average number of pairwise differences given by θ̂π =

∑

i<j di,j
n(n−1)

2

 . Here, di,j represents the number 
of differences between individual i and j, n =

(N
2

)

 is the number of pairwise sequences comparisons with N being 
the number of individuals. θ̂W is Watterson’s estimator of the expected number of segregating sites under neutral-
ity ( ̂θW = S

∑n−1
i=1 (

1
i )

 , where S is the number of sites that segregate in the sample).

D > 0 indicates population reduction or balancing selection, D = 0 indicates neutral mutations, and D < 0 
indicates population expansion or purifying and positive selection43. The VCFtools44 was used to calculate the 
Tajima’s D statistic.

Ka/Ks ratio.  The Ka/Ks ratio was used as a measure of the selection pressure. Based on this ratio we com-
pared natural selection pressure on proteins between chromosomes45. Ka represents the ratio of the number of 
nonsynonymous substitutions per nonsynonymous site, while Ks is the number of synonymous substitutions 
per synonymous site. Ka/Ks equal to one indicates a neutral selection, the positive ratio is equivalent to positive 
selection, while the negative ratio indicates purifying selection. The output of the SnpEff29 software was used to 
calculate Ka/Ks ratio.

Computing environment.  All programs and scripts were written in the bash command language and 
executed on the Genomics High Performance Cluster (GHPC) at the Center for Quantitative Genetics and 
Genomics at Aarhus University. The computing unit was the Red Hat Enterprise Linux Client release 4.8.5-28 
(Centos) with 250 GiB/node of memory and 6 Intel Core Processor CPUs. All statistical analyzes were done 
using R (version 5.1)46 in RStudio47 and visualized using the ggplot2 R package48.

Data availability
The subset of the whole-genome data used in this study is available at SRP039339 under PRJNA238491. For the 
remaining data, the Board of the 1000 Bull Genome Project Consortium should be contacted. Whole-genome 
sequences from Aarhus University are available only upon agreement with the breeding organization and should 
be requested directly from the authors.
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