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Abstract: Continuous rhythmic neuronal oscillations underpin local and regional cortical communication.
The impact of the motor system neurodegenerative syndrome amyotrophic lateral sclerosis (ALS) on the
neuronal oscillations subserving movement might therefore serve as a sensitive marker of disease activity.
Movement preparation and execution are consistently associated with modulations to neuronal oscillation
beta (15–30 Hz) power. Cortical beta-band oscillations were measured using magnetoencephalography
(MEG) during preparation for, execution, and completion of a visually cued, lateralized motor task that
included movement inhibition trials. Eleven “classical” ALS patients, 9 with the primary lateral sclerosis
(PLS) phenotype, and 12 asymptomatic carriers of ALS-associated gene mutations were compared with
age-similar healthy control groups. Augmented beta desynchronization was observed in both contra- and
ipsilateral motor cortices of ALS patients during motor preparation. Movement execution coincided with
excess beta desynchronization in asymptomatic mutation carriers. Movement completion was followed by
a slowed rebound of beta power in all symptomatic patients, further reflected in delayed hemispheric later-
alization for beta rebound in the PLS group. This may correspond to the particular involvement of inter-
hemispheric fibers of the corpus callosum previously demonstrated in diffusion tensor imaging studies. We
conclude that the ALS spectrum is characterized by intensified cortical beta desynchronization followed by
delayed rebound, concordant with a broader concept of cortical hyperexcitability, possibly through loss of
inhibitory interneuronal influences. MEG may potentially detect cortical dysfunction prior to the develop-
ment of overt symptoms, and thus be able to contribute to the assessment of future neuroprotective strate-
gies. Hum Brain Mapp 38:237–254, 2017. VC 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
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INTRODUCTION

The neurodegenerative disorder amyotrophic lateral scle-
rosis (ALS) is characterized clinically by progressive motor
neuronal system degeneration from cortex to muscle. It is
now understood to have multiple aetiologies [Turner and
Swash, 2015] and shares clinical, pathological, and genetic
overlap with frontotemporal dementia (FTD) [Phukan et al.,
2012]. The term primary lateral sclerosis (PLS) encompasses
a very slowly progressive phenotype with pure upper motor
neuron (UMN) degeneration [Pringle et al., 1992]. The
improved characterization of the genetic substrate for famil-
ial ALS now enables the study of asymptomatic mutation
carriers predisposed to developing ALS [Benatar et al.,
2013]. Identification of the earliest pathological events might
inform future therapeutic efforts to slow disease progression
prior to irreversible neuronal injury.

Neuroimaging has been at the forefront of the drive to
explore in vivo cerebral pathology in ALS, concurrently
developing candidate biomarkers [Turner and Verstraete,
2015]. Abnormal cortical functional connectivity, typically
appraised by coherent fluctuations in the task-free blood
oxygen level-dependent (BOLD) functional MRI signal, is
linked to structural cerebral pathology in ALS [Douaud
et al., 2011; Schmidt et al., 2014]. Reflecting the pathologi-
cal overlap between ALS and FTD, some network specific
connectivity changes are shared across these highly related
diseases [Trojsi et al., 2015]. Abnormal increased functional
connectivity has been demonstrated within specific cortical
subregions [Agosta et al., 2013; Douaud et al., 2011; Zhou
et al., 2014], perhaps underpinned by cortical hyperexcit-
ability. This potentially pathogenic mechanism is also
implicated by abnormal responses to transcranial magnetic
stimulation (TMS) [Vucic et al., 2013b], which may reflect
loss of cortical inhibitory interneuronal influences [Turner
and Kiernan, 2012; Turner et al., 2005a,b].

Direct noninvasive recording of cortical neurophysiology
supplements existing functional MRI findings by harnessing
millisecond temporal precision at the expense of reduced spa-
tial resolution. The cortical neuronal dynamics underlying
motor performance can be ascertained with particularly high
sensitivity using magnetoencephalography (MEG) [Proudfoot
et al., 2014a,b]. Movement preparation and execution are con-
sistently associated with modulations to motor and premotor
neuronal oscillation power, particularly within the beta-band
(15–30 Hz) [Pfurtscheller and Lopes Da Silva, 1999]. Beta-band
limited power is initially reduced (alternatively described as
desynchronization) but after movement termination a relative

increase (or synchronization) in power follows, accompanied
by fluctuation in corticospinal excitability [Chen et al., 1998;
Fry et al., 2016; Kilavik et al., 2013]. MEG allows neural signal
analysis from anatomically precise cortical structures. As well
as their potential as biomarkers, such signals are of heightened
relevance in ALS given their proposed use as a user input to
brain-computer interfaces in the advanced stages of disability
[Grosse-Wentrup and Sch€olkopf, 2014; Kasahara et al., 2012].

Two electroencephalographic (EEG) studies directly con-
sidered the effect of ALS on these important neurophysio-
logical markers of cortical activation. Reduction in cortical
postmovement synchronization (termed postmovement
beta rebound, PMBR) was identified in both studies, but
conflicting conclusions drawn regarding the integrity of
peri-movement event-related desynchronization (ERD)
[Bizovičar et al., 2014; Riva et al., 2012]. This study applied
the combined temporal and spatial resolution uniquely
afforded by MEG to a group of both typical ALS and PLS
patients. The central hypothesis was that alterations to cor-
tical beta-band oscillations may reflect pathological cortical
hyperexcitability, which is an early and distinguishing fea-
ture of ALS and related phenotypes (Geevasinga et al.,
2015a,b]. A group of asymptomatic ALS gene mutation
carriers (AGCs) was included to appraise the sensitivity of
MEG in the detection of cortical pathology prior to the
development of overt symptoms.

METHODS

Participants

Apparently sporadic ALS and PLS patients (i.e., without
a family history of ALS or FTD), both prevalent and inci-
dent cases, were recruited from a tertiary referral clinic as
a component of the Oxford Study for Biomarkers in Motor
Neurone Disease (“BioMOx”). Diagnosis was confirmed by
one of two experienced neurologists (MRT, KT) according
to consensus criteria [Brooks et al., 2000; Gordon et al.,
2006]. Six of the ALS patients were taking Riluzole at the
time of study. Healthy controls, typically spouses of
patients, were similar in age, handedness, and level of
education. AGCs included were recruited locally, and
through collaboration with the presymptomatic Familial
ALS (Pre-FALS) study (MB, JW) [Benatar and Wuu, 2012],
participants in which travelled to Oxford for both MEG
and MRI. Demographics for all participant groups are
detailed in Table I.
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Clinical and cognitive assessments (MRT and MP) were
performed on the same day as MEG acquisition (MRT, GR,
and MP). Contemporaneous T1-weighted structural MRI
scans were acquired for coregistration with the MEG data
(3T Siemens Trio, MPRAGE sequence). Three ALS patients
were unable to tolerate MRI, and a standard Montreal Neu-
rological Institute (MNI) template was instead used for
MEG coregistration. An additional healthy control was
excluded due to incidental white matter changes. Disability
was assessed using the revised ALS Functional Rating Score
(ALSFRS-R, range 0–48, lower scores reflecting greater dis-
ability). Cognitive function was predominantly assessed
using the Edinburgh Cognitive and Behavioral ALS Screen
(ECAS) [Abrahams et al., 2013], or the revised Adden-
brooke’s Cognitive Examination (ACE-R) [Mioshi et al.,
2006] for those cases studied prior to development of the
ECAS. Rate of disability progression (DALSFRS-R) was cal-
culated as the decrease in ALSFRS-R from a presumed base-
line score of 48, divided by the disease duration in months
from reported symptom onset. A measure of the burden of
clinical UMN signs was based upon a pathological reflex
sum score [Menke et al., 2014; Turner et al., 2004]

All participants provided written informed consent. The
study was approved by the National Research Ethics Ser-
vice South Central Oxford Research Ethics Committee B
(08/H0605/85), and South Central Berkshire Committee
(14/SC/0083).

Task Design

A Go-NoGo task was designed (ACN and GR) to inves-
tigate neural activity related to spatially selective motor

preparation. Monochromatic visual cues, with one side
shaded indicating the hand to be moved, were presented
foveally for 200 ms, followed by an interstimulus interval
(ISI) of either 1 or 2 s, during which a central fixation cross
remained. After the variable time period of lateralized
motor preparation, the fixation cross was replaced by
either a green “Go” circular target in 80% of trials, or a
red “NoGo” target in 20% (randomly distributed; Fig. 1).
Participants were instructed to make rapid responses to
just the “Go” targets by lifting and replacing the index fin-
ger of only the prepared hand. Trials were randomly dis-
tributed in laterality and ISI duration. A maximum of
three blocks of 100 trials (median intertrial interval 6.25 s)
were acquired per participant. Fatigue limited acquisition
to two blocks in one PLS patient. Each block lasted �12
min. Stimuli were created on Matlab and presented via the
Psychtoolbox package [Brainard, 1997].

TABLE I. Demographic and clinical data

Mean 6 SD (range) ALS (n 5 11) PLS (n 5 9)
Asymptomatic genetic

carriers (n 5 12)
Controls old

(n 5 10)
Controls young

(n 5 10)

Age (years) 63.5 6 7.6 (48:74) 59.6 6 8.0 (44:70) 51.7 6 9.9 (36:66) 61.7 6 9.3 (45:75) 51.0 6 9.5 (37:64)
Gender 9 M: 2 F 2 M: 7 F 2 M: 10 F 4 M: 6 F 3 M: 7 F
Handedness 11 R 9 R 12 R 9 R: 1 L 8 R: 2 L
Site of onset or

genetics

1 bulbar 1 bulbar 10 SOD1 N/A N/A
2 respiratory 2 both legs 2 C9orf72

1 RUL, 3 LUL 1 RLL, 5 LLL
2 RLL, 2 LLL

ALSFRS-r 34.8 6 8.8 (21:48) 35.1 6 6.3 (24:43) N/A N/A N/A
Disease Duration

from Symptom
Onset (months)

23.7 6 18.9 (5:72) 121.0 6 57.2 (47:283) N/A N/A N/A

Progression Rate

(48 – ALSFRS-R/
duration in months)

0.79 6 0.69 (0:2.4) 0.12 6 0.06 (0.05:0.46) N/A N/A N/A

Cognition score (%
correct) Intact/
Borderline/
Impaired

84.8% 6 8.5 (69:95) 84.6% 6 9.4 (73:95) 91% 6 4.5 (80:97) 96 .1% 6 3.1 (91:100) 96.3% 6 2.4 (92:99)
(10 ECAS, 2 ACE-r)

8/1/2
(8 ECAS, 1 ACE-r)

5/1/3
(11 ACE-r) (9 ACE-r) (8 ACE-r)

Mean followed by SD (range). Genetic data only available for AGCs.

Figure 1.

Task design schematic demonstrating visual cues instructing lat-

eralized motor preparation for 1 or 2 s (dependent on cue

style) followed by response only to green Go targets. [Color fig-

ure can be viewed at wileyonlinelibrary.com.]
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MEG Data Acquisition

Behavioral responses were measured using a fiber-optic
sensing device, and confirmed by off-line inspection of surface
electromyography (EMG) traces recorded from the extensor
digitorum communis. To ensure that participants were
engaged in motor preparation, only those trials in which cor-
rect responses were confirmed were included in subsequent
analyses. Visual fixation and blinks were monitored using an
infrared eyetracker (Eyelink 1000) as well as vertical and hori-
zontal EOGs, and subsequently checked off-line.

MEG data were acquired at the Oxford Centre for Human
Brain Activity (OHBA) on a passively shielded Elekta Neu-
romag system comprising 204 orthogonally oriented planar
gradiometers and 102 magnetometers. Participants were
seated comfortably, 90 cm away from a back-projected
screen (Panasonic PT D77OOE). Continuous adjustment
was made for head position within the MEG helmet using
four emitting coils secured to the participant’s scalp. A Pol-
hemus 3D tracking system recorded coil positions relative to
nasion and preauricular fiducial landmarks, alongside dis-
tributed points covering the scalp surface. MEG data were
digitized at 1000 Hz with a 0.03 Hz highpass filter.

MEG Data Preprocessing

A locally developed analysis pipeline, OHBA Software
Library (MW), was used for analysis, incorporating Matlab
toolboxes from SPM12 (UCL, London, UK), FSL (FMRIB,
Oxford, UK), and FieldTrip (Donders, Nijmegen, NL).
Continuous MEG data were initially inspected to identify
noise-corrupted channels. Maxfilter software (Version 2.2,
Elekta) was then applied to the remaining channels for
Signal Source Separation and head position adjustment,
transforming the data into a set of virtual sensors. Data
were then downsampled to 250 Hz, and physiological arte-
facts were identified and removed using an independent
component analysis classification tool based on visual
inspection of component spatial topography and time-
course [Baker et al., 2014]. Exactly two independent com-
ponents pertaining to (1) cardiac pulse and (2) eye-blink
were removed from each data set. Data were then epoched
according to the time-period of interest (including a one
second pre-cue baseline period) for subsequent analysis.
Alongside behaviorally incorrect trials and those with pre-
mature responses identified by surface EMG, epochs con-
taminated by artefact were identified by an automated
rejection tool, and removed from the analysis. This com-
prised 1.3% of trials, on average, over subjects. The tool
used a robust bisquare linear regression to fit for the mean
standard deviation in the data over trials. Any trials that
were down weighted by more than 99% points during the
regression were classed as outliers. Epochs were centred
on either (1) the preparatory cue, to investigate neural cor-
relates of motor preparation, (2) response time (RT), to
investigate motor execution while accounting for differ-
ences in reaction time, (3) movement termination time, to

investigate PMBR, or (4) target appearance, to investigate
successfully withheld “NoGo” trials.

Source Analysis

A linearly constrained minimum variance scalar beam-
former [Robinson and Vrba, 1999; Van Veen et al., 1997]
was used via a single-shell forward model [Sarvas, 1987]
to project preprocessed MEG data, bandpass filtered
between 15 and 30 Hz, onto a regular 3D grid spanning
the entire brain. Estimates of the data covariance matrix
were regularized by removing the weakest PCA compo-
nents [Woolrich et al., 2011] to leave only 61 (the approxi-
mate rank of the data after the use of Maxfilter and
removal of two ICA components pertaining to (a) ECG
and (b) eye-movement artefacts). Cue, response and move-
ment termination locked epochs were then inspected
across 8-mm whole-brain grids to locate subject specific,
functionally defined regions of interest (ROIs) correspond-
ing to cortical motor regions: for each subject, the MNI
coordinates separately pertaining to either the maximal
preparatory ERD, response ERD or PMBR were selected
for each hemisphere (locations depicted in Supporting
Information Figure S1). Neural signals from these pairs of
voxels were carried forward from each subject for compar-
ison of timecourse dynamics. Note that an alternative anal-
ysis using the first principal component of the signals
from the surrounding voxels within an 8 mm radius,
yielded similar results (data not shown).

Time-frequency transformations as implemented in the
FieldTrip toolbox (www.fieltriptoolbox.org) were then
applied. Hanning tapers of length 300 ms at 50 ms inter-
vals within a frequency range 4–45 Hz were used to reveal
the spectral distribution of ERD/S, and multitapers cen-
tered at 21.5 Hz with 8.5-Hz frequency smoothing were
used to display the timecourse of beta-band power. Sum-
mary values for preparatory beta ERD (baselined mean
value over 0–1.2 s post-cue), response ERD (6200 ms
around response), baselined PMBR (0.15–1.5 s from
response completion) were generated per participant from
the respective ERD or PMBR ROI data for subsequent clin-
ical correlation. Cluster-based permutation statistics as
implemented in FieldTrip [Maris and Oostenveld, 2007]
were used to compare the main task effects between par-
ticipant groups. For exploration of non-normal outcome
measures, Kendall’s Tau was chosen to assess the (uncor-
rected) 2-tailed significance of correlations (SPSS, IBM).

Whole-brain source-space data (beta-band, 15–30 Hz)
were also compared across groups using a mass univariate
trial-wise general linear model (GLM) approach [Hunt
et al., 2012; Woolrich et al., 2009]. The trial-wise GLM con-
sisted of different regressors that picked out the trials that
corresponded to left and right lateralization, and “NoGo”
and “Go” conditions. First-level (within-subject) contrasts
of parameter estimates (COPEs), were then calculated
comparing either left or right lateralized effect against
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baseline, or successfully withheld “NoGo” effect either
against baseline or against “Go” effect. The first-level
COPES were averaged over repeated sessions to compute
subject-level means, which were in turn passed into the
group-level subject-wise GLM. Group-level regressors
were set to model the group means and group contrasts
set to detect group differences using unpaired t-tests. Prior
to passing subject-level COPEs to the group-level analysis,
they were transformed such that only left-hand prepara-
tion/response source-space COPEs were flipped around
the medial surface (i.e., around the x-axis in MNI coordi-
nates). This enabled merging of both response lateralities
into contra-lateral and ipsi-lateral hemispheres, relative to
the effector limb. 4D spatiotemporal maps were averaged
across selected time windows of interest, corresponding to
the all-subjects combined group’s maximal ERD following
appearance of cue/target, or corresponding to (individual
trial specific) response onset/offset. The resulting 3D maps
were compared between groups using cluster-based per-
mutation statistics (Randomize, FSL), with a pre-defined
cluster-forming threshold (t-stat 5 2.4) and 10,000 permuta-
tions with 100-mm of spatial smoothing applied to the var-
iance of the COPE to improve the effective degrees of
freedom. Given the strong a priori expectation that group
differences would be prominent within the motor cortices,
group comparison was restricted to an anatomically con-
fined binary mask encompassing bilateral motor areas.

The extent to which PMBR was confined to the contra-
lateral motor cortex was investigated using three indepen-
dent measures of “degree of lateralization’ (DoL). Firstly,
dynamic beta power timecourses from each subject’s
motor ROI (as defined by trough beta ERD and subse-
quently by peak PMBR) were contrasted as a percentage
((contra-ipsi)/(contra 1 ipsi)] prior to group comparison
over time. Secondly, a 3D voxel-wise lateralization effect
was calculated over the time-averaged period of maximal
PMBR across all subjects (1:2.5s post movement), and over
a 400 ms window centered on each group’s peak PMBR
time-point. The resultant subject specific DoL spatial map
was contrasted between groups using cluster-permutation
tests as above.

Lastly, the correlation between fluctuations of beta pow-
er in the same PMBR time-period were assessed. Using
anatomical parcels (from the Harvard-Oxford cortical
structural atlas), time-courses for each motor cortex were
extracted by taking the first principal component over the
enclosed voxels, using an orthogonalization procedure to
correct for spatial leakage from surrounding anatomical
parcels [Colclough et al., 2015]. Correlations were taken
between the Hilbert power envelopes of these corrected
signals and converted to normal variates with Fisher’s
transformation. These correlations were averaged within
subjects and contrasted between groups, performing infer-
ence with 5000 permutations of the subject labels.

The expected oscillatory signature of response inhibition
has been shown to involve an augmentation of beta power

relative to unsuccessful inhibition [Huster et al., 2013]. The
parcellation, orthogonalization and correlation method
was additionally applied to an exploratory analysis of
“NoGo” trial epochs, assessing the functional connectivity
between the motor cortices and two anatomical regions
commonly implicated in response inhibition: the supple-
mentary motor area (SMA) and right inferior frontal cortex
(rIFC) [Aron et al., 2014].

Figure 2.

Behavioral data detailing task performance across groups. A:

PLS patients responded slower than older controls, P 5 0.016.

B: A trend towards more NoGo errors was made by pre symp-

tomatic carriers. C: Inverse efficiency, a global measure of task

performance (RT/NoGo proportion correct) was impaired in

the PLS group (P 5 0.022). Median values within participants,

mean values within group, error bars 5 SEM. Uncorrected for

multiple comparisons. [Color figure can be viewed at wileyonli-

nelibrary.com.]
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RESULTS

Demographic and Behavioral

Twelve ALS and 10 PLS patients underwent MEG acqui-
sition. One ALS participant was excluded from analysis
after failing to recognize the laterality of the cue. MEG

source space variance maps for one PLS participant
revealed heavy artefact contamination. Therefore MEG
data from the remaining 11 ALS patients (9 male, mean
age 63.5 6 7.6 years) were contrasted against nine patients
with PLS (2 male, 59.6 6 8.0 years) and 10 age-matched
healthy controls (4 male, 61.7 6 9.3 years). Twelve

Figure 3.

MEG data epoched around cue (t0 5 laterality cue appearance).

A: Neural correlate of task performance across frequency

range demonstrated in TFR (averaged across healthy controls

only) from motor cortex ROIs, contra/ipsilateral relative to

effector limb. Beta-band (15:30 Hz) power decrease (desynch-

ronization) from baseline (more intense desynchroniza-

tion 5 deeper blue) occurs during motor preparation,

particularly in the contralateral hemisphere, maximally 600 ms

post-cue. B,C: Beta-band power (relative to baseline) within

contralateral motor cortex ROI, group comparisons. D: ALS

patients show deeper beta desynchronization. t0 1 500 ms:

t0 1 700 ms. t stats in red/blue, motor cortex mask used for

statistics in green. Cluster correction within motor cortex

mask, not across groups. Vertical lines denote appearance of

visual laterality cue and go/Nogo target. [Color figure can be

viewed at wileyonlinelibrary.com.]
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Figure 4.

MEG data epoched around movement initiation (t0 5 response

execution). A: TFR (averaged across healthy controls) demon-

strates movement ERD (in blue) as a bilateral motor cortical

event. B,C: Beta-band power (relative to baseline) within con-

tralateral motor cortex ROI; group comparison. Vertical lines

indicate cue onset prior to median RT (distribution overlaid). D:

AGCs show deeper beta desynchronization [t0: t0 1 200 ms] rel-

ative to controls, with a directionally similar trend in ALS

patients. t stats in red/blue, motor cortex mask used for statis-

tics in green. Vertical lines denote appearance of Go target and

timing of response. [Color figure can be viewed at wileyonlineli-

brary.com.]
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Figure 5.

MEG data epoched around movement completion (t0 5 finger

replaced). A: TFR (averaged across healthy controls only) from

motor cortex ROIs relative to effector limb. Post Movement

Beta Rebound (PMBR, in red) is predominantly contralateral in

healthy controls. B,C: Beta-band power (relative to baseline)

within contralateral motor cortex ROI; group comparison.

Black bar 5 timespan of significant group difference via cluster

permutation testing, P< 0.05. Vertical lines denote appearance

of Go target, timing of response initiation and completion. D:

ALS patients demonstrate lower beta power in early transition

to PMBR [t0 1 500 ms: t0 1 700 ms]. t-stats in blue, motor cor-

tex mask used for statistics in green. E: Beta-band power later-

alization evolves over time around a response, PLS patients

show a diminished DoL during PMBR (black bar, P< 0.05). F:

PMBR DoL appraised in whole-brain data [t0 1 1 s: t0 1 2.5 s].

PLS patients again show significantly reduced DoL. t-stats in

ROY-BIG-BL. [Color figure can be viewed at wileyonlinelibrary.

com.]
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asymptomatic gene carriers (AGCs; 2 male, 51.7 6 9.9
years, 10 SOD1, 2 C9orf72) were contrasted against another
age-matched selection of 10 healthy controls (3 male,
51.0 6 9.5 years). Six healthy controls were included in
both age comparators. Full details are given in Table I.

ALS patients tended to complete fewer correct “Go”
responses than other groups; mean 6 standard deviation
196 6 66 from a maximum possible 240 (healthy controls
228 6 18, P 5 0.14). An effect of group membership was
noted on RT, (F(4,42) 5 5.44, P 5 0.001, Fig. 2A), with PLS
patients responding the slowest (623 ms, significantly
slower than older controls, 440 ms, P 5 0.016) and AGCs
the fastest (377 ms, not significantly faster than younger
controls, 434 ms, P 5 0.17). Throughout the groups there
was a significant effect of ISI duration on RT, such that
participants were on average 35 ms faster following the
longer ISI (F(1) 5 19.0, P< 0.001). There was no group by
ISI duration interaction.

The AGC group mean for erroneous responses on
“NoGo”’ trials was the highest at 26.5%, although not sig-
nificantly more so than healthy controls (10.6%, P 5 0.08,
uncorrected, Fig. 2B). A global measure of task perfor-
mance, inverse efficiency, was calculated as RT/NoGo”
proportion correct. PLS patients performed worse relative
to older controls (P 5 0.022, uncorrected, Fig. 2C).

An increase in RT in the “Go” trials following a “NoGo”
trial by 20 ms on average was consistently seen across all
groups (Supporting Information Figure S2). This was an
expected behavioral effect, equivalent to motor slowing
induced by novel stimuli [Wessel and Aron, 2013].

Motor Preparation

Lateralized cortical changes in preparation for move-
ment occurred shortly after cue processing in the form of
regional beta-band desynchronization. All groups demon-
strated this preparatory beta-desychronization, which was
maximal at around 600 ms following cue onset (healthy
control data from motor ROIs shown in Fig. 3A), and was
more prominent in the motor cortex contralateral to the
prepared limb. No significant group differences were
immediately apparent in the intensity of the preparatory
beta desychronization from subject-specific functionally
defined ROIs (Fig. 3B,C). However, analysis of whole-
brain MEG data, time-averaged around the maximal beta
desychronization (t0 1 500 ms: t0 1 700 ms. t0 5 cue onset),
revealed ALS patients to exhibit regions with significantly
increased beta desychronization relative to controls, within
(but not restricted to) both the contralateral and ipsilateral
precentral gyrus (P 5 0.031, Fig. 3D). Directionally similar
trends were noted in both PLS and AGC groups.

Motor Execution

As a unilateral limb movement was executed, beta desy-
chronization became more focal within the motor cortices,

yet also more bilateral [control time-frequency representa-
tion (TFR)] (Fig. 4A). The timecourse of the peri-response
beta desychronization from the contralateral motor cortex
ROI revealed it to be preserved in both ALS and PLS patient
groups (Fig. 4B). The peri-response beta desychronization
extracted from the ROI appeared deeper within the AGC
group although not significantly so (P 5 0.590; Fig. 4C).
Group contrasts were then statistically appraised in whole-
brain data (t0: t0 1 200 ms. t0 5 response). Although ALS
patients exhibited only a trend towards deeper beta-
desychronization, AGCs demonstrated regions with signifi-
cantly deeper beta desychronization than controls over a
large cortical area encompassing both motor cortices
(P 5 0.013, Fig. 4D). This result was qualitatively similar
after exclusion of the two C9orf72 AGCs. No significant dif-
ferences were found between PLS patients and controls.

Motor Rebound

Postmovement beta rebound was expected to be
observed from 500 ms after termination of EMG activity,

Figure 6.

MEG data epoched around NoGo target presentation (t0 5 target

appearance). Beta-band power increases over a diffuse cortical

network in successfully inhibited NoGo trials, demonstrated in

(A) healthy controls, beta power NoGo>Go. [t0 1 100 ms:

t0 1 300 ms]. B: AGCs contrasted against HC, NoGo trials only,

reveals increased beta power in posterior cortical regions. No sig-

nificant differences are noted in ALS or PLS patients. t-stats in

ROY-BIG-BL. Whole brain cluster-permutation correction. [Color

figure can be viewed at wileyonlinelibrary.com.]
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and typically lateralized to the contralateral precentral
gyrus [Cheyne, 2013] (control group TFR Fig. 5A, other
groups Supporting Information Figure S3, each individual
displayed in Supporting Information Figure S4). Group
differences in movement duration (F 5 2.3, P 5 0.07) were
accommodated by again realigning data epochs
(t0 5 movement completion, as indicated by the fiber-optic
trigger). An expected correlation was found between RT
and both EMG peak amplitudes (P< 0.001), and speed of
transition in the contralateral motor cortex from “beta
desychronization” (ERD) to PMBR (P 5 0.0045) [Erbil and
Ungan, 2007; Stanc�ak and Pfurtscheller, 1996]. Inspection
of beta power timecourses from the contralateral motor
cortex confirmed significantly delayed beta rebound in
both ALS (P 5 0.03) and PLS (P 5 0.011) patients (Fig. 5B).

AGCs showed a more rapid and increased amplitude
beta rebound, though not significantly so (P 5 0.062, Fig.
5C). Given this unexpected result in the AGC group, aver-
aged rectified surface EMG timecourses were inspected,
and confirmed faster EMG onset/offset relative to controls
(Supporting Information Figure S5). Given that the transi-
tion from beta desychronization to beta rebound is a
dynamic process, whole-brain analysis was focused on the
initial time-period of beta rebound (t0 1 500 ms: t0 1 700
ms). During this period, ALS patients were confirmed to
exhibit regions with significantly reduced beta power
(P 5 0.028) relative to controls (Fig. 5D), with a direction-
ally similar trend in PLS patients.

Beta rebound in both patient groups was additionally
suspected to be less lateralized, most marked in the PLS
patients. This was confirmed only in beta power time-
courses from the subject-specific ERD defined motor ROIs
(P 5 0.017, Fig. 5E) but not in the PMBR defined ROIs. In
the voxel-wise spatial maps of DoL (Fig. 5F), a significant
difference in lateralization was noted across a broad time-
period (1–2.5 s following movement completion) but group
differences were not preserved in the 400 ms time-period
centered on each group’s peak PMBR. This finding suggests
a delay in PMBR, in terms of both intensity and lateraliza-
tion. Finally, the interhemispheric correlation between beta
power timecourses (extracted from the anatomically defined
motor cortex parcels, t0 1 1 s: t0 1 2.5 s) revealed significant-
ly higher correlation in both PLS patients (P 5 0.0054) and
ALS patients (P 5 0.0086) relative to healthy controls. The
implication of this finding is that beta power changes fol-
lowing completion of movement are abnormally coherent
between hemispheres in these patient groups, but this may
simply again reflect delayed PMBR. Beta rebound laterali-
zation was unaffected in AGCs.

Movement Inhibition

Available trials in which participants successfully with-
held a preeminent motor response after appearance of the
“NoGo” target were examined to probe integrity of the
inhibitory cortical network. Faster responders made more
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false alarms on “NoGo” trials, as did those with deeper
preparatory beta desychronization (P 5 0.015). Contrasting
correct “NoGo” trials with “Go” trials within the healthy
control group, a relative increase in beta power was
revealed in the frontal lobe and premotor regions. Data
was re-epoched around t0 5 target presentation. The time
period (t0 1 100 ms: t0 1 300 ms) was appraised in whole-
brain data, revealing a beta power difference (“NoGo” ver-
sus “Go” trials, healthy controls only) in clusters overlying
the right frontal lobe and left motor cortex (P 5 0.0028,
Fig. 6A).

Group contrasts were restricted to successful “NoGo”
trials during which the prepared response was inhibited.
Within the same time-period, no significant differences
between ALS or PLS patients against controls were appar-
ent in the degree to which beta power increased after
“NoGo” targets. AGCs however demonstrated a relative
increase in beta power in the right lateral occipital cortex,
extending to the precuneus (P 5 0.0466, Fig. 6B). Correla-
tion analysis of beta power dynamics between selected
cortical parcels (t0: t0 1 1 s) also suggested reduced func-
tional connectivity between rIFC and SMA in PLS patients
only (FWE P 5 0.042). No group differences were noted in
the correlation between motor cortex parcels, nor between
ALS or AGC groups against controls.

Clinical Correlations

Correlations between relevant behavioral measures,
summary MEG statistics, and clinical metrics are pre-
sented in Table II. These were exploratory given the small
group numbers, and not corrected for multiple compari-
sons. Across all patients, slower responses were correlated
with increasing ALSFRS-R disability (global P 5 0.005,
upper limb P 5 0.02), longer disease duration (P 5 0.038)
and higher UMN score (P 5 0.019). Within the ALS group,
impaired cognition (% correct ECAS or ACEr) tended to
correlate with noGo mistakes (P 5 0.073) as did UMN
score (P 5 0.057). Baselined PMBR correlated negatively
with disease duration (P 5 0.024) and positively with rate
of progression (P 5 0.036).

DISCUSSION

This study used MEG to investigate the neural basis of
prepared voluntary movement generation, typified by
modulation in beta-band power, revealing abnormalities
across the ALS phenotypic spectrum.

Cortical Neurophysiological Dysfunction in ALS

and PLS

Previous EEG investigations in ALS largely focused on
evoked movement-related cortical potentials (MRCPs),
time-locked to movement onset and averaged over many
trials. The impact on these measures appears most

prominent in patients with a high burden of UMN dys-
function [Bizovičar et al., 2013; Inuggi et al., 2011; West-
phal et al., 1998], with MRCPs particularly reduced in
patients with PLS [Bai et al., 2006]. Event-related potentials
(ERPs) have also revealed abnormal neural correlates of
attention control [Pinkhardt et al., 2008], particularly with-
in a bulbar-onset sub-group [Mannarelli et al., 2013]. This
experimental design permitted assessment of neuronal
function during a period of motor preparation, indepen-
dent of and temporally distinct to subsequent motor per-
formance, thus minimizing the potentially significant
confound of group differences in motoric activity.

The precise physiological functions of beta oscillations
and their task-related modulations remain uncertain. More
intense beta desychronization is induced as movements
require more force [Stanč�ak et al., 1997], speed [Toma
et al., 2002], or complexity [Hummel et al., 2003; Manga-
notti et al., 1998]. Conversely, exaggerated and overly con-
sistent beta synchrony is antikinetic, whether achieved
though Parkinson’s pathology [Little et al., 2012] or direct
stimulation [Pogosyan et al., 2009]. Physiological beta syn-
chrony is promoted in expectation of impending perturba-
tion to a desired posture [Androulidakis et al., 2007] but is
also sensitive to the uncertainty of motor outcome estima-
tion [Tan et al., 2016]. Beta oscillations may also contribute
to long-range communication across cortical regions [Engel
and Fries, 2010; Kopell et al., 2000] and can facilitate mod-
ulation of selective attention in support of action selection
[Grent-’t-Jong et al., 2013, 2014; Tzagarakis et al., 2010],
beyond simple correlation with reaction times [van Ede
et al., 2012]. The abnormalities in this characteristic motor
system rhythm displayed by ALS patients (amplified beta
desychronization and attenuated beta rebound) may reflect
or even contribute to an excitotoxic degeneration of neural
microcircuitry, particularly given the apparent correlation
with rate of disease progression. A more simplistic expla-
nation of the beta desychronization difference in ALS
patients might be the relative cognitive demands and task
difficulty in comparison to healthy controls [Schoenfeld
et al., 2005]. However, this fails to account for the corre-
sponding abnormalities seen in high-performing AGCs
and the lack of excess beta desychronization within equal-
ly disabled PLS patients.

Cortical Hyperexcitability in ALS

Although not unique to ALS [Di Lazzaro et al., 2004],
converging strands of evidence suggest hyperexcitability
as a key mechanism in the pathogenesis of ALS, possibly
accompanied by a relative failure of inhibitory cortical
interneuronal function [Turner and Kiernan, 2012]. Patho-
logical studies demonstrate a particular vulnerability of
parvalbumin-positive interneurons [Maekawa et al., 2004;
Nihei et al., 1993], later shown to contribute to reduced
inhibitory GABA-ergic tone in animal models [McGown
et al., 2013; Nieto-Gonzalez et al., 2011]. Neuroimaging
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studies across multiple modalities have supported the con-
cept of reduced cortical inhibition. Initial observations
were of a “boundary shift” in regional cerebral blood flow
measured using positron emission tomography (PET) in
ALS patients during a joystick task [Kew et al., 1993]. Fur-
ther support stems from the observation of widened corti-
cal BOLD activation in ALS patients during functional
MRI (fMRI)-based motor tasks [Mohammadi et al., 2011;
Stanton et al., 2007b]; reduced binding of the PET GABAA

ligand [11C]-fluamzenil [Lloyd et al., 2000; Turner et al.,
2005a]; reduced GABA MR spectroscopy peak in the
motor cortex [Foerster et al., 2012], and elevated Glx (glu-
tamate and glutamine) peak in the medulla [Pioro et al.,
1999].

Direct evidence of cortical hyperexcitability in ALS was
provided by TMS [Vucic et al., 2013b]. Conditioning pulse
protocols have reliably demonstrated reduced intracortical
inhibition as a characteristic feature of ALS [Menon et al.,
2015; Yokota et al., 1996; Ziemann et al., 1997], which may
be partly ameliorated by reducing glutamatergic influence
through administration of Riluzole—the only licensed
disease-modifying therapy in ALS [Stefan et al., 2001;
Vucic et al., 2013a]. Postmovement beta rebound corre-
sponds well to a period of reduced cortico-spinal tract
excitability, and the present data suggest that ALS patients
differ in the speed of transition to this state after
movement.

The Endophenotype of PLS

The nosology of PLS continues to be debated [Le Forest-
ier et al., 2001; Singer et al., 2007], although some clinical
[Gordon et al., 2009; Pringle et al., 1992], neuroimaging
[Agosta et al., 2014; Kolind et al., 2013; Kwan et al., 2013;
M€uller et al., 2012; Turner et al., 2007] and saccadic
[Proudfoot et al., 2015] features support an apparent dis-
tinction from ALS. Involvement of the corpus callosum
(CC) is a consistent feature of ALS [Filippini et al., 2010],
thought to contribute to a functional impairment of inter-
hemispheric inhibition, as evidenced by both TMS
[Karandreas et al., 2007; Wittstock et al., 2007] and clinical-
ly evident mirror movements [Wittstock et al., 2011]. The
CC appears to be a particularly vulnerable structure in
PLS [Agosta et al., 2014; Ciccarelli et al., 2009; Iwata et al.,
2011; Kolind et al., 2013] and a finding of delayed laterali-
zation of PMBR is in keeping with this observation. Pre-
served hemispheric autonomy is still demonstrated by the
time that PMBR peaks, suggesting still adequate CC func-
tionality, although partial mirror movements during
response epochs were also noted in some patients’ EMG.
Previous EEG-based investigation of MRCPs also noted
ipsilateral premotor recruitment among ALS patients with
high UMN burden [Inuggi et al., 2011]. PLS patients by
contrast demonstrated diminished preparatory MRCPs
during a self-paced EEG motor task [Bai et al., 2006].
These findings were not in this instance accompanied by

any obvious alteration to MRCP topography and beta
desychronization appeared preserved, highlighting that
distinct neural generators underpin each phenomenon
[Toro et al., 1994]. This study did not detect any significant
excess in beta desychronization intensity between PLS
patients and age-matched controls in whole brain data. In
contrast to the hyperexcitability typically detected in ALS,
the motor cortex of PLS patients is often strikingly resis-
tant to TMS stimulation [Brown et al., 1992; Kuipers-
Upmeijer et al., 2001; Zhai et al., 2003], in keeping with the
present PLS data failing to demonstrate additional beta-
desychronization.

Presymptomatic Cortical Dysfunction?

Characterization of any presymptomatic phase is a pri-
ority for all neurodegenerative conditions if preventative
strategies are envisaged. Assessment of asymptomatic
familial Alzheimer gene carriers has highlighted the added
sensitivity of functional neuroimaging [Chhatwal et al.,
2013] in keeping with the age-dependent impact of APOE
e4 status on both fMRI [Filippini et al., 2011] and MEG
[Cuesta et al., 2015] in the task-free state. It remains an
open question to what extent symptoms of ALS are pre-
ceded by temporally remote cellular abnormalities [Eisen
et al., 2014]. Although animal models of ALS demonstrate
abnormal neural architecture and function during embry-
onic stages [Martin et al., 2013; Vinsant et al., 2013],
human epidemiological [Byrne et al., 2013; Schoder et al.,
2010] and pathological [Proudfoot et al., 2014a] links to
neurodevelopmental disorders remain sparse. Suggestions
that ALS (or FTD) pathology might manifest in a behav-
ioural prodrome long before diagnostic symptoms remain
speculative [Eisen et al., 2014; Lule et al., 2008].

There are inconsistent reports of structural and function-
al MRI abnormalities prior to symptom onset in those at
high genetic risk of ALS [Carew et al., 2011; Menke et al.,
2016; Ng et al., 2008; Vucic et al., 2008; Walhout et al.,
2015]. Evidence of cortical hyperexcitability in asymptom-
atic carriers of genetic mutations who are “at risk” of ALS
is restricted to a very limited finding of reduced ligand
[11C]-flumazenil binding in two individuals with the D90A
SOD1 mutation [Turner et al., 2005a], and three SOD1
mutation carriers who demonstrated reduced or absent
intra-cortical inhibition within three months of symptom
onset [Vucic et al., 2008]. Further studies on seven asymp-
tomatic SOD1 mutation carriers (mean age 33 years) and
11 C9orf72 carriers (mean age 49 years) failed to differenti-
ate them from controls on TMS measures [Geevasinga
et al., 2015a; Vucic et al., 2010]. The older age of the SOD1
mutation carrier participants in the current study may con-
tribute to the apparent gain in sensitivity offered by MEG.

Both patients with ALS and AGCs differ from controls
in beta rebound latency, but the group effect directions are
divergent. Review of the averaged EMG timecourses
revealed that AGC participants completed their responses
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faster than controls, functionally corresponding to a more
rapid transition from beta desychronization to beta
rebound. However, across all groups EMG metrics and
behavioral measures correlated poorly with beta rebound
latency and intensity. Conflicting abnormalities between
pre-symptomatic carriers and manifest patients have pre-
viously been noted on fMRI studies of both Huntington’s
[Kloppel et al., 2009] and monogenetic Alzheimer’s
[Quiroz et al., 2010], therefore compensatory or pathologi-
cal neural abnormalities may still underpin these MEG
group differences. Slight differences in task performance
pose a challenge in the interpretation of functional data
from particularly motivated asymptomatic AGC. Blinded
genetic testing of at-risk individuals is a solution that
raises novel ethical considerations as well as practical com-
plexities, especially with regards to future therapeutic tri-
als [Kim et al., 2015].

Does Motoric Inhibition Reflect Executive

Dysfunction?

Although cognitively impaired ALS patients are predict-
ably under-represented in demanding functional neuroim-
aging tasks, comparatively reduced activation in the
dorsolateral prefrontal cortex has been demonstrated
[Witiuk et al., 2014], while other frontal regions reveal
increased activation during inhibition of prepared manual
movements [Mohammadi et al., 2015]. The present finding
of abnormal beta power in AGCs during successful inhibi-
tion was limited to posterior cortical regions in the context
of task-induced inferior and pre-frontal activity. Despite
previous findings of reduced stop-signal ERPs [Thorns
et al., 2010], no abnormalities in beta-band dynamics were
noted in ALS patients, so that the changes in AGCs might
represent very early compensatory neural changes. In con-
trast to an ERP study utilising the Stroop task [Amato
et al., 2013], but in keeping with eye-tracking findings
[Proudfoot et al., 2015], the present data suggest that exec-
utive control dysfunction may not spare PLS patients, giv-
en that task relevant functional connectivity was
diminished between rIFC and SMA. Multiple nonexclusive
biological and methodological restrictions may underlie
the lack of correlation between the MEG data and cogni-
tive profiles of the ALS participants [Verstraete et al.,
2015], not least the brevity of the ECAS test as a opposed
to more comprehensive and granular neuropsychological
assessment.

Study Limitations

These results complement existing EEG based investiga-
tions of sensorimotor oscillations in ALS which also found
abnormally attenuated beta rebound but did not report
increased beta desychronization [Bizovičar et al., 2014;
Riva et al., 2012]. These previous studies differed from this
investigation not only in acquisition technologies, but also

in protocol design by requiring self-paced movements of
the right hand only, whereas the present study was a lat-
erally cued task and thus facilitated analysis of a specific
preparatory period. Additional analysis variables pertinent
to neural signal interpretation include the selection of
baseline period and frequency band of interest. Further-
more patient groups may differ in the degree to which
they actively participate in a task, and this severely limits
the conclusions that can be drawn from tasks of motor
imagery (Kasahara et al., 2012; Lul�e et al., 2007; Stanton
et al., 2007a,b). Riluzole administration could possibly
dilute the reported ALS group effects, although analysis of
the five remaining patients revealed a directionally similar
trend. Unique challenges arise in the investigation of a
genetically and phenotypically heterogenous condition
such as ALS. Comparative studies against other neurologi-
cal conditions with significant UMN burden of disease
remain valuable. Furthermore, longitudinal study, particu-
larly of a precisely defined group of AGCs before and
after conversion to symptomatic ALS could pinpoint
important aetiological pathways but might have restricted
relevance to the wider sporadic ALS population.

MEG benefits from improved spatial resolution over
EEG, as neuromagnetic signals pass through skull struc-
tures without spatial smearing. Reconstruction of the MEG
signal into source-space components overcomes the ambi-
guity inherent in selection of specific EEG sensors, but cor-
egistration errors are still likely to limit precise anatomical
conclusions regarding the current group differences. This
methodology included selection of an ROI-based purely
on subject-specific functional data, in addition to anatomi-
cally defined sources perhaps more vulnerable to coregis-
tration error.

CONCLUSIONS

Motor system cortical function assessed by beta-band
oscillations revealed abnormalities across the syndrome of
ALS. MEG affords a useful contribution to the non-
invasive investigation of ALS pathology that complements
more established techniques. The present results provide
further distinguishing features between motor neurode-
generative phenotypes and supporting evidence of a
detectable pre-symptomatic phase to ALS pathophysiolo-
gy. The current study has not exhausted the analytic
options available from high-dimensional MEG data, in
particular further analysis of coherence measures may con-
firm and extend the existing literature concerning func-
tional connectivity in ALS. Resting-state networks similar
in topography to those delineated by fMRI have also been
decomposed from fluctuations in band-limited MEG pow-
er [Brookes et al., 2011; Hipp et al., 2012] and the precise
temporal sensitivity afforded by MEG has also enabled
discovery of more rapidly cycling brain states [Baker et al.,
2014] that remain unexplored across disease states. MEG
was a well-tolerated investigation for functionally disabled
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patients and could serve as a platform for the appraisal of
novel therapeutic agents [Suntrup et al., 2013], as well as
providing unique “real time” mechanistic insights into cor-
tical dysfunction that will guide the emerging era of tar-
geted therapeutics in ALS.
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