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We aimed to explore the active ingredients and molecular mechanism of Tripterygium
wilfordii (TW) in the treatment of diabetic nephropathy (DN) through network pharmacology
and molecular biology. First, the active ingredients and potential targets of TW were
obtained through the Traditional Chinese Medicine Systems Pharmacology Database and
Analysis Platform (TCMSP) and related literature materials, and Cytoscape 3.7.2 software
was used to construct the active ingredient-target network diagram of TW. Second, the
target set of DN was obtained through the disease database, and the potential targets of
TW in the treatment of DN were screened through a Venn diagram. A protein interaction
network diagram (PPI) was constructed with the help of the String platform and Cytoscape
3.7.2. Third, the ClueGO plug-in tool was used to enrich the GO biological process and the
KEGG metabolic pathway. Finally, molecular docking experiments and cell pathway
analyses were performed. As a result, a total of 52 active ingredients of TW were
screened, and 141 predicted targets and 49 target genes related to DN were
identified. The biological process of GO is mediated mainly through the regulation of
oxygen metabolism, endothelial cell proliferation, acute inflammation, apoptotic signal
transduction pathway, fibroblast proliferation, positive regulation of cyclase activity,
adipocyte differentiation and other biological processes. KEGG enrichment analysis
showed that the main pathways involved were AGE-RAGE, vascular endothelial
growth factor, HIF-1, IL-17, relaxin signalling pathway, TNF, Fc epsilon RI, insulin
resistance and other signaling pathways. It can be concluded that TW may treat DN
by reducing inflammation, reducing antioxidative stress, regulating immunity, improving
vascular disease, reducing insulin resistance, delaying renal fibrosis, repairing podocytes,
and reducing cell apoptosis, among others, with multicomponent, multitarget and
multisystem characteristics.
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INTRODUCTION

According to data surveys, it is inferred that by 2030, diabetes will
become the seventh most common cause of death in the world (Rao
et al., 2019), and diabetic nephropathy (DN) is one of itsmost serious
complications and is the main cause of end-stage renal disease (Liu
et al., 2009; Toth-Manikowski and Atta, 2015). On average, there is
one DN patient for every three diabetic patients, andmore than 30%
of DN patients require kidney dialysis or kidney transplantation,
which will place a huge economic burden on individuals and society
(Montero et al., 2016). DN mainly manifests as proteinuria, a
decreased glomerular filtration rate, and nephrotic syndrome
(Montero et al., 2016). Currently, the recommended treatments
for DN are to control blood pressure and blood sugar, mainly by
administering renin angiotensin aldosterone system (RAAS)
inhibitors, sodium glucose cotransporter 2 (SGLT2) inhibitors,
and glucagon-like peptide 1 (GLP1) receptor agonists. Although
these strategies have shown encouraging results in DN, there are still
many diabetic patients who continue to progress towards end-stage
kidney disease (ESKD) (Kato and Natarajan, 2019; Barrera-Chimal
and Jaisser, 2020). Moreover, due to the complex environment of
diabetes, no single therapy can cure DN. Multiple interventions
should be used to jointly intervene in the pathological process.
Therefore, new strategies are needed to supplement existing
interventions (Batu Demir and Cooper, 2016).

Traditional Chinese medicine (TCM) also provides an
effective treatment for DN. In China, Chinese herbal medicine
is widely used in the treatment of DN, among which Tripterygium
wilfordii (TW) is the most commonly used. TW has been used in
TCM for more than two thousand years for the treatment of
rheumatoid arthritis, autoimmune diseases and kidney diseases
(Chen, 2001; Luo et al., 2019). Modern pharmacological studies
have shown that TW and its extracts have anti-inflammatory and
immunosuppressive effects (Ma et al., 2007; Ziaei and Halaby,
2016; Chen et al., 2018). It can effectively protect the kidneys and
reduce urine protein and podocyte damage. It is potentially
effective and safe drug for the treatment of DN patients (Liu,
2009; Ge et al., 2013). However, the mechanism of TW in the
treatment of DN has not been fully elucidated. This article
explores the mechanism of TW in the treatment of DN based
on network pharmacology, aiming to provide a reference for
clinical applications and basic research.

MATERIALS AND METHODS

Screening of Active Components and
Targets of TW and Construction of the
Network
All of the chemical constituents of TW were searched in the
Traditional Chinese Medicine Systems Pharmacology Database and
Analysis Platform (TCMSP). The TCMSP database is the most
commonly used database for the retrieval of Chinese medicine
ingredients and it describes the relationships between drugs, targets
and diseases (Ru et al., 2014; Zhu et al., 2018). This database includes
500TCMs from the 2010 edition of the pharmacopoeia and 3,069

compounds (Huang et al., 2017). The active components of TWwere
screened according to the (ADME) parameters of "oral bioavailability
(OB)≥ 30%, drug-like (DL)≥ 0.18”, and the action targets of the active
components were predicted. Combined with related research, these
results should be supplemented. The predicted targets were further
standardized through the UniProt database and corrected to the
official gene names (Jin et al., 2018). Cytoscape 3.7.2 software was
used to construct a network diagram of TW active ingredient targets,
and the key compounds were screened according to their topological
parameters.

DN-Related Gene Screening
The DN-related target proteins were collected from the following
four widely recognized disease databases: 1) Therapeutic Target
Database (TTD) (http://db.idrblab.net/ttd/) (Chen et al., 2002), 2)
DrugBank (https://www.drugbank.ca/) (Wishart et al., 2008), 3)
DisGeNET (https://www.disgenet.org/) (Piñero et al., 2016), and
4) the National Center for Biotechnology Information (NCBI)
(https://www.ncbi.nlm.nih.gov/) (Benson et al., 1990). We
searched the four databases with the keyword “diabetic
nephropathy” and set the species to “Homo sapiens”.

Prediction of Potential Targets of TW in the
Treatment of DN
Venn diagrams (http://bioinfogp.cnb.csic.es/tools/venny/index.
html) are commonly used to display list comparisons
(Oliveros, 2007). They are widely used in biology to illustrate
the differences between gene lists originating from different
differential analyses (Bardou et al., 2014). Through the Venn
diagram, the obtained targets of TW and the targets of DN
intersected, and the intersectional targets were considered
potential therapeutic targets of TW in DN.

PPI Network Construction and Core Target
Screening
The common target genes obtained from the Venn graph were
imported into the STRING database, which is a database for
predicting protein–protein interactions, and the species were
selected as "Homo sapiens" to obtain the interaction relationship
between the targets. The confidence level adopts the system default
"score > 0.4″, saves it in TSV format, and imports Cytoscape 3.7.2
software to build a more advanced protein interaction network
diagram. A network analyser is used to calculate topology
parameters, such as the node degree value, to filter the core targets.

Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes (KEGG) Enrichment
Analysis (Gene Function and Pathway
Enrichment Analysis)
Gene Ontology (GO) is an international standard system used to
classify gene functions. It divides gene functions into three
aspects: molecular function (MF), cell composition (CC) and
biological process (BP) (Ashburner et al., 2000). Kyoto
Encyclopedia of Genes and Genomes (KEGG) is a set of
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artificially drawn pathway maps representing molecular
interactions and reaction networks.

To predict the molecular mechanism of TW in the treatment
of DN, this paper adopted a focused analysis method and used
ClueGO software (Bindea et al., 2009) to analyse the biological
processes and KEGG. The common target genes obtained by
screening were input into ClueGO software, the GO term fusion
was used, and a threshold p ≤ 0.05 was set for enrichment.

The GO biological process enrichment parameter "GO Tree
Interval" was set to 4–9, the minimum gene of "GO Term
Selection" was set to 5, the minimum gene proportion was set
to 5%, and the kappa score was set to 0.5. The minimum gene of
the KEGG pathway enrichment parameter "GO pathway
selection" was 6, with the minimum gene accounting for 4%,
and the kappa score was set as 0.5. After the selection parameters
were run separately, the GO biological processes and KEGG

TABLE 1 | Active ingredients of TW.

Number Mol ID Molecule name OB (%) DL

1 MOL004443 Zhebeiresinol 58.72 0.19
2 MOL003267 Wilformine 46.32 0.2
3 MOL003189 WILFORLIDE A 35.66 0.72
4 MOL003196 Tryptophenolide 48.5 0.44
5 MOL003248 Triptonoterpene 48.57 0.28
6 MOL003280 TRIPTONOLIDE 49.51 0.49
7 MOL003245 Triptonoditerpenic acid 42.56 0.39
8 MOL003244 Triptonide 68.45 0.68
9 MOL003192 Triptonide 67.66 0.7
10 MOL003187 Triptolide 51.29 0.68
11 MOL003242 Triptofordinine A2 30.78 0.47
12 MOL003241 Triptofordin F4 31.37 0.67
13 MOL003239 Triptofordin F2 33.62 0.67
14 MOL003238 Triptofordin F1 33.91 0.6
15 MOL003236 Triptofordin D2 30.38 0.69
16 MOL003235 Triptofordin D1 32 0.75
17 MOL003234 Triptofordin C2 30.16 0.76
18 MOL003233 Triptofordin B2 107.71 0.76
19 MOL003232 Triptofordin B1 39.55 0.84
20 MOL003231 Triptoditerpenic acid B 40.02 0.36
21 MOL003229 Triptinin B 34.73 0.32
22 MOL003224 Tripdiotolnide 56.4 0.67
23 MOL003188 Tripchlorolide 78.72 0.72
24 MOL000449 Stigmasterol 43.83 0.76
25 MOL003222 Salazinic acid 36.34 0.76
26 MOL003278 Salaspermic acid 32.19 0.63
27 MOL011169 Peroxyergosterol 44.39 0.82
28 MOL005828 Nobiletin 61.67 0.52
29 MOL000211 Mairin 55.38 0.78
30 MOL000422 Kaempferol 41.88 0.24
31 MOL003217 Isoxanthohumol 56.81 0.39
32 MOL003225 Hypodiolide A 76.13 0.49
33 MOL000296 Hederagenin 36.91 0.75
34 MOL003211 Celaxanthin 47.37 0.58
35 MOL003210 Celapanine 30.18 0.82
36 MOL003209 Celallocinnine 83.47 0.59
37 MOL003208 Celafurine 72.94 0.44
38 MOL003206 Canin 77.41 0.33
39 MOL000358 Beta-sitosterol 36.91 0.75
40 MOL003279 99694-86-7 (15-hydroxytriptolide) 75.23 0.66
41 MOL003184 81827-74-9 45.42 0.53
42 MOL003199 5,8-Dihydroxy-7-(4-hydroxy-5-methyl-coumarin-3) coumarin 61.85 0.54
43 MOL003198 5 Alpha-Benzoyl–4 alpha-hydroxy–1 beta, 8 alpha-dinicotinoyl-dihydro-agarofuran 35.26 0.72
44 MOL002058 40957-99-1 57.2 0.62
45 MOL009386 3,3’-bis-(3,4-dihydro-4-hydroxy-6-methoxy)-2H-1-benzopyran 52.11 0.54
46 MOL003266 21-Hydroxy-30-norhopan-22-one 34.11 0.77
47 MOL007415 [(2S)-2-[[(2S)-2-(benzoylamino)-3-phenylpropanoyl]amino]-3-phenylpropyl] acetate 58.02 0.52
48 MOL007535 (5S,8S,9S,10R,13R,14S,17R)-17-[(1R,4R)-4-ethyl-1,5-dimethylhexyl]-10,13-dimethyl-2,4,5,7,8,9,11,12,14,15,16,

17-dodecahydro-1H-cyclopenta[a]phenanthrene-3,6-dione
33.12 0.79

49 MOL003283 (2R,3R,4S)-4-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-2,3-dimethylol-tetralin-6-ol 66.51 0.39
50 MOL003185 (1R,4aR,10aS)-5-hydroxy-1-(hydroxymethyl)-7-isopropyl-8-methoxy-1,4a-dimethyl-4,9,10,10a-tetrahydro-3H-

phenanthren-2-one
48.84 0.38

51 MOL003182 (+)-Medioresinol di-O-beta-D-glucopyranoside_qt 60.69 0.62
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pathway selection and their related target information were
obtained.

Molecular Docking Verification of Core
Compounds and Core Target Genes
First, the top seven core compounds were selected, and the two-
dimensional structure diagrams of the compounds were
downloaded from the TCMSP database and saved in mol2

format. Then, the files were imported into AutoDockTools-
1.5.6 software to add charge and display rotatable keys and then
they were saved in pdbqt format. Second, the protein crystal
structures corresponding to the core target genes were
downloaded from the PDB database (Burley et al., 2017),
imported into PyMOL software to remove the water
molecules and heteromolecules, imported into
AutoDockTools-1.5.6 software to add hydrogen atoms and
charge operations, and saved to pdbqt format. The three-

FIGURE 1 | The workflow of the analysis for this study.
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dimensional grid box for molecular docking simulation was also
obtained using Autodock tools 1.5.6. Finally, AutoDock Vina
1.1.2 (Trott and Olson, 2010) was used to perform molecular
docking. The results were analysed and interpreted using
PyMOL (DeLano, 2002) and Ligplot (Laskowski and
Swindells, 2011) software.

RESULTS

Active Components and Corresponding
Target Proteins of TW
A total of 144 chemical constituents and 51 active components
of TW were screened by TCMSP, mainly alkaloids and
terpenoids, as shown in Table 1. To supplement tripterine,
although its bioavailability is poor, related experimental studies

have shown that it has a significant role in the treatment of DN.
The active ingredient-target network diagram is shown in
Figure 1 Figure 2. According to the topological parameters,
the key compounds of "degree > average value (15.21)" are
kaempferol, triptolide, nobiletin, beta-sitosterol, tripterine,
stigmasterol, triptoditerpenic acid B, triptinin B,
tryptophenolide, 81,827-74-9, triptonoterpene and
(2R,3R,4S)-4-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-2,3-
dimethylol-tetralin-6-ol, a total of 12 species, which may play a
key role in TW treatment of DN.

Diabetic Nephropathy (DN) related Genes
A total of 755 target genes related to DN were retrieved from the
TTD, DrugBank, DisGeNET and NCBI databases (19 were
retrieved from TTD, 43 from DrugBank, 560 from DisGeNET,
405 from NCBI, and 272 duplicates were deleted).

FIGURE 2 | TW- active ingredient-target diagram. The rose red inner circle is the compound (the compound without target is deleted), and the blue outer circle is
the target. The larger the node, the greater the degree value, and the closer the prompt relationship.
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Potential Target of TW in Treating DN
The targets of TW and DN were input into a Venn diagram for
mapping and intersection, and a total of 49 cross targets were
obtained, that is, the potential targets of TW in treating DN, as
shown in Figure 3.

PPI Network Construction and Core Target
Screening
The 49 common targets of TW and DNwere used to draw protein
interaction diagrams through String and Cytoscape software. As
shown in Figure 4, the network diagram contains 49 nodes and
524 interaction lines. The node degree is positively correlated
with the node size. The larger the node is, the greater the node
degree value is, and the more likely it is to play a role through the
target. The denser the connection, the more important it is.
According to the topological relationship, a total of 16 core
targets were selected with "Degree>Mean (21.39) and
Betweenness Centrality > Mean (0.0127)", as shown in Table 2.

Results of Biological Process Enrichment
Analysis
Through GO biological process analysis, 27 major biological
processes of TW treating DN were obtained, mainly enriched
in 11 categories, as shown in Figure 5. The larger the area in the
figure, the more mapping targets clustered to this biological
function. From the figure, it can be inferred that the treatment
of DN by TW may be mainly related to the following biological
processes: ① regulation of oxygen species metabolic process
22.22%; ② regulation of endothelial cell proliferation 18.52%;
③ acute inflammatory response 11.11%; ④ extrinsic apoptotic
signaling pathway in the absence of ligand 3.7%;⑤ regulation of
fibroblast proliferation 7.41%; ⑥ positive regulation of cyclase
activity 3.7%; ⑦ regulation of fat cell differentiation 7.41%, etc.

Results of the KEGG Cluster Analysis
To further explore the specific molecular mechanism of TW in
the treatment of DN, the KEGG pathway was explored. As shown
in Figures 6A A total of 64 signalling pathways were obtained
(among them, 25 were closely related to DN,6 were related, and a

total of 31 were involved). The percentage of hit genes and the
gene composition of these 31 related pathways are shown in
Supplementary Table S1, where the horizontal axis represents
the proportion of gene enrichment, the vertical axis represents
different pathways, and the number on the bar chart is the
number of target genes in this pathway. The relationship
between the pathways with a significant degree of enrichment
is shown in Figure 6B. The same colour indicates biological
processes with similar functions, and the bolded labels indicate
pathways with a significant degree of enrichment. According to
relevant research progress, 25 pathways closely related to DN
were extracted on the basis of the enrichment in Figure 6B, as
shown in Figure 6C. The proportion of each enrichment result is
shown in Figure 6D. The pathways enriched in AGE-RAGE were
the most enriched, followed by HIF-1, VEGF, leukocyte
transendothelial migration, rheumatoid arthritis, and the
estrogen signaling pathway.

Molecular Docking Verification of Core
Compounds and Core Target Genes
The results obtained by the molecular docking software are
shown in Table 3. The grid box was centered to cover the
active binding site and all essential residues. For AKT1, the
grid box (44 Å × 40 Å × 54 Å) was centred at (2.878, –0.196,
25.87) Å, for VEGF, the grid box (72 Å × 78 Å × 88 Å) was
centred at (13.697, 45.246, –1.911) Å, and for TP53, the grid box
(40 Å × 46 Å × 50 Å) was centered at (27.292, 35.046, 3.963) Å. As
seen from Table 3, the scores for the five core compounds
(kaempferol, triptolide, nobiletin, beta-sitosterol, stigmasterol,
triptoditerpenic acid B, and triptinin B) and protein crystal
structures corresponding to the core target genes (AKT1,
TP53, and VEGFA) were all greater than −5 kcal/mol,
indicating that the compound had a certain affinity for the
protein crystal structure. Molecular docking was performed to
determine the best candidates among the 9 phytochemicals based
on their binding scores. Stigmasterol and triptinin B show the
highest binding affinities of –9.3 and –8.7 kcal/mol for AKT1,
beta-sitosterol and stigmasterol showed the highest binding
affinities of –9.5 and –9.3 kcal/mol for TP53, and triptolide
and triptinin B showed the highest binding affinities of –9.0
and –8.5 kcal/mol for VEGFA. Figures 7, 8 and 9 show that the
small-molecule compounds were tightly bound to the protein
residues via various interactions.

DISCUSSION

TW is a promising traditional Chinese medicine, which can
significantly reduce proteinuria and improve renal function.
However, its toxicity limits its clinical application. With the
development of various biotechnologies, TW and its extracts
have been recognized as a key alternative intervention
measures for the treatment of DN in the 2014 Consensus on
Prevention of Diabetic Nephropathy in China, and its efficacy has
been confirmed in many experiments (Huang et al., 2020).
Evidence-based medicine research shows that TW can

FIGURE 3 | Venn diagram of drugs and disease targets.
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effectively reduce proteinuria, serum creatinine, and blood urea
nitrogen levels, and increase the effective rate (Hong et al., 2016;
Wang D. et al., 2018). In vivo experimental studies which shows
that TW extract can improve the micro-inflammatory state of DN
(Wu et al., 2017), anti-oxidative stress, reduce proteinuria,
improve glomerular hypertrophy and podocyte injury, and
alleviate renal fibrosis (Song et al., 2019), and it is even
superior to other drugs in anti-inflammatory and oxidative
stress (Gao et al., 2010; Ma et al., 2013). In vitro experimental
studies, it is shown that triptolide, an extract of TW, has effects of
anti-inflammatory, anti-oxidative stress, protection and reversal
podocyte injury, and maintenance of podocyte filter barrier
function (Zheng et al., 2008; Chen et al., 2010; Song et al.,
2019; Wang et al., 2019; Liang et al., 2020). Although TW and
its extracts have positive effects in the treatment of DN, we should

also pay attention to its side effects. According to reports, TW has
gastrointestinal reactions, liver damage, menstrual disorders,
reproductive problems, adverse skin reactions, hematological
events, cardiovascular events and nephrotoxicity (Zhang C.
et al., 2016; Brown, 2017). Therefore, researchers should
devote themselves to finding bioactive substances with safe
doses and modifying their structures; reasonable combination
of drugs; purifying their extracts; optimizing extraction methods;
changing their dosage forms and administration methods, reduce
the toxicity, so as to make TW better serve the clinic (Shao et al.,
2006; Hewitson et al., 2009; Tang and Zuo, 2012; Zhang et al.,
2014; Yuan et al., 2015; Zhang B. et al., 2016; Li Z. et al., 2017).

In this study, 151 compounds of TW were obtained through
preliminary screening by TCMSP, 51 active ingredients were
obtained by further screening according to the ADME

FIGURE 4 | PPI network of TW treating DN. Node degree is positively correlated with node size. The larger the node is, the greater the node degree value is, and the
more likely it is to play a role through the target.
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parameters, and 1 was supplemented by the literature. A total of
141 potential targets were identified, and 755 DN-related targets
intersected. Finally, 49 common targets were obtained. These
targets were mainly focused on AGE-RAGE, vascular
endothelial growth factor (VEGF), HIF-1, IL-17, the relaxin
signaling pathway, TNF, Fc epsilon RI, insulin resistance and
other signaling pathways.

Discussion of Key Active Ingredients and
Core Targets
The active component-target network diagram and related
topological parameters show that the key active ingredients of
TW are kaempferol, triptolide, nobiletin, and tripterine. TW
mainly improves kidney damage and alleviates related
symptoms by regulating oxidative stress, cell apoptosis, insulin
resistance, etc. The 12 key compounds were mainly terpenoids,
among which kaempferol and caseolin were flavonoids.
Kaempferol has anti-inflammatory, antioxidant and lipolysis

effects (Zhang et al., 2013). Related studies have shown that
kaempferol can inhibit the oxidative stress and apoptosis of
human glomerular endothelial cells induced by high glucose
(Sharma et al., 2019). Nobiletin has biological effects such as
anti-inflammatory and antioxidative effects, lowering blood
pressure, lowering cholesterol, and changing the local
microcirculation. Related research reports (Lee et al., 2010) have
shown that nobiletin can reduce insulin resistance and blood lipids
in obese type 2 diabetic rats. In addition, Malik et al. (2015) found
that nobiletin can improve acute kidney injury. Triptolide and
tripterine are terpenoids. Triptolide has anti-inflammatory effects
(Ma et al., 2013), regulating oxidative stress (Gao et al., 2010; Dong
et al., 2017), anti-fibrosis (Li X.-Y. et al., 2017; Li et al., 2019) and
anti-glomerular sclerosis (Han et al., 2017; Han et al., 2018). It has
significant effects on the treatment of proteinuria, reducing
podocyte damage (Ma et al., 2013), reducing the accumulation
of DN mesangial matrix and alleviating mesangial dilation (Han
et al., 2017). In addition, the results of molecular docking and
kinetic simulation showed that triptolide has a similar structure to
hormones and can bind to nuclear receptors (Liu et al., 2015).
Tripterine, also known as celastrol, is a quinone methide triterpene
(Yang et al., 2006). Although its oral bioavailability is low, it can
reduce oxidative stress damage and podocyte depletion caused by
high sugar. It can also reduce insulin resistance (Kim et al., 2013),
reduce inflammation (Zhou and Huang, 2009; Lee et al., 2015;
Zhang M. et al., 2019), and restore autophagy pathways impaired
by high glucose (Zhan et al., 2018). In addition, tripterine can also
prevent renal injury caused by ischaemia reperfusion (Kim et al.,
2013; Chu et al., 2014). Previous studies on the pharmacodynamics
of TW have mainly focused on alkaloids and terpenoids, and there
have been few studies on flavonoids. The results of this study
showed that the key compounds of TW, kaempferol and
rhizopetin, were flavonoids, which provided a new direction for
clinical research.

There were 16 core targets screened through PPI, such as
AKT1, TP53, VEGFA, PTGS2, TNF, MMP9, JUN, FN1, CXCL8,
NOS3, PPARG, RELA, ESR1, STAT1, MMP1, and CREB1, which
may play a key role in the treatment of DN.

TABLE 2 | The core targets of TW in the treatment of DN.

Number Target gene Degree Betweenness Centrality

1 AKT1 38 0.07379271
2 TP53 38 0.06725352
3 VEGFA 37 0.03571233
4 PTGS2 36 0.04609104
5 TNF 36 0.03240009
6 MMP9 35 0.05231183
7 JUN 34 0.01403485
8 FN1 33 0.01425303
9 CXCL8 33 0.01402184
10 NOS3 31 0.04440636
11 PPARG 31 0.02808594
12 RELA 29 0.01695853
13 ESR1 29 0.0150523
14 STAT1 28 0.01927069
15 MMP1 25 0.01576515
16 CREB1 25 0.01447089

FIGURE 5 | Results of GO analysis TW treating DN. The larger the area in the figure, the more mapping targets clustered to this biological function.
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FIGURE 6 | KEGG enrichment analysis results of TW-treated DN (6A) the KEGG pathway of TW in the treatment of DN. The horizontal axis represents the
proportion of gene enrichment, the vertical axis represents different pathways, and the number on the bar chart is the number of target genes in this pathway. (6B) The
relationship between the pathways with a significant degree of enrichment. The same color indicates biological processes with similar functions, and the bolded labels
indicate pathways with a significant degree of enrichment (6C) The enrichment of pathways closely related to the treatment of DN by TW was further screened on
the basis of B6. (6D) The proportion of each enrichment result.
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In this study, it was found that AKT1 was directly linked to 51
of the 64 screened pathways, which may be one of the important
targets for TW to regulate multiple pathways. AKT1 is a serine/
threonine kinase that can regulate insulin metabolism. In
addition, AKT1 is an important factor in the PI3K/AKT
pathway and it plays an important role in regulating glucose
homeostasis, lipid metabolism, protein synthesis, and cell survival
(Fischer-Posovszky et al., 2012; Huang et al., 2018). Further
studies (Heljić and Brazil, 2011) showed that AKT1 is an
important regulator of TGF-β1-mediated biological processes,
and it can stimulate the regulatory transduction systems in renal
cells, such as Smad and mTOR, and regulate various cells, such as
popopocytes, mesangial cells and renal tubular epithelial cells.

Targets such as VEGFA, CXCL8, and TNF are all
proinflammatory factors, and they jointly participate in the
chronic inflammatory response process of DN. Among them,
VEGFA is the main contributor to the development of new
blood vessels, and it is also a proinflammatory cytokine (Fatima
et al., 2017), which is closely related to kidney inflammation (Lavoz
et al., 2020). It is a protein secreted by podocytes and is necessary for
the survival of endothelial cells, podocytes andmesangial cells (Tufro

and Veron, 2012). VEGF-A regulates the signal transduction of the
slit membrane and the shape of the podocyte through its interaction
with the VEGF receptor 2-nephrin-nck-actin, which is essential for
maintaining the glomerular filtration barrier (Tufro and Veron,
2012). In the diabetic state, VEGF is significantly upregulated and it
participates in podocyte pathology, especially proteinuria (Hanefeld
et al., 2016; Bus et al., 2017; Lavoz et al., 2020). Animal studies have
shown that when inhibiting the activity of VEGF, proteinuria is
significantly improved (Vriese et al., 2001; Flyvbjerg et al., 2002; Sung
et al., 2006). The combination of CXCL8 and its CXC chemokine
receptors (CXCR1 and CXCR2) can recruit neutrophils to infiltrate
and induce tissue inflammation. Studies (Cui et al., 2017) have
proven that blocking CXCR 1/2 can alleviate diabetic mouse kidney
inflammation and renal fibrosis. As a proinflammatory factor, TNF
is involved in the process of the chronic inflammatory response in
DN (Navarro and Mora-Fernández, 2006; Sun and Kanwar, 2015).

Both NOS3 and PTGS-2 are enzymes that participate in the
inflammatory response by catalysing inflammatory factors. NOS3
catalyses the production of nitric oxide (NO), which is closely
related to endothelial cell function, and vascular endothelial
dysfunction has been considered an important factor in the

Figure 6. | (Continued).
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pathogenesis of DN (Zeng et al., 2010). Other studies have shown
that the polymorphism of the NOS3 gene is related to the rapid
deterioration of renal function in CKD patients (Medina et al.,
2018); PTGS-2 is a key enzyme in the initiation of prostaglandin
synthesis in vivo and is a major target of NSAIDs for treatment
(Vane, 1971; Flower, 1974). It mainly causes diabetic renal
damage by mediating inflammation and affecting renal
haemodynamics (Morham et al., 1995; Martín-Sanz et al.,
2006). In addition, PTGS-2 is responsible for maintaining
kidney homeostasis function and it is involved in salt
absorption, fluid regulation volume and blood pressure
(Martín-Sanz et al., 2006).

Both fibronectin (FN) and matrix metalloproteinases (MMPs)
play a role in the treatment of DN by affecting extracellular
matrix (ECM) proteins. The early pathological features of DN are
glomerular hypertrophy, basement membrane thickening and
mesangial dilatation, and late stages involve glomerular sclerosis
and interstitial fibrosis. Excessive accumulation of ECM is the
common pathological basis and it eventually causes glomerular
sclerosis. FN, an important component of the ECM, is distributed
in the glomerular basement membrane, mesangial membrane
and plasma. The abnormal increase in fibronectin in the ECM
plays an important role in the pathogenesis of DN (Eddy, 1996;
Sharma et al., 1996). MMPs affect the decomposition and
conversion of ECM proteins (Li et al., 2014). In addition,
"in vitro" and animal studies have shown that renal fibrosis is
positively correlated with the expression and activation of MMPs,
and urine MMP-1, -2, -9 excretion and the urine MMP-1, -2, -9/
TIMP–1 ratio can be used as early biomarkers of renal fibrosis
(Ahmed et al., 2007; Hirt-Minkowski et al., 2014; Bieniaś and
Sikora, 2018). CREB1 is closely related to FN. In the early stage of
DN, CREB1 increases the production of FN by binding to the

promoter of the fibronectin gene, leading to the accumulation of
FN, decreased glomerular sclerosis filtration (Singh et al., 2001),
and renal tubulointerstitial fibrosis (Visavadiya et al., 2011).
CREB1 is overactivated during diabetes, leading to fasting
hyperglycaemia. Blocking the expression of enzymes by CREB
is another strategy for the treatment of diabetes and its
complications (Benchoula et al., 2021).

STAT1, RELA, JUN, are all transcription factors. STAT1 is a
member of the STAT family and it acts as a signaling messenger
and transcription factor (Begitt et al., 2014). It regulates the
expression of genes related to cell proliferation, oxidative stress
and apoptosis (Bowman et al., 2000; Ramana et al., 2000; Stark
and Darnell, 2012). In the inactivated state, STAT1 can reverse
podocyte injury triggered by high glucose and it plays a key role in
renal fibrosis and apoptosis (Huang et al., 2019). There are also
related reports that STAT1 knockdown can inhibit cell death,
which highlights the importance of STAT1 as a new treatment for
renal fibrosis (Wang S. et al., 2018); RELA and JUN are involved
in the inflammatory response and renal fibrosis in the process of
DN, and their activity can be mediated by the MAPK pathway
(Turpaev, 2006; Sanchez and Sharma, 2009).

PPARG involves the expression of various genes, such as
insulin sensitivity, and it plays an important role in glucose
and lipid metabolism (Kroker and Bruning, 2015; Ya-Fei,
2019). Recent studies (Kroker and Bruning, 2015) have shown
that some PPARG agonists retain insulin sensitization with few
side effects and are widely used in the treatment of type 2 diabetes
mellitus; ESR includes ESR1 and ESR2, and most of the effects of
oestrogen are mediated by ESR1. The combination of oestrogen
and ESR1 can reduce the synthesis of angiotensin 2 and
endothelin, thereby inhibiting renal vasoconstriction and
reducing renal inflammation (Bupp, 2015). In addition,
oestrogen can also promote the expression of MMP-2 and
stimulate the synthesis of MMP-9, thereby reducing the level
of endothelial cell fibrosis and improving DN (Guccione et al.,
2002). TP53 is an important tumour regulatory gene. There are
few studies related to DN at present, but it may be a new research
direction. The acquisition of these target proteins provides a
reference for the clinical diagnosis and treatment of DN.

Discussion of Signalling Pathways
The results of KEGG pathway enrichment analysis showed that
the pathways of TW in treating DN were mainly enriched in five
categories: inflammatory response, oxidative stress and immune
regulation, anti-vascular disease, insulin resistance, renal fibrosis
and apoptosis.

First, the inflammatory response, oxidative stress and immune
regulation: Although the pathogenesis of DN is not yet fully
understood, it is certain that oxidative stress, inflammation, and
immunity play an important role in the occurrence and
development of DN (Zhang B. et al., 2019). Inflammation is
considered to be an important mechanism in the pathogenesis of
DN, mediated by oxidative stress, transcription factors (including
nuclear factor κB (NF-κB) and inflammatory cytokines (including
Toll-like receptors, chemokines, plasma molecules and
proinflammatory cytokines). In addition, activated innate
immunity and inflammation are closely related to the pathogenesis

TABLE 3 | The binding energy values of core compounds of TW and core targets.

Target Compounds Binding energy/(kcal/mol)

AKT1(3cqw) Kaempferol –8.1
AKT1(3cqw) Triptolide –8.1
AKT1(3cqw) Nobiletin –7.7
AKT1(3cqw) Beta-sitosterol –8.2
AKT1(3cqw) Tripterine –8.7
AKT1(3cqw) Stigmasterol –9.3
AKT1(3cqw) Triptoditerpenic acid B –8.1
AKT1(3cqw) Triptinin B –8.7
TP53(3dcy) Kaempferol –8
TP53(3dcy) Triptolide –8.3
TP53(3dcy) Nobiletin –8.9
TP53(3dcy) Beta-sitosterol –9.5
TP53(3dcy) Tripterine –8.6
TP53(3dcy) Stigmasterol –9.3
TP53(3dcy) Triptoditerpenic acid B –7.6
TP53(3dcy) Triptinin B –8.3
VEGFA(5dn2) Kaempferol –7.8
VEGFA(5dn2) Triptolide –9
VEGFA(5dn2) Nobiletin –7.3
VEGFA(5dn2) Beta-sitosterol –7.5
VEGFA(5dn2) Tripterine –7.7
VEGFA(5dn2) Stigmasterol –7.7
VEGFA(5dn2) Triptoditerpenic acid B –7.6
VEGFA(5dn2) Triptinin B –8.5
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of DN (Baelde et al., 2004). ① NF-κB signalling pathway: When
excessive reactive oxygen species (ROS) are produced in the kidney
tissue of diabetic patients, oxidative stress occurs (Sharma et al., 2019),
and the excessive accumulation of oxidized products and unbalanced
scavenging ability cause changes in the level of oxidative stress, and
then activate the nuclear factor NF-κB. NF-κB is the core factor of
inflammation. Activated NF-κB is phosphorylated and transferred
from the cytoplasm to the nucleus, causing an inflammatory response,
which in turn leads to DN (Yao et al., 2019). The NF-κB pathway not
only plays an important role in renal injury but is also one of themost
important pathways in improving the podocyte migration induced by

high glucose, decreasing the podocyte protein flow rate, and
protecting podocyte filtration barrier function (Xiao-wen, 2016).
② AGE-RAGE signaling pathway: The advanced glycosylation
end products (AGEs)-receptor of AGEs (RAGE) signalling
pathway is an important part of the development of DN and can
cause chronic inflammation and oxidative stress in renal tissues. In
addition, RAGE activation leads to the activation of different
intracellular signalling pathways, such as PI3K/Akt, MAPK/ERK
and NF-κB. At present, blocking the formation of the
AGE–RAGE axis has become a new treatment strategy (Sanajou
et al., 2018).③HIF-1 signalling pathway: Hypoxia inducible factor 1

FIGURE 7 | Molecular docking diagram of TW core compounds and AKT1.
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(HIF-1), a transcription factor, is also the only specific transcription
factor that can exert biological activity under hypoxic conditions
(Zhang et al., 2017). It can be used as the main regulator of oxygen
homeostasis to help cells adapt to hypoxic environments and prevent
cell damage caused by hypoxia (Richard et al., 2000; Haddad and
Land, 2001; Fukuda et al., 2002).④ The TNF pathway can promote
the adhesion and aggregation of inflammatory factors, induce an
inflammatory response, participate in microvascular lesions, and
eventually damage glomerular tissue (Rakitianskaia et al., 2013).
Tumour necrosis factor (TNF-a) in this pathway is a cytokine
with a significant proinflammatory effect. It can cause toxic
damage, apoptosis and cell necrosis of kidney cells (Laster et al.,
1988; Bertani et al., 1989; Boyle et al., 2003). In addition, TNF-a does
not rely on haemodynamicmechanisms to promote the production of

reactive oxygen species, which ultimately leads to changes in the
glomerular capillary wall and increased permeability of albumin
(McCarthy et al., 1998). ⑤Leukocyte transendothelial migration:
Different types of activated white blood cells play a crucial role in
the pathogenesis ofmost kidney diseases, from acute to chronic. It has
been reported that intercellular adhesion molecule 1 and chemokines
CCL2 and CX3CL1 may be involved in leukocyte migration in DN
(Galkina and Ley, 2006). ⑥ PI3K-Akt, FoX0 and ErbB signalling
pathways: The PI3K-Akt signalling pathway is a key pathway for
inhibiting cell apoptosis (Rogacka et al., 2014). It participates in the
TGF-3 mediated oxidative stress response of glomerular mesangial
cells with the FoX0 pathway (Kato et al., 2006), and the ErbB pathway
is an important upstream component of the PI3K-Akt pathway (Pan
and Dobrowsky, 2013).⑦ IL-17, NF-κB, VEGF, and chemokines are

FIGURE 8 | Molecular docking diagram of TW core compounds and TP53.
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involved in the chronic inflammatory response, and their mediated
pathways may cause damage to glomerular endothelial cells and
vascular endothelial function (García-García et al., 2014). ⑧ The
T cell receptor, Toll-like receptor (TLR) (Lin et al., 2012) , NOD-like
receptor (NLR) (Nielsen et al., 2017), C-type lectin receptor (CLR),
FcεRI (Horn et al., 2001; Hamdy et al., 2018) and other immune-
related pathways are also closely related to inflammation (Wada and
Makino, 2016; Sharma et al., 2018). Damaged kidney cells can trigger
an immune system response, activate a variety of immune pathways,
promote the synthesis of inflammatory cytokines, trigger chronic
inflammation in the kidney, and lead to the occurrence and

progression of DN. ⑨ MAPK pathway: The long-term high
glucose state can also activate the MAPK pathway, which can
cause or accelerate the progression of DN by participating in the
processes of renal cell apoptosis, transdifferentiation and immune
inflammatory response under stress (Elsherbiny and Al-Gayyar,
2013).

Second, improving vascular disease: DN is a progressive
microvascular complication caused by diabetes (Fox et al.,
2005) and is generally considered to be the result of the
interaction between haemodynamics and metabolic factors
(García-García et al., 2014). ① VEGF signalling pathway:

FIGURE 9 | Molecular docking diagram of TW core compounds and VEGF.
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VEGF can promote the proliferation of vascular endothelial cells,
angiogenesis, and vasodilation and increase vascular permeability
(Hyder et al., 1998; Leung et al., 1989); VEGF is also a potential
mediator of glomerular filtration and proteinuria. On the one
hand, excessive production of VEGF-A by diabetic podocytes in
an environment of low endothelial NO is considered to be the
main driving force of DN (Takahashi et al., 1998; Tufro and
Veron, 2012). On the other hand, in the residual kidney model,
VEGF treatment reduced the development of primary
glomerulosclerosis and interstitial fibrosis (Kang et al., 2001).
In the type 2 experimental model, VEGF antibody treatment
improved both the typical early characteristics of DN and late

renal changes (Flyvbjerg et al., 2002). ② Relaxin signalling
pathway: the relaxin pathway has the effects of relaxing blood
vessels, regulating extracellular matrix, and anti-fibrosis and
angiogenesis activities (Xie et al., 2015); and ③ the fluid shear
stress and atherosclerosis signalling pathway.

Third, insulin resistance: Insulin resistance signalling pathway:
Insulin resistance (IR) is an independent risk factor for the
occurrence and development of DN (Tahara and Takasu,
2018). In the early stage of DN—microalbuminuria (MA),
studies (Tucker et al., 1992) have shown that in patients with
type 2 diabetes, the diagnosis of hyperinsulinemia may lead to
hyperfiltration and trigger MA. With the further development of

FIGURE 10 | Key mechanisms of TW in the treatment of DN patients. The activation is marked with an arrow, and the inhibition is marked with a vertical line at the
top of the arrow.
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DN, IR worsens, and among other factors, it may accelerate the
decline of renal function to end-stage renal disease (ESRD)
(Svensson and Eriksson, 2006). Jung Eun Kim et al. showed
through animal experiments that improving insulin resistance in
db/db mice can protect kidney function (Kim et al., 2013).

Fourth, renal fibrosis: The formation mechanism of renal
fibrosis is mainly divided into transforming growth factor
expression, extracellular matrix deposition, epithelial
mesenchymal transformation, inflammatory response, and
oxidative stress response (Eddy, 2000; Meng et al., 2014;
Sutariya et al., 2016). The NF-κB pathway is a widely studied
inflammatory pathway associated with renal fibrosis. PI3K-Akt
and HIF-1 play a key role in epithelial-mesenchymal
transformation (Higgins et al., 2007; Liu et al., 2016). ① HIF-1
signalling pathway: Hypoxia is considered to be an important
microenvironmental factor in the development of tissue fibrosis.
Under the long-term high glucose load of DN, the oxygen
consumption of renal tissue increases (Takiyama and Haneda,
2014), while the formation of renal interstitial fibres induced by
chronic hypoxia are mainly mediated by HIF-1 (Pan et al., 2013;
Liu et al., 2017). It consists of two subunits: HIF-1alpha (HIF-1a)
and HIF-1beta (HIF-1b). Under hypoxia, HIF-1α induces the
upregulation of p53, inhibits the progression of the cell cycle,
leads to the accumulation of G2/M cells, activates the fibrotic TGF-
β and CTGF-mediated signalling pathways, leads to the production
of extracellular matrix, and promotes renal tubulointerstitial
fibrosis (Kietzmann et al., 1999; Higgins et al., 2003; Liu et al.,
2017; Liu et al., 2019).② PI3K-Akt is an important factor involved
in causing kidney damage in DN (Liu et al., 2016). Blocking the
PI3K/AKT pathway in db/db mice can reduce tubular interstitial
fibrosis (Yiu et al., 2018). ③ Focal adhesion (FA): FA is an
important mediator of the interaction between the endothelial
cytoskeleton and ECM transmembrane receptors, integrins and
integrin-related intracellular proteins. The role of endothelial FA in
diabetic nephropathy has only recently been studied (Infusino and
Jacobson, 2012; Elad et al., 2013). Decreasing the expression of FA
can reduce the risk of renal fibrosis (Yan et al., 2019). In addition,
preventing the reduction of focal adhesions can reduce the loss of
podocytes (Yan et al., 2019). FA is also a recognized therapeutic
target for proteinuria nephropathy (Yan et al., 2019).

Fifth, apoptosis: TW regulates the cell cycle by regulating
apoptosis and cellular senescence pathways, thereby playing a
role in the treatment of DN.

Further analysis of the enrichment pathways revealed that the top
9 pathways with the highest proportion of hit genes were AGE-
RAGE (18.00%), VEGF (13.56%), HIF-1 (12.00%), fluid shear stress
and atherosclerosis (11.43%), IL-17 (11.83%), relaxin (10.77%), TNF
(10.00%), Fc epsilon RI signaling pathway (8.82%), and insulin
resistance (8.33%). The age-rage, VEGF, HIF -1, relaxin, TNF, and
insulin resistance pathways were selected to draw the cell pathway
diagram, as shown in Figure 10. As seen from the figure, the
pathways are closely related and are involved in the regulation of
the inflammatory response, inflammatory-mediated synthesis,
antifibrosis, vascular remodelling, extracellular matrix
remodelling, and the reduction of glycogen production. Among
them, Akt is an important target. In conclusion, TW may inhibit
HIF-1, VEGF, TNF-A and other influencing factors through

signalling pathways such as AGE-RAGE, VEGF, HIF-1,
relaxation, TNF and insulin resistance, thereby reducing the
inflammatory response, antioxidant stress, regulating immune
regulation, inhibiting angiopathy, delaying renal fibrosis, repairing
podocytes and finally delaying the progression of DN.

CONCLUSION

TW has complex chemical components and extensive
pharmacological activities. Compared with
immunosuppressant, TW has definite efficacy and fewer side
effects and adverse reactions. It is widely used in autoimmune
diseases and various skin diseases, and is one of the hot natural
drugs in the research at home and abroad. This article provides
theoretical support for TW to treat DN from the molecular
biology level. At the same time, this paper also focuses on the
plant itself rather than the extract of TW, aiming to promote
further research and provide directions for finding new
therapeutic targets.

In summary, a total of 52 active ingredients of TW were
screened, with 141 predicted targets, 755 targets for DN,
49 potential targets for TW treatment of DN and 12 key active
ingredients. The key compounds are mainly terpenes, of which
kaempferol and nobiletin are flavonoids, which highlights the fact
that flavonoids cannot be ignored in the study of the efficacy of
TW. These compounds affect VEGFA, TP53, PTGS2, TNF,
MMP9, Jun, FN1, CXCL8, NOS3, PPARG and other core
targets through AGE-RAGE, VEGF, HIF-1, IL-17, relaxin,
insulin resistance, TNF and other signalling pathways. Reducing
the inflammatory response and antioxidant stress, regulating
immunity, improving vascular disease, reducing insulin
resistance, delaying renal fibrosis, repairing podocytes, blocking
cell apoptosis and other processes jointly improve DN. TW has
complex chemical components and extensive pharmacological
activities. Compared with immunosuppressants, TW has
definite efficacy and fewer side effects and adverse reactions. It
is widely used in treating autoimmune diseases and various skin
diseases and is a popular natural drug in research. This article
provides theoretical support for TW to treat DN at the molecular
biology level. At the same time, this paper also focuses on the plant
itself rather than the extract of TW, aiming to promote further
research and provide directions for finding new therapeutic targets.
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