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Abstract: The dynamical evolution of a system of interacting elements can be predicted in terms of
its elementary constituents and their interactions, or in terms of the system’s global state transitions.
For this reason, systems with equivalent global dynamics are often taken to be equivalent for all
relevant purposes. Nevertheless, such systems may still vary in their causal composition—the way
mechanisms within the system specify causes and effects over different subsets of system elements.
We demonstrate this point based on a set of small discrete dynamical systems with reversible
dynamics that cycle through all their possible states. Our analysis elucidates the role of composition
within the formal framework of integrated information theory. We show that the global dynamical
and information-theoretic capacities of reversible systems can be maximal even though they may
differ, quantitatively and qualitatively, in the information that their various subsets specify about each
other (intrinsic information). This can be the case even for a system and its time-reversed equivalent.
Due to differences in their causal composition, two systems with equivalent global dynamics may
still differ in their capacity for autonomy, agency, and phenomenology.

Keywords: integrated information; causation; graphical models; organizational structure;
multivariate interaction; agency

1. Introduction

Traditionally, how well we can predict the behavior of a system is taken as a measure of how well
we are able to model, and thus “understand”, the system [1] (but see [2–4]). In our view, approaches
to capture and model a system’s dynamics can be roughly divided into reductionist approaches that
model how the system’s elementary constituents update and interact, and holistic approaches that
model the dynamical evolution of the system as a whole based on its state transition probabilities
(Figure 1). Predicting a system’s dynamics therefore does not require explicit knowledge about the
system’s causal composition, that is, in which way the various subsets of elements (mechanisms)
within the system interact and what information they specify about each other.

On the other hand, characterizing the functional role of particular parts of a system and the way
in which they interact has always been a main line of inquiry in the sciences dealing with complex
systems, such as biology and, most prominently, neuroscience [5–7]. In neuroscience, information
theoretical approaches [8–13] are utilized to identify the presence of information about some external
variable or stimulus in a specific part of the system. This part is then said to “represent” the variable
or stimulus as its informational content [14–17] (but see [18] for a critical discussion). More recently,
machine-learning based techniques such as “decoding” have gained popularity [11,17,19] and have
been utilized to investigate content-specific neural correlates of consciousness [20,21]. While these
approaches recognize that subsets within the system may carry out different functional roles, they
consider correlations between objects or events from an extrinsic point of view rather than the causal
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consequences within the system [10,20,22,23]. Moreover, the focus is put on prediction, rather than
understanding [3].

Originally conceived as a theory of consciousness [24–26], integrated information theory
(IIT) provides a theoretical framework intended to characterize a system’s intrinsic information,
the information that a system, in its current state, specifies about itself [27]. By contrast to the standard,
information-theoretic notion of information (“Shannon information”), intrinsic information in IIT is
state-dependent and causal in nature [27,28]. Moreover, information in IIT is compositional: the various
subsets within a system may specify irreducible information about each other.

In this way, the formal framework of IIT offers the tools to address several issues related to
autonomy and agency, with respect to which, measures that are primarily aimed at predicting a system’s
dynamical evolution in holistic or reductionist terms generally fall short. This includes questions
regarding actual causation (“what caused what?”) [29–31], how to identify individuals and their causal
borders [27,32–35], and how to characterize the compositional nature of phenomenal experiences [27].

Figure 1. An example neural network of three binary interacting elements. The system evolves in discrete
time steps and fulfills the Markov property, which means that the conditional probability distribution of
the system at time t depends only upon its prior state at t− 1. Shown are two equivalent descriptions of
the system, which allow us to model and predict its dynamical state evolution: (a) The system represented
as a dynamical causal network. This type of description corresponds to a reductionist view of the system,
highlighting the interactions between individual elements. Edges indicate causal connections between
elements, which are equipped with update functions, or structural equations, that specify the element’s
output given a particular input. While the neural network (left) is recurrent, it can be represented by
a directed acyclic graph (DAG) when unfolded in time (right). Throughout, we assume stationarity,
which means that the system’s dynamics do not change over time. (b) The system represented by its
state transition probabilities under all possible initial conditions, illustrated in form of a state transition
diagram (left), and transition probability matrix (middle). This type of description corresponds to
a holistic perspective onto the system, taking the system states and their evolution in state space as
primary. As the system elements are binary (and comply with Equation (2), Section 5.1), the transition
probability matrix can also be represented in state-by-node format, which indicates the probability
of each node to be in state ’1’ at t given the respective input state at t− 1 (right). As the system is
deterministic, all probabilities are either 0.0 or 1.0. To distinguish binary state labels from real-valued
probabilities, the latter include decimal points.
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In a complementary contribution to this special issue [31], we demonstrated how the causal
principles of integrated information theory, including composition, apply in the context of actual
causation, where the objective is to assess “what caused what” within a transition between subsequent
states of a discrete, distributed dynamical system.

Here we focus on the role of composition in characterizing the intrinsic information of a system
of interacting elements. Our goal is to highlight the importance of composition for understanding
complex systems, such as neural networks. For the purpose of this paper, we will ignore other
aspects of the mathematical framework of IIT, such as the exclusion postulate and the choice of
an appropriate intrinsic distance measure [27]. To this end, we first describe a simplified account of
intrinsic information—the information that a system specifies about itself—which is largely based
on standard information-theoretical measures. Next, we analyze composition in a random sample of
10,000 deterministic and probabilistic, binary 3-node systems, as well as the full set of all reversible,
binary 3-node systems (totaling 40,320). Within this sample, we especially focus on the class of ergodic,
reversible (ER) systems (see Section 5.6) , which cycle through all their possible states and thus specify
the same, maximal amount of effective [36,37] and predictive information [38] (3 bits). We demonstrate
that the causal composition, intrinsic information, and integration of these systems may still vary,
revealing structural properties that cannot be captured in reductionist or holistic terms. Notably,
even pairs of systems whose dynamics are identical under time-reversal are typically composed of an
entirely different set of mechanistic components, and may thus differ in their amount of intrinsic and
integrated information.

Finally, we will discuss: (1) Differences and similarities between the notion of composition
portrayed in this work and accounts of information decomposition [39–42], (2) the role of composition
with respect to a system’s capacity for autonomy and agency, and (3) the role of composition within
IIT as a theory of phenomenal consciousness.

2. Theory

To start, we consider a system S of three interacting, binary elements (“bits”), as shown in Figure 1.
The maximum uncertainty, or “Shannon” entropy H, of this system is 3 bits, as there are eight possible
states. Being able to predict the next state of such a system also amounts to maximally 3 bits of
“Shannon” information (corresponding to the reduction of uncertainty if all eight system states are
equally likely a priori). The mutual information between the previous and present states of the set
of system variables Vt−1 = Vt = S, I(Vt−1; Vt) = H(Vt)− H(Vt|Vt−1) (see Equation (3), Section 5.2),
has been termed predictive information [38]. It measures the average amount of information that a state
Vt−1 = vt−1 specifies about the next state Vt = vt, and vice versa. Imposing a uniform distribution on
the states of Vt−1, we obtain the effective information (Equation (5)) [36,37], a holistic measure of causal
information, which is 2.5 bits in our example system.

2.1. The Compositional Intrinsic Information of an Example System

Here we are interested in the intrinsic information that a system in its current state specifies
about its intrinsic causes (its prior state) and effects (its next state). MCX is constituted of three binary
elements, each equipped with its own input-output function, which can be interpreted as a mechanism
to infer information about MCX’s prior state. M, for example, implements a majority function, turning
on (‘1’) whenever at least two elements of MCX were on at t− 1. We will consider MCX = (0, 1, 1)
as our example state in the following. Given that Mt = 0, the system MCX had to be in one out of
four possible states at t− 1, namely those with |MCX| < 2. Mt = 0 thus reduces the uncertainty
about the state of MCX at t− 1. Likewise, Ct copies the state of Mt−1, and thus evaluates the question
“Was Mt−1 = 1?′′. Being in state Ct = 1, it specifies that Mt−1 must have been on (‘1’). We will consider
first the requirements for intrinsicality, then composition, then integration.

Intrinsicality: From an extrinsic perspective, the entropy H of a system is also a lower bound on
the expected number of “yes/no” questions needed to determine the system’s state [43]. This implies
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that once the state of every single unit is known, so is the state of all the units together and all its
subsets. Conversely, once the state of all the units is known, so is the state of every single unit and all
their combinations (Figure 2). Providing this information in addition would seem redundant as it can
easily be inferred. However, information that has to be inferred remains implicit. To make it explicit,
a function (mechanism) has to be applied. From the intrinsic perspective of the system, information
about its causes and effects is thus only available if it is made explicit by some mechanism within the
system. In other words, the system itself takes a compositional perspective (Figure 2).

Figure 2. Reductionist, holistic, and compositional perspectives. (a) From a reductionist perspective,
causal interactions are evaluated at the level of individual elements (first order). Once the state of
the individual elements is observed, the state of the system and all its subsets have to be inferred.
(b) Taking a holistic perspective, causal interactions are evaluated at the global level of the entire
system (nth order). Once the global state is observed, the states of all system subsets have to be inferred.
(c) From a compositional perspective, causal interactions are evaluated at all orders. Information about
the state of each subset is available in explicit form if it is specified (irreducibly) by another subset
within the system.

Composition: While the reductionist and holistic perspectives focus on causal interactions at
one particular order (single elements vs. the system as a whole), any set of elements within the
system that receives inputs from and provides outputs to elements within the system may, in principle,
form a separate mechanism within the system (Figure 2). Any set of elements within the system
may thus specify its own intrinsic information about the prior (and next) state of a particular system
subset—its cause (or effect) “purview”. The constraints that a set of system elements in a state specifies
about the prior state of a system subset are captured by its cause repertoire (Equation (9), Section 5.3).

The cause repertoire illustrates the potential causes for the set of elements to be in its particular
state at time t within the system, assuming no other knowledge but its mechanistic structure. As shown
in Figure 3, in system MCX, MCt = (0, 1), for example, specifies that the previous system state must
have been MCXt−1 = (1, 0, 0), and CXt = (1, 1) specifies that MCt−1 = (1, 0), since CXt = (1, 1)
whenever MCt−1 = (1, 0), and not in other cases. Even in a deterministic system, the previous state
of a subset may not always be perfectly specified. For example, Mt = 0 specifies that the system’s
elements at t− 1 were more likely to be ‘0’ than ‘1’ (their sum being smaller than 2).
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While MCt = (0, 1) here determines the system’s prior state completely, there is no set of elements
within the system that explicitly specifies any information about the state of Ct−1 and only Ct−1.
The information that Ct−1 = 0, while contained in MCt−1 = (1, 0) as specified by CXt = 11, remains
implicit and thus extrinsic. Without a mechanism that explicitly specifies the previous state of C and
only C, from the intrinsic perspective, the system itself cannot perform the necessary inference. In short,
composition reveals all the mechanisms within a system and the information they specify about the
system’s intrinsic causes and effects.

In the same way that the sets of elements within MCX may specify information about the prior
state of various system subsets, they may also specify information about the next state of particular
subsets (Figure 3, bottom). The potential effects of each set within the system are illustrated by its effect
repertoire (Equation (8), Section 5.3). Since the next state of a particular system element may depend on
the state of multiple elements at time t, the predictions of system subsets may again be probabilistic
even in a deterministic system. Ct = 1, for example, only specifies that Mt+1 is more likely to be on
than off with p(Mt+1 = 1) = 0.75, assuming that the state of the other inputs to Mt+1 (and the other
elements) is maximally uncertain and independent. For the same reason, two subsets may specify
contradictory predictions. Mt = 0, for example, entails that Mt+1 is more likely to be off, contrary to
the predictions of Ct and Xt, which specify that Mt+1 is more likely to be on.

Figure 3. Cause and effect repertoires of example system MCX in state (0,1,1). The cause (effect)
repertoires of individual system elements and their combinations specify how each set of elements in
its current state constrains its possible causes (effects) within MCX. Ct = 1, for example, specifies that
Mt−1 = 1, and predicts that Mt+1 = 1 is likely with p = 0.75. Labels above the repertoires indicate
what each set of elements specifies about its “purviews” (see Section 5.4), the system subsets that are
being constrained, which also determine the size (state space) of the repertoire in the figure. Ct = 1,
for example, does not constrain Ct+1 or Xt+1 in any way. Given Ct = 1 the state of Ct+1 and Xt+1

remains maximally uncertain.

Integration: Next, we must assess whether and to what extent a set of elements specifies irreducible
information about other system subsets. This is because a set of elements contributes to the intrinsic
information of the system as a whole only to the extent that it is irreducible under any partition
(see Section 5.4, Equation (13)). This is quantified by its irreducible information ϕC/E, which measures
the minimal difference (here using DKL) between the cause/effect repertoire before and after a partition,
evaluated across all possible partitions (Equation (15)). In principle, each of the 23 − 1 = 7 subsets of
the system could specify irreducible information about the prior and next state of different subsets
within MCX, and thus contribute to the system’s intrinsic information in a compositional manner.
In our example system, the information specified by the “third-order” set MCXt = (0, 1, 1), however, is
identical to the information specified by its subset MCt = (0, 1). The information that MCXt = (0, 1, 1)
specifies about MCXt−1 is only due to MCt = (0, 1). Including Xt = 1 does not contribute anything on
top; it can be partitioned away without a loss of information. Similarly, MXt = (0, 1) does not specify
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irreducible information, since the information that Ct+1 = 0 is due to Mt = 0 alone. The irreducible
information specified by the subsets in our example system MCXt in state (0, 1, 1) are listed in Table 1.
In the following we will quantify the total amount of intrinsic information specified by a particular
system as ∑ ϕC + ∑ ϕE, which is 8.81 bits for MCXt = (0, 1, 1).

Table 1. Irreducible information (in bits) specified by the subsets of MCXt = (0, 1, 1).

Subset Mt = 0 Ct = 1 Xt = 1 MCt = (0, 1) MXt = (0, 1) CXt = (1, 1) MCXt = (0, 1, 1) ∑ϕC/E

ϕC 1.0 1.0 1.0 1.0 0.415 1.0 0.0 5.41
ϕE 1.189 0.189 0.189 1.0 0.0 0.415 0.415 3.40

2.2. Causal Composition and System-Level Integration

While we can characterize the causal composition and ∑ ϕC + ∑ ϕE of any set of elements,
the notion of “intrinsic information” really only makes sense if there is a system in the first place,
meaning one “whole” as opposed to multiple separate sets [23,27]. To establish whether a (sub)set of
elements forms a whole in an observer-independent manner, purely reductionist or holistic approaches
are inadequate [33]. Within the IIT framework, a set of elements can only form a whole if all of its
parts contribute irreducible information about the prior and next state of the rest. This is quantified by
Φ (“big phi”), the system-level integrated information [27]. To measure Φ the system is partitioned
and the amount of intrinsic information lost due to the partition is quantified, just as for ϕ. For Φ,
this means that we evaluate how the partition affects the intrinsic information specified by all of the
system’s subsets.

Here we define a simplified measure of Φ, termed Φ⊆ (“compositional big phi”, indicated by the
⊆ symbol), which takes the causal composition of a set of elements S into account. The measure Φ⊆
omits several other aspects of the canonical measure [27], which evaluates all requirements that IIT
poses for a physical substrate of consciousness. Specifically, for Vt = S in state vt:

Φ⊆(vt) = min
Ψ

(
min

(
∑ ∆ϕC(vt), ∑ ∆ϕE(vt)

))
, (1)

where ∆ϕC/E denotes the difference in ϕC/E before and after a system partition Ψ, over which the
measure is minimized (see Section 5.5 for details). Taking the minimum between the cause and effect
side corresponds to the notion that the system in its present state acts as an “information bottleneck”
and guarantees that a system with Φ⊆ > 0 specifies irreducible information about the prior and next
state of its subsets [27]. The system MCX in state (0, 1, 1) specifies a value of Φ⊆ = 1.02 bits, where the
minimum is found for ∑ ∆ϕE, under a partition that renders the elements MC at t + 1 independent of
X at t. This eliminates the information specified by Xt = 1, CXt = (1, 1), and MCXt = (0, 1, 1) about
their respective purviews in MCXt+1.

3. Results

To investigate variations in causal composition and integration between systems with equivalent
global dynamics, we consider the data set of reversible, binary 3-node systems, and, within those,
the subset of ergodic-reversible (ER) systems (Figure 4, Methods Section 5.6). Reversible systems
may still exhibit multiple fixed points and/or periodic cycles, and thus display different stationary
distributions depending on their initial state. By contrast, ER systems cycle through all their possible
states, which leads to a uniform stationary distribution of system states. EI(S) = 3 bits and
〈H(Vi,t+1)〉 = 1 bit for all reversible systems. In ER systems, the predictive information I(Vt−1; Vt)

(Equation (3)), which is typically based on observed distributions converges to EI(S). Focusing on
ER systems thus has the additional advantage that we can set aside reservations about imposing
a uniform distribution for Vt−1, as the stationary, observed distribution in these systems is the uniform
distribution. This also means that the TPM of an ER system, and all subsequently computed quantities,
can be derived from observation [27,44].
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For comparison, we also evaluate two sets of 10,000 random 3-node systems, one deterministic,
the other probabilistic. As shown in Appendix A, ∑ ϕC + ∑ ϕE, the total (compositional) amount
of intrinsic information specified by a system, is strongly correlated with the system’s effective
information EI(S) in these comparison data sets. Our goal in the following, however, is to highlight
the remaining variance in ∑ ϕC + ∑ ϕE and Φ⊆ once the informational and dynamical properties at
the highest level are fixed.

Figure 4. Informational and dynamical properties of reversible and ergodic-reversible (ER) discrete
dynamical systems. (a) An example of a reversible three element system S = {A, B, C}. EI(S) = n bit
for all reversible systems. Dynamically these systems can still specify between 1 and 2n attractors that
lead to different stationary distributions p(S) depending on the initial state; (b) example of an ergodic
reversible (ER) system. In these systems, I(Vt−1; Vt) ' EI(S) = n bit as the system cycles through all
of its possible states, and the observed, stationary distribution p(S) converges to a uniform distribution
for an infinite number of observations and every full cycle through the system’s state space.

3.1. Same Global Dynamics Different Composition and Integration

Figure 5 shows the relation between average Φ⊆ and ∑ ϕC + ∑ ϕE for each evaluated data set.
Higher values of ∑ ϕC + ∑ ϕE allow for larger Φ⊆ values. This is because more intrinsic information
may be lost due to a system partition. Nevertheless, even systems with high ∑ ϕC + ∑ ϕE may not be
integrated (Φ⊆ = 0). Probabilistic systems generally have smaller values of ∑ ϕC + ∑ ϕE, and thus less
capacity for Φ⊆, since their elements, alone and in combination, specify less information due to noise.

While reversible systems typically have high values of Φ⊆ and ∑ ϕC + ∑ ϕE compared to the
random sample of deterministic systems, some are still reducible with Φ⊆ = 0, as also exemplified
below in Figure 6a,c. Finally, in terms of their composition and integration, the subset of ER systems
does not differ significantly from the set of all reversible systems.

In Figure 6 we take a closer look at four examples across the range of possible ER systems.
As the examples demonstrate, “perfect” dynamics and predictability (I(Vt−1; Vt) = 3 bits) can be
implemented by systems composed of various elementary mechanisms with qualitatively different
connection patterns.

Taking a reductionist perspective, greater composition is associated with more complex
elementary mechanisms (nonlinear functions across multiple inputs). Taking a holistic perspective,
this corresponds to a more distributed implementation of the computation within the system.
Nevertheless, only a compositional analysis that takes all intermediate levels into account can provide
a complete picture of the system’s causal and informational structure, which is necessary to understand
how the individual elements interact and compose joint causal constraints.



Entropy 2019, 21, 989 8 of 29

0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Prob
Random
REV
ER

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

Figure 5. Distribution of intrinsic information and system-level integrated information. Φ⊆ is plotted
against ∑ ϕC + ∑ ϕE for all evaluated data sets: a random sample of 10,000 probabilistic (“Prob”) and
deterministic (“Random”) TPMs, as well as the set of all 40,320 reversible systems (“REV”), and the
subset of 5040 ergodic reversible (“ER”) systems (see Section 5.6 for details). Φ⊆ and ∑ ϕC + ∑ ϕE are
averages across all possible system states. Histograms show the distribution of Φ⊆ values (left) and
∑ ϕC + ∑ ϕE values (bottom).

Figure 6. Illustrative ER example systems from low to high ∑ ϕC + ∑ ϕE. (a) An ER system with the
lowest ∑ ϕC + ∑ ϕE. Nodes A and C are both simple NOT/COPY logic gates. A is only connected
to B in a feedforward manner, thus Φ⊆ = 0. (b) An ER system with slightly higher ∑ ϕC/E than (a).
B is a simple COPY logic-gate, A is an XOR. This system is integrated with Φ⊆ = 0.84. (c) An ER
system with higher ∑ ϕC + ∑ ϕE, but Φ⊆ = 0. A is a simple NOT logic-gate (same as in (a)) that
connects to B and C in a feedforward manner. (d) An ER system with high ∑ ϕC + ∑ ϕE. All nodes
specify nonlinear input-output functions over all system elements and the system is strongly integrated
with Φ⊆ = 1.50.
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As we have argued in Section 2.1, ∑ ϕC +∑ ϕE quantifies the intrinsic information that the various
subsets within a system in their current state specify about each other’s prior and next states. Table 2
lists the compositional information of the four example systems in Figure 6 for one particular example
state (ABCt = (0, 1, 1)).

Table 2. Irreducible information (in bits) specified by the subsets of the example systems in Figure 6 in
state (0, 1, 1). Which sets specify irreducible information and how much they specify is state-dependent.
Values of ϕ = 0.0 bits are omitted for ease of comparison.

Subset xt
ϕC ϕE

(a) (b) (c) (d) (a) (b) (c) (d)

At = 0 1.0 1.0 1.0 1.0 1.0 0.189 1.0 0.566
Bt = 1 1.0 1.0 1.0 1.0 1.0 0.189 0.378 0.566
Ct = 1 1.0 1.0 1.0 1.0 0.189 1.0 0.378 0.566

ABt = (0, 1) 0.415 0.415 1.0 1.415 0.415 0.415
ACt = (0, 1) 1.0 0.415 0.83 0.415 0.415
BCt = (1, 1) 0.5 0.415 0.915 0.83 0.415 0.415 0.415

ABCt = (0, 1, 1) 0.415 1.0 1.0 0.415 0.83

∑ ϕC/E 3.92 4.42 5.16 6.66 3.19 3.21 3.42 3.77

All ER systems share equivalent global dynamics, as they cycle through all their possible states.
(Note that from a holistic perspective only the state transition diagram matters, not the individual
state labels.) For this reason, also their predictive and effective information are maximal. Nevertheless,
they still differ in how much and which information the systems specify about themselves from
a compositional perspective (Figure 2). In Table 3, for example, we compare the two systems shown
in Figure 6a,d in terms of the predictions that each of their irreducible system subsets makes about
the next state of other subsets within the system. Both systems, at the highest order (ABCt = (0, 1, 1)),
specify (predict) the next state of the system as a whole. From an extrinsic perspective, it would thus
be easy to infer the next state of each individual system element. However, such an inference requires
an additional mechanism to read out this information. Within system (d) (Table 3, right), each of the
second order subsets correctly specifies the next state of a different system element. Within system (a),
only At+1 = 1 and Ct+1 = 1 are correctly specified.

Table 3. Comparing the predictions (argmaxzt+1
(p(zt+1|xt)) of irreducible subsets within the example

systems in Figure 6a,d in state (0, 1, 1). The actual state at t + 1 is (1, 1, 1) for the system in Figure 6a
and (1, 0, 1) for Figure 6d.

Subset xt
(a) (d)

zt+1 p(zt+1|xt) zt+1 p(zt+1|xt)

At = 0 At+1 = 1 (p = 1) ABCt+1 = (1, 0, 0) (p = 0.42)
Bt = 1 Ct+1 = 1 (p = 1) ABCt+1 = (1, 1, 1) (p = 0.42)
Ct = 1 Bt+1 = 0 (p = 0.75) ABCt+1 = (0, 0, 1) (p = 0.42)

ABt = (0, 1) At+1 = 1 (p = 1)
ACt = (0, 1) Bt+1 = 0 (p = 1)
BCt = (1, 1) Ct+1 = 1 (p = 1)

ABCt = (0, 1, 1) ABCt+1 = (1, 1, 1) (p = 1) ABCt+1 = (1, 0, 1) (p = 1)

3.2. Global vs. Physical Reversibility

As demonstrated above, dynamically reversible systems as defined here may vary with respect
to their irreducibility (Φ⊆) and the intrinsic information they specify, even though from a holistic
perspective they all specify the same dynamics.

As a final point, we compare each reversible system in our data set with its time-reversed
dynamical equivalent. The results are shown in Figure 7. While some system pairs do specify
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the same amount of ∑ ϕC + ∑ ϕE and Φ⊆, more than half of all pairs differ in either or both of
these quantities. The example pair of systems shown in Figure 7d,e, moreover, demonstrates that
a system and its complement under time-reversal may differ in their elementary causal dependencies
(connectivity diagram), basically specifying two completely different systems in terms of their
mechanistic organization.

As defined in Section 5.6, reversibility refers to the global dynamics of a discrete dynamical system
with a finite state space. Such global reversibility does not imply local reversibility. This means that
the elementary mechanisms that constitute the system are not typically reversible. For elements with
one binary output, all input-output functions except for COPY and NOT logic-gates are necessarily
convergent (multiple inputs may lead to the same output) and thus logically irreversible (see also [45]
for a recent review on reversible cellular automata).

Figure 7. Intrinsic information and system irreducibility under time-reversed dynamics. (a,b) The total
amount of intrinsic information ∑ ϕC + ∑ ϕE (a) and Φ⊆ (b) of each system is plotted against its
time-reversed dynamical equivalent, which can exhibit different values. (c) The difference in Φ⊆
between a system and its reverse, plotted against their difference in ∑ ϕC + ∑ ϕE. (d) Example of a
system with different causal composition and Φ⊆ compared to its time-reversed dynamical equivalent
shown in (e). Note also the differences in their elementary mechanisms and connectivity. Compared to
(e), in (d) node B lacks the self-connection and A does not receive an input from C. While node A in (d)
implements biconditional logic and node B an XOR function, all nodes in (e) implement logic functions
that depend on A, B, and C as inputs.

Reversibility (in particular dynamical reversibility), is often associated with the notion of being
able to “run the system in reverse”. However, systems whose dynamics are globally but not locally
reversible do not comply with this notion. As our results highlight, implementing the reversed
dynamics would require different physical mechanisms than those of the original system. The direction
in which the system evolves is thus determined by its underlying mechanisms and cannot actually
be reversed. This shows that global dynamical equivalence does not imply physical equivalence in
a more general sense.
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4. Discussion

In this study we have explored the notion of causal composition in small, discrete dynamical
systems, with a specific focus on a data set of “ergodic reversible” systems that display the same
global dynamics as they cycle through all their possible states. These systems are characterized by
a maximal amount of predictive and effective information. Nevertheless, they may vary in the intrinsic
information specified by their various subsets. As argued above, from the intrinsic perspective of the
system itself, the only information that is available to the system is information that is made explicit by
the system’s mechanisms. Such information is necessarily causal, specifying possible causes or effects
of the system’s subsets in their current state. Each subset contributes to the intrinsic information of the
whole to the extent that it is integrated, meaning irreducible under any partition. The total intrinsic
information of a system thus corresponds to the compositional integrated information specified by the
set of all of its mechanisms—not more and not less.

While we have restricted our analysis to a specific type of distributed dynamical system with finite
state-space, the general argument—that a compositional perspective is necessary for understanding
a system’s causal and information structure—should hold even in the case of an infinite state space
and continuous time (see [46,47] for an initial approach to translate the principles of IIT to continuous
dynamical systems). In that context, describing a system with a set of coupled differential equations,
one per element (taking the place of the structural equations in Figure 1a), would correspond to
a reductionist perspective, while a complete description of the system’s dynamics in global terms,
e.g., via a Hamiltonian, would correspond to a holistic perspective (the phase portrait of such a system
would then correspond to the state-transition diagram in Figure 1b). That the complexity of a system’s
dynamics may increase through additional variables in a compositional manner is well-known in
dynamical systems theory, where it is common practice to evaluate the nullclines and isoclines of a set
of coupled differential equations, i.e., to evaluate the system’s dynamics while holding a subset of
variables (or their slopes) fixed ([48]). In [47], Kalita et al. used a similar approach to assess the intrinsic
information (ϕC/E) specified by the various subsets of a continuous dynamical system by example of a
set of coupled Lotka-Volterra equations.

Finally, the compositional structure of a system is not just relevant intrinsically, but also matters
in functional terms for systems that interact dynamically with an environment. Before discussing the
role of composition for autonomy and agency below, we compare our approach to other approaches
for information decomposition [39–42,49–51]. To conclude, we will review the compositionality of
phenomenal consciousness and how it is addressed within IIT.

4.1. Composition vs. Decomposition of Information

Over the last decade, assessing the structure of multivariate information has become a focus within
the field of complex system science. In a seminal paper, Williams and Beer [39] set out to decompose
the Shannon information of a multivariate system into separate parts that reflect the unique, redundant,
and synergistic information of its subsets about a target variable S. Several subsequent publications
have aimed at improving upon this proposal of a partial information decomposition (PID) by refining
the notion of redundancy and of synergy between variables [40–42,49–51].

Our approach differs from PID measures in several ways. First, we are interested in the causal
information specified by the various subsets of a system in a particular state, not a decomposition of the
mutual information between source and target variables in the joint distribution of an observed time
series. ϕC and ϕE (Equation (15)) are state-dependent measures and evaluate whether a subset at time t
specifies information about the system’s prior or next state, respectively. As shown in [52], PID can also
be applied to decompose transfer entropy, a directional measure of information transfer from a variable
Yt to another variable Xt+1, extended to the case of multiple sources. However, transfer entropy
still relies on observational data, while a causal approach generally requires perturbational data [53]
(although observational data is sufficient for causal inference in ER systems since they cycle through all
their possible states). In this way, our approach is more closely related to proposed measures of causal
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information flow [44,54], but evaluated in a state-dependent manner, as the information specified by
the subset in its current state about its causes and effects (see also [55]).

Second, from a causal perspective, two system subsets may both exert informationally redundant
causal constraints, for example in cases of causal overdetermination [31,40]. While the notion of
integration evaluated by ϕC and ϕE is related to the synergistic and unique parts in the PID,
not all information that would be deemed redundant from an information-theoretical perspective is
discounted in our approach. For instance, in the example system of Figures 1 and 3, the (Shannon)
information specified by Ct and Xt about the state of MCXt+1 is redundant. Nevertheless, they both
make a difference to the future state of MCX by raising the probability of Mt+1 = 1 in mechanistic,
causal terms, and thus count toward the system’s intrinsic information ∑ ϕC + ∑ ϕE. Also, in our
approach irreducibility is evaluated based on a partition of the subset (Equation (13)), which eliminates
dependencies across the partition, rather than by comparing the subset to other subsets within the
system (see also [56]).

Finally, as in [27], Φ⊆ evaluates the integrated information of the system as a whole as the amount
of compositional intrinsic information lost through a system partition (see Equation (1) and Section 5.5).
Consequently, Φ⊆ is not bound by the predictive information (3) of the system about its next state as
the PID measures or also the geometrical integrated information measure proposed in [56], but rather
by min

(
∑ ϕC(vt), ∑ ϕE(vt)

)
.

While the role of composition in accounting for the quality of phenomenal experience
(see Section 4.3) had already been recognized in earlier publications [57], it was not incorporated in the
quantitative measure φ2.0 [58]. Similarly, the geometric integrated information framework [56] permits
the evaluation of partial causal influences and their hierarchical structure. However, the geometric
integrated information of a system ΦG still only takes the highest level into account. Moreover,
ΦG is an average, not a state-dependent measure. In Appendix B, we compare compositional and
non-compositional measures of system-level integrated information. While non-compositional,
state-averaged measures may serve as practical indicators for a system’s capacity for information
integration, for a state-dependent evaluation the system’s causal composition cannot be neglected.

4.2. Agency and Autonomy

In the above analysis, we have treated each system as an isolated entity. Agents, however,
are open systems that interact dynamically and informationally with their environment [59]. The global
dynamics of an agent thus depend in some way on the state evolution of the environment. Conversely,
“agency” implies that the system has some effect on the dynamical evolution of the environment.
How should the environment be incorporated into an account that relies on the global dynamics
of a system? And how can we identify the agent as an autonomous entity within the larger
dynamical system?

In Figure 8, we consider a system ABCE in which the elements ABC stand for a hypothetical
“agent” that dynamically interacts with its environment E. This example was constructed such that
the joint system ABCE is an ER system, which cycles through all of its 16 possible states. In addition,
ABC forms a 3-node ER system if the environment E is fixed to either of its possible states. We consider
two cases of dynamical equivalence: in Figure 8b we permute the global dynamics of the joint
agent–environment system ABCE, whereas in Figure 8c we permute the local dynamics of the
agent ABC.

It is easy to show that, if we describe the joint agent–environment system in terms of its global
dynamics, a permutation of the global states in the state-transition diagram will typically not maintain
the dynamics of the agent-subsystem. Figure 8b shows an example of a different 4-node ER system
with equivalent global dynamics that can be obtained by permuting the order in which ABCE in
Figure 8a cycles through all its possible states. As the binary state labels have no meaning from
a holistic perspective, such a permutation maintains the global system dynamics. In the permuted
system (Figure 8b) however, the subsystem ABC, holding E fixed, is not reversible, but instead shows
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some convergence. This example demonstrates that the previous subdivision of ABCE into agent and
environment is lost due to the global permutation, which changed the interactions between the system
elements, including those between ABC and E. For example, node B in Figure 8b is now connected in
a purely feedforward manner to the rest of the system and simply alternates its state between 0 and
1. Thus, from the perspective of AC and also E, B now merely forms a background condition, as ACE
has no information, and thus no control over the next state of B.

Of course, this example also raises the question of why ABC was determined to be a separate
entity from the environment E in the first place [23,33,35,60–63]. While the boundaries of an agent are
typically taken as given, such a subdivision cannot be properly formulated using a reductionist or
holistic account of the system’s dynamical or informational properties. The IIT formalism, on the other
hand, provides the tools to identify subsets of elements with self-defined causal borders within
larger systems as local maxima of integrated information [23,27,33,64] (see also [32,34] for alternative
proposals). (In IIT as a theory of consciousness, a maximality condition is imposed by the “exclusion”
postulate, which translates the fact that phenomenal experience is definite in its content into the
requirement that also the underlying physical substrate must specify a definite set of mechanisms—one
that forms a maximum of integrated information Φ). To illustrate, the dashed line in Figure 8a–c
indicates the subset of elements with max(Φ⊆) in the majority of states, respectively.

Figure 8. Dynamics of a joint agent–environment system. (a) The system ABC forms a hypothetical
agent that interacts dynamically with its environment. ABCE forms a (4-node) ER system, as does
ABC if E is taken as a fixed background condition. Element E changes its state whenever ABC = 111.
ABC is the subset with max(Φ⊆) in all 16 states. We consider two cases of dynamical equivalence:
(b) Permuting the states of ABCE in the global state-transition diagram will typically change the local
dynamics of the agent subsystem ABC and the prior agent–environment division is lost. Note that
B is connected to the rest of the system in a purely feedforward manner. Instead of ABC, now ACE
forms the set of elements with max(Φ⊆) in most states (11/16, discounting single elements). (c) A local
remapping of the state-transition diagram of ABC will typically change the global dynamics, if the
input-output function of the environment E remains unchanged. This changes the agent’s behavior
with respect to its environment. In order to recover the global dynamics E’s mechanism needs to be
adapted. Even in this case, however, the agent–environment division may not be maintained and BC is
now the set of elements with max(Φ⊆) in most (14/16) states.

Instead of describing the joint agent–environment dynamics, it is also possible to treat the
environment E as a fixed background condition. As demonstrated in Figure 8c, remapping the
local state-transition diagram of ABC will typically change the global dynamics of ABCE if the
input-output function of E and its connectivity to ABC remain unchanged. This means that replacing
ABC with another system with an equivalent state-transition diagram effectively changes the “agent’s”
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input-output behavior. To recover the global dynamics, mechanisms within the environment would
have to be changed in addition to the mechanisms within the system (see red state transition diagram
in Figure 8c). Thus, replacing a subsystem with another that has an equivalent local state-transition
diagram does have different functional consequences for the global system. From an evolutionary
perspective, an agent has limited control over the causal structure of the environment. For this reason,
some agent implementations will typically be advantageous over others even if, in theory, they are
dynamically equivalent at the level of the agent subsystem.

Now consider the system in Figure 8c with the adapted environment (red state-transition diagram),
which is dynamically equivalent to the system in Figure 8a both in terms of the global dynamics
of ABCE, as well as the local dynamics of ABC. However, this joint agent–environment system
is constituted of a set of elements that perform different functions and are connected in different
ways, so that the dynamics of other subsystems within ABCE, such as AB, are not maintained.
Thus, even under this permutation, the previous agent–environment division may disappear.

In general, to define an agent as an autonomous entity separate from the environment in objective
terms requires a search across all possible system subsets. Given a quantitative measure of autonomy
based on dynamical, informational, or causal criteria, agents can then be identified as subsystems that
form local maxima of autonomy [27,32–34,65]. As long as not all subsystems have equivalent dynamics
under a permutation of the states in the global state transition diagram, these maxima may correspond
to different subsets of elements in the original and the permuted system. Thus, from the perspective of
the agents within the system, such a global permutation is far from ontologically innocent.

Finally, when an agent interacts with its environment, we are often interested in why the agent
performed a particular action. Due to recent advances in the field of artificial intelligence, there
is a growing realization that the ability to predict what a system is going to do does not equal
understanding how or why it behaves in a certain way, not even in hindsight (e.g., [66,67]). This
is demonstrated particularly well by recent computational studies involving simulated artificial
agents with minimal cognitive architectures [15,23,68,69], whose behavior can easily be predicted.
Yet, understanding what caused the agent to perform a particular action typically requires extensive
additional analysis and cannot be addressed in purely reductionist or holistic terms [31,69,70].

4.3. The Role of Composition in IIT as a Theory of Phenomenal Consciousness

Related to the notion of agency is the question when a system of interacting elements may
form a conscious entity. A distinguishing feature of IIT as a theory of consciousness is that it starts
from phenomenology itself, which is the one and only thing whose existence is directly evident to
the experiencing entity [26]. Next, IIT aims to capture the essential properties common to all of our
experiences, which form its set of “axioms” about phenomenology. IIT identifies “composition” as
one of its five phenomenal axioms as every experience is structured, being composed of phenomenal
distinctions and the relations among them. The other axioms are “intrinsicality”, “information”,
“integration”, and “exclusion” [25–27]. According to IIT, for each essential property of experience,
there must be a corresponding property of the physical substrate that is underlying the experience.
These are specified in a set of “postulates”, which translate each axiom into a causal requirement about
the physical substrate.

A useful example to illustrate the compositional nature of phenomenology is our experience of
space, for example visual space, which is accompanied by a feeling of extendedness, being composed
of a multitude of distinguishable “spots” of arbitrary sizes, which are related to each other through
connection, inclusion, and union (see [71] and Haun and Tononi, submitted). From the intrinsic
perspective of the system itself, spatial properties such as the particular region and location of a spot,
its size, boundary, and distance from other spots, have to be established by the system’s own causal
structure. A holistic description that only captures the information of the visual canvas as a whole
cannot give an account of the immense number of phenomenally distinct spots within the scene and
their relations. On the other hand, a reductionist description that captures only the individual spots
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cannot account for their composition into an extended canvas, with specific relations among them.
From an extrinsic, information-theoretical perspective, the list of phenomenal distinctions about visual
space that we experience directly contains a lot of redundant information. However, such a perspective
takes space for granted and overlooks its qualitative properties.

IIT proposes that it is the compositional cause-effect structure specified by a physical substrate
that corresponds one-to-one to its phenomenal experience [26,27] (see Haun and Tononi, submitted, for
a demonstration of how the cause-effect structure of a simple grid-like substrate may account for the
main phenomenal properties of spatial experience). Within IIT, understanding the causal composition
of a system is thus necessary not only to capture the amount of integrated (intrinsic) information (Φ)

specified by a system, but also to characterize the phenomenal content of its experience, namely its
compositional structure.

5. Methods

As a simple type of (recurrent) neural network model, we consider the class of distributed
dynamical systems constituted of a set of n interacting elements S = {Si}i∈1...n with finite state
space ΩS = ∏i ΩSi that evolve in discrete time according to the update functions of the individual
system elements (Figure 1). S is assumed to be stationary, which means that its update function and
connectivity do not change over time. We further assume that there is no instantaneous causation
between system elements. Examples of this type of systems include cellular automata and Boolean
networks. While we will restrict our analysis to systems constituted of binary elements, all quantities
described below can equally be applied to systems with finite-valued elements.

As illustrated in Figure 1, the temporal evolution of such distributed dynamical systems can
be specified within the framework of dynamical causal networks, as well as by means of their state
transition probabilities.

5.1. Dynamical Causal Networks and State Transition Probabilities

Causal networks are a special type of Bayesian networks in which the edges represent causal
dependencies as opposed to mere correlations. Specifically, a causal network G = (V, E) is a directed
acyclic graph (DAG) with edges E that indicate causal connections between a set of random variables
V, which also correspond to the nodes in the graph. Variables are equipped with an update function,
or structural equation, which specifies the (probabilities of) a variable’s output state given the state of
its inputs. The set of variables pa(Vi) = {Vj | eji ∈ E} with an edge leading into Vi ∈ V are called the
“parents” of Vi.

As G is a Bayesian network, a probability function p(V = v) with v ∈ ΩV , is associated with the
random variables V, such that:

p(v) = ∏
i

p(vi | pa(Vi)), v ∈ ΩV .

In a causal network, this conditional independence of individual variables holds even if the
parents are actively set into their state, as opposed to being passively observed. (For simplicity,
we assume that exogenous variables can be considered as fixed background conditions and thus do
not have to be further taken into account in the causal analysis (see [31]).) This intervention can be
indicated by the “do-operator” [53]:

p(v) = ∏
i

p(vi | do(pa(Vi))), v ∈ ΩV .

In a dynamical causal network, all parents of the variables in slice Vt are contained in the previous
slice Vt−1 [31]. Together with the above, this requirement implies a transition probability function
for V, such that:
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p(vt | vt−1) = ∏
i

p
(
vi,t | vt−1) = ∏

i
p
(
vi,t | do(vt−1)

)
= p(vt | do(vt−1)), ∀ (vt−1, vt) ∈ Ω. (2)

Equation (2) fully captures the causal interactions between the set of variables V. If we interpret
the dynamical causal network GS as a temporal unfolding of a discrete dynamical system S (Figure 1a),
the probabilities in Equation (2) directly correspond to the system’s state transition probabilities.
(While p(vt|vt−1) is generally not defined for vt−1 with p(vt−1) = 0, here we assume that the system
can, at least in principle, be perturbed into all possible states. We can thus define p(vt|vt−1) =

p(vt|do(vt−1)) for all vt−1 ∈ ΩVt−1 , even if p(vt−1) = 0.) Since S fulfills the Markov property and we
assume stationarity, the system’s dynamics are completely specified by its one-time-step transition
probability matrix (TPM) Mr,c

S = p(vc
t | vr

t−1), ∀(vt−1, vt) ∈ ΩS ×ΩS, where r, c ∈ {1, . . . , |ΩS|} are
the row and column indices, respectively (Figure 1b). Conditional independence between individual
system elements (Equation (2)) moreover permits us to represent the matrix in the state-by-node format
for binary systems, as shown in Figure 1b on the right. The state-by-node table specifies the probability
for each element to be in state ‘1’ given each possible prior system state.

Finally, note that, in a deterministic system, an element’s output is completely determined by the
state of its input, and thus conditionally independent from the output of all other system elements.
Therefore, all deterministic TPMs automatically comply with Equation (2). This is not generally the
case for generic probabilistic TPMs, which may violate the “no instantaneous causation” requirement
and thus do not comply with Equation (2), which also means that they cannot be expressed in
state-by-node format.

For this reason, we will formulate all quantities defined below within the context of a dynamical
causal network GS = (V, E) with V = {Vt}t∈{0,...,k} and Vt = S, ∀t ∈ {0, . . . , k} for maximal
clarity, with reference to the system’s TPM when appropriate. For clarity, we will denote probability
distributions as functions of variables, e.g., p(X), and individual probabilities as functions of states,
e.g., p(x). We use S to denote the system in general, when we refer to the set of interacting elements,
but write Vt to denote the set of all system elements at a particular point in time t.

5.2. Predictive and Effective Information

The mutual information I(X; Y) between two sets of random variables X and Y can be expressed
as a difference in entropy:

I(X; Y) = H(Y)− H(Y|X) = H(X)− H(X|Y),

where H(X) = ∑x∈ΩX
p(x) log2 p(x) and H(X|Y) = ∑(x,y)∈ΩX×Y

p(x, y) log2 p(x, y)/p(y), with 0 ∗
log2(0) := 0. I(X; Y) thus captures the expected reduction of uncertainty about the state of Y
given the state of X and vice versa. Mutual information is symmetric with I(X; Y) = I(Y; X) and
non-negative I(X, Y) > 0. In general, I(X; Y) is computed from a joint probability distribution p(X, Y)
of interest, which is typically sampled from observed time series data. The mutual information between
two consecutive system states of a time series has been termed predictive information [38]. Within the
dynamical causal network GS, the predictive information between Vt and Vt−1 can also be expressed
in terms of the transition probabilities specified in Equation (2):

I(Vt−1; Vt) = H(Vt)− H(Vt|Vt−1) = ∑
vt−1∈ΩS

p(vt−1)DKL(p(Vt|vt−1)||p(Vt)) (3)

using the equivalent formulation of the mutual information as the expected Kullback–Leibler divergence
DKL, also called relative entropy, between the conditional probability distribution p(Vt|vt−1) and the
marginal distribution p(Vt) = ∑vt−1∈ΩS

p(vt−1)p(Vt|p(vt−1), where
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DKL(p(Y|x)||p(Y)) = ∑
y∈ΩY

p(y|x) log2
p(y|x)
p(y)

. (4)

Note that DKL(p(Y|x)||p(Y)) depends on the state of X. GS specifies causal dependencies between
Vt−1 and Vt, with fixed transition probabilities p(vt|vt−1). In addition, the predictive information
I(Vt−1; Vt) for a particular GS depends on the choice of p(Vt−1). A typical choice is the stationary
observed distribution of system states given a particular initial condition. In that case, I(Vt−1; Vt)

measures the predictability of the next system state vt following an observation of state vt−1 in a
particular dynamical regime of system S. Another useful choice in the context of dynamical causal
networks, is to impose a uniform, or maximum entropy, distribution with p(vt−1) = |ΩS|−1, ∀vt−1 ∈
ΩS. In this way, one obtains a measure of the causal constraints imposed by GS, independent of any
biases in the initial distribution of p(Vt−1). This measure has been termed the effective information EI(S)
of a discrete dynamical system S [36,37].

EI(S) = |ΩS|−1 ∑
vt−1∈ΩS

DKL(p(Vt|vt−1)||p(Vt)) (5)

can be conveniently represented in terms of the system’s TPM, as it corresponds to the average DKL
between the distribution specified by each row Mr

S = p(Vt|vr
t−1) in MS and p(Vt), which corresponds

to the distribution that results from averaging (“causally marginalizing” (see below)) across all rows in
MS (see Figure 4). By contrast to the predictive information, EI(S) has a causal character, as imposing
a maximum entropy distribution on p(Vt) corresponds to perturbing the system in all possible ways as
p(vt|vt−1) = p(vt|do(vt−1)) (Equation (2)) [37]. As a consequence, any measured constraints on p(Vt)

are intrinsic, i.e., due to the system’s mechanisms and nothing else. In the following, we will expand
on the notion of intrinsic information by defining the information that a system specifies onto itself in
a state-dependent and compositional manner.

5.3. Cause and Effect Repertoires

By being in state vt, the system S constrains its potential next states according to its state transition
probabilities p(vt+1|vt) = p(vt+1|do(vt)) (Equation (2), assuming stationarity). We can define the effect
repertoire of vt as:

π(Vt+1 | vt) = p(Vt+1 | do(vt)) = p(Vt+1 | vt). (6)

Likewise, for any state vt with p(vt) > 0, the system also constrains its potential prior states
and we can infer the reverse conditional probabilities from Equation (2) by using Bayes’ theorem:
p(vt−1|vt) = p(vt|vt−1) ∗ p(vt−1)/p(vt). Here, p(vt−1) is meant to represent the prior probability
of Vt−1 = vt−1 in the absence of any constraints due to the system’s mechanisms or present state,
and not the probability that vt−1 occurs under any observed or imposed state distribution. Given
the system’s state transition probabilities (Equation (2)) and the present state vt of the system, the
intrinsic causal constraints specified by the system itself should not depend on any further external
factors, or prior system states. For this reason, the appropriate choice for p(Vt−1) is, again, to impose a
uniform distribution with p(vt−1) = |ΩS|−1, ∀vt−1 ∈ ΩS. This avoids any biases or assumptions about
p(Vt−1) that are not intrinsic, i.e., unavailable to the system itself [27,31,37]. Together with Equation (2),
it follows that p(vt) = |ΩS|−1 ∑vt−1∈ΩS

p(vt|do(vt−1)), ∀vt ∈ ΩS. Imposing a uniform distribution for
p(Vt−1), moreover, corresponds to the notion of causal marginalization [31], which means averaging
across all possible states of those variables that are not conditioned to any particular state. Taken the
above into account, we define the cause repertoire of vt as:

π(Vt−1 | vt) =
p(vt | do(Vt−1))

∑vt−1∈ΩS
p(vt | do(vt−1))

=
p(vt | Vt−1)

∑vt−1∈ΩS
p(vt | vt−1).

(7)
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Following [31], we denote cause and effect repertoires by π, as their general definition (below)
is not equivalent to a simple conditional probability distribution in all cases. Moreover, conditional
probability distributions are typically derived from a freely chosen joint distribution. By contrast,
causal marginalization corresponds to imposing a uniform distribution on p(Vt−1) in the definition of
the cause repertoire (or, respectively, p(Vt) for the effect repertoire).

Not only the system as a whole, but also its parts, that is, all subsets X ⊆ S, may specify
information about the system’s potential prior and next states by being in their particular present state
xt (Figure 3). As described in detail in [25,27,31], the cause and effect repertoire of a subset X ⊆ S in
state xt ⊆ vt can be obtained from the system’s transition probabilities (Equation (2)) by conditioning
on xt and causally marginalizing the variables Wt = Vt \ X. The goal is to remove any contributions
of Wt to the repertoire by averaging over all possible states of Wt. However, common inputs from
variables in Wt may still introduce biases in the state distribution of Vt+1. To discount such correlations,
the effect repertoire of xt over Vt+1 is computed as the product of the effect repertoires of xt over each
individual variable Vi,t+1 ∈ Vt+1 [27,31,54]. More generally, within GS, the effect repertoire of X ⊆ S
in its present state xt ⊆ vt on a subset Zt+1 ∈ Vt+1 is defined as:

π(Zt+1 | xt) = ∏
i

π(Zi,t+1 | xt) = ∏
i

1
|ΩW | ∑

w∈ΩW

p(Zi,t+1|do(xt, Wt = wt)). (8)

In this way, all variables in Zt+1 are conditioned on xt, but receive independent “random” inputs
from Wt.

Likewise, the cause repertoire of a system subset X ⊆ S in its present state xt ⊆ vt on a subset
Zt−1 ∈ Vt−1 is defined as:

π(Zt−1 | xt) =
∏i π(Zt−1 | xi,t)

∑z∈ΩZt−1
∏i π(Zt−1 = z | xi,t)

(9)

where the product now is over the individual variables Xi ∈ X with:

π(Zt−1 | xi,t) = ∑
y∈ΩYt−1

p (xi,t | do (Zt−1, Yt−1 = y))
∑vt−1∈ΩS

p (xi,t | do (vt−1))
. (10)

Here, the outer sum corresponds to the causal marginalization of Yt−1 = Vt−1 \ Zt−1, while the
term inside is equivalent to Equation (7) and follows from applying Bayes’ theorem to π(Zt−1|xi,t).
By computing π(Zt−1|xi,t) as the product over individual Xi in Equation (10), we discount potential
biases due to common inputs from Yt−1 = Vt−1 \ Zt−1 to variables in X.

Note that Equation (8) reduces to Equation (6) in the case that X = Zt+1 = S, and Equation (9)
reduces to Equation (7) in the case that X = Zt−1 = S because of the conditional independence specified
in Equation (2). In general, however, π(Zt+1|xt) 6= p(Zt+1|xt) and also π(Zt−1|xt) 6= p(Zt−1|xt).
For the purpose of comparison, we can also define unconstrained cause and effect repertoires π(Zt−1))

and π(Zt+1)) which can be derived from Equations (9) and (8) by using the convention that
π(∅) = 1 [31], specifically:

π(Zt−1) = |ΩZt−1 |
−1 (11)

and
π(Zt+1) = ∏

i
π(Zi,t+1) = ∏

i
|ΩS|−1 ∑

vt−1∈ΩS

p(Zi,t+1 | do(vt−1)). (12)

Given the above definitions, we can quantify the amount of information specified by a subset
Xt = xt of the system about the possible prior or next state of other subsets Zt±1 as the difference
between the respective cause or effect repertoire and the corresponding unconstrained cause or
effect repertoire. The subset Zt±1 over which the causal constraints of xt are evaluated is called the
cause or effect “purview”, respectively. Within the IIT formalism, an appropriate difference measure
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(in line with IIT’s axioms) should be used for this purpose [27] (see also Barbosa et al., in prep,
for a novel intrinsic distance measure derived from first principles to comply with IIT’s axioms).
Here, however, we want to remain as close as possible to standard measures of information theory
and thus evaluate the difference between the repertoires using the Kullback–Leibler divergence DKL
(Equation (4)).

5.4. Subset Integration

As exemplified in Figure 3, the various subsets of a system may specify qualitatively different
information about the possible prior and next states of other subsets within the system. However,
a subset only contributes to the intrinsic information of the system as a whole to the extent that it forms
an irreducible (integrated) mechanism within the system. This means that a partition of the subset
must affect its cause or effect repertoire and thus the amount of information it specifies about the
system’s prior or next states. Otherwise the subset is reducible to its parts. Following [31], a partition
ψ of a subset X ⊆ S in its current state xt (and the nodes it constrains Zt±1) into m parts is defined as:

ψ(Zt±1, xt) = {(Z1,t±1, x1,t), (Z2,t±1, x2,t), . . . , (Zm,t±1, xm,t)}, (13)

such that {xi,t}m
i=1 is a partition of xt and Zj,t±1 ⊆ Zt±1 with Zj,t±1 ∩ Zk,t±1 = ∅, j 6= k. Note that

this includes the possibility that any Zj,t±1 = ∅, which may leave a set of nodes Zt±1 \
⋃m

j=1 Zj,t±1
completely unconstrained (see Figure 9a for examples and [31] for further details). Defined as in
Equation (13), the partition necessarily eliminates the possibility of joint constraints from xt onto Zt±1.

Next, the partition ψ is applied to the cause or effect repertoire of xt. The partitioned repertoire
is the product of the cause/effect repertoires of the m parts, multiplied by the unconstrained effect
repertoire (Equations (11) and (12)) of the remaining set of nodes Zt±1 \

⋃m
j=1 Zj,t±1, as these nodes are

no longer constrained by any part of xt under the partition:

πψ(Zt±1 | xt) =
m

∏
j=1

π(Zj,t±1 | xj,t)× π

Zt±1 \
m⋃

j=1

Zj,t±1

 . (14)

The irreducible cause or effect information ϕC/E(xt) of a subset X ⊆ S in its current state xt for
a particular partition ψ can then be obtained by comparing the intact cause or effect repertoire to the
partitioned cause or effect repertoire. Of all partitions, the one that makes the least difference to the
cause/effect repertoire (termed “MIP” for minimum information partition) determines the value of
ϕC/E for a given xt over purview Zt±1.

Within the full IIT framework [25,27], the final value of ϕC/E(xt) depends on multiple additional
factors, including the preferred difference measures [27] (see also Barbosa et al., in preparation ), as
well as a search across all possible purviews, the sets of elements Zt±1 ⊆ Vt±1, for the one that yields
the highest ϕC/E(xt).

For our present purposes, however, the goal is to simplify the analysis as much as possible,
in line with standard information theoretical considerations. For this reason, we again chose DKL
(Equation (4)) as our difference measure. In combination with the particular set of permissible partitions
(Equation (13)), the choice of DKL has the additional advantage that ϕC/E(xt) takes its maximal value
for Zt±1 = Vt±1. This is because DKL is additive and any elements in Vt±1 that are not constrained by
xt simply add nothing to ϕC/E(xt).

Taken together, we can thus define the amount of integrated intrinsic information specified by
a set of elements X ⊆ S in its current state xt as:

ϕC/E(xt) = ϕC/E(xt, MIP) = DKL

(
π(Vt±1|xt)||πMIP(Vt±1|xt)

)
. (15)
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For single variable subsets, where xt cannot be partitioned into m ≥ 2 parts, ϕC/E(xt) simply
amounts to the total amount of intrinsic information, as compared to the unconstrained cause or effect
repertoire π(Vt±1).

Using this simplified procedure, the cause and effect purviews (Zt±1) of xt then correspond to
the full set of elements that are constrained by xt, excluding only those system elements over which
xt does not specify any information. In the full analysis, which does not use DKL as the difference
measure of choice, the purviews can constitute subsets of this set.

Figure 9. Permissible partitions. (a) To assess the integrated intrinsic information ϕC/E(xt) specified
by a subset of system elements X ⊆ S at t about the prior or next states of the system, xt has to
be partitioned into at least two parts, here, e.g., {((MCZ)t−1|(MC)t)× (∅|Xt)} and {(Mt+1|Mt)×
((CX)t+1|(CX)t)}. (b) Unidirectional system partitions as defined in [27]. The connections from one
part of the system to another (but not vice versa) are partitioned.

5.5. System Integration

The intrinsic information of the system S as a whole in its current state vt is composed of the
intrinsic information of its various integrated subsets. The exhaustive IIT formalism requires each
subset xt to specify both ϕC(xt) > 0 and ϕE(xt) > 0, and only counts the minimum of the two values
as the integrated information of the subset [25,27] within the system. Here, we simply sum all the
integrated cause and effect information specified by each subset to obtain the total amount of intrinsic
information available to the system: ∑xt⊆vt ϕC(xt) + ∑xt⊆vt ϕE(xt), or short ∑ ϕC + ∑ ϕE.

A system exists as an integrated whole in its current state only if all its parts specify integrated
information about the prior and next states of the rest of the system. This is evaluated by partitioning
the connections from one part of the system X ⊆ S to the rest (Figure 9b): Ψ = X 6→ S \ X, as defined
in [25,27]. For each subset xt ⊆ vt with ϕC/E(xt) > 0, the integrated information of the subset is
reevaluated in the partitioned system:

ϕΨ
C/E(xt) = DKL

(
πΨ(Vt±1|xt)||πΨ+MIP(Vt±1|xt)

)
. (16)

The superscript “Ψ + MIP” signifies that on top of the system partition Ψ, the repertoire is
partitioned according to the subset partition ψ (Equation (13)) that makes the least difference to
πΨ(Vt±1|xt). Next, the difference ∆ϕC/E(xt) = ϕC/E(xt) − ϕΨ

C/E(xt) is summed up separately for
ϕC and ϕE across all possible subsets xt ⊆ vt with ϕC/E(xt) > 0, which we denote as ∑ ∆ϕC(vt)

and ∑ ∆ϕE(vt). Having defined these quantities, we obtain the definition of Φ⊆ (Equation (1)),
a simplified compositional version of the canonical Φ [27], by taking the minimum between ∑ ∆ϕC(vt)

and ∑ ∆ϕE(vt), and also across all possible partitions Ψ. Φ⊆ thus measures the minimal amount of
compositional intrinsic information about the possible prior or next state of the system that is lost
under any partition Ψ.

To summarize, compared to the canonical IIT formalism as described in [27], here we simplify the
Φ computation in the following ways:

• We use the KLD to quantify differences between probability distributions in order to facilitate the
comparison to standard information-theoretical approaches.
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• The set of partitions evaluated to determine ϕ (Equation( 13)) corresponds to the definition in [31],
which provides an update compared to [27].

• For simplicity and in line with information-theoretical considerations, ∑ ϕC and ∑ ϕE are
considered independently instead of only counting ϕ = min(ϕC, ϕE) for each subset.

• Φ⊆ simply evaluates the minimal difference in ∑ ϕC or ∑ ϕE under all possible system partitions
instead of a more complex difference measure between the intact and partitioned system,
such as the extended earth-mover’s distance used in [27].

5.6. Data Sets

To highlight the role of composition in the simplest possible terms, we focus on dynamical causal
networks constituted of three binary elements. Note, however, that all measures specified above can in
principle be applied to any causal network comprised of binary or multi-valued variables as long as it
complies with Equation (2) [31].

To illustrate the expected range of intrinsic information and system-level integration specified
by a random sample of systems, we evaluated two sets of 10,000 random matrices with either
probabilistic or deterministic transition probabilities (see Appendix A). We created a random sample
of 10,000 deterministic TPMs, as in Figure 1b, by assigning each input state at t− 1 a randomly drawn
output state at t. The random sample of 10,000 random probabilistic systems was generated by filling
each entry in the state-by-node TPM (Figure 1b, right) with a random number between 0 and 1 drawn
from a uniform distribution.

In order to disentangle the notion of composition as much as possible from other informational
or dynamical system properties we further restrict ourselves to the set of reversible systems, and,
in particular, the subset of ergodic reversible systems (Figure 4). In the present context, reversible is
defined as follows:

Definition 1. A discrete dynamical system S with state space ΩS and the associated dynamical causal network
GS is reversible if ∀s ∈ ΩS, ∃z ∈ ΩS:

1. p(vt−1 = z|vt = s) = 1, and
2. p(vt = s|vt−1 = z) = 1.

Note that condition 1 is fulfilled by all deterministic systems. With respect to the transition
probability matrix, condition 2 means that there is only a single ‘1.’ in each column. All such reversible
systems specify the maximal value of effective information, EI(S) = n bit [37], which directly follows
from conditions 1 and 2. In words, in a reversible system, every state is reachable and completely
specifies the prior and next state of the system. In dynamical terms, however, reversible systems can
still demonstrate a number of qualitatively different attractor landscapes with different numbers of
fixed points and periodic cycles, leading to distinct observed, or stationary probability distributions
depending on the initial state of the system (Figure 4a). For this reason, we specifically consider the
subset of ergodic reversible (ER) systems, which transition through all possible system states over time:

Definition 2. A reversible system S with state space ΩS and the associated dynamical causal network GS is
ergodic if ∀s, z ∈ ΩS with s 6= z, ∃d ∈ {1, . . . , |ΩS| − 1}: p(vt+d = z|vt = s) = 1.

The observed, stationary probability distribution p(S) of an ER system, approximates a uniform
distribution over time. This means that for all ER systems the predictive information approximates the
system’s effective information: I(Vt−1; Vt) ' EI(S) = n bit [37] for all initial conditions. In addition, all
conditional entropies within p(S) (the joint distribution at one particular point in time) equal maximum
entropy. Note, however, that the set of conditional entropies specified in Equation (2), which define
the dynamical causal network of S, still differ for all unique ER systems. From a holistic perspective,
however, all ER systems are dynamically identical, as they each follow a single periodic cycle through
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ΩS. In total, there are 40,320 distinct binary reversible systems of three interacting elements. Of these,
5040 are ergodic.

5.7. Software and Data Analysis

All quantities evaluated in this article were computed using custom-made python scripts
(available upon request) based on PyPhi, the IIT python software package [72]. The particular version
of PyPhi used can be found here: https://github.com/grahamfindlay/pyphi.git (commit: b79b7fa on
branch ‘iit-4.0’, date: 03/29/2019). To compute ∑ ϕC + ∑ ϕE and Φ⊆ the following non-standard
settings were used in the pyphi.config file: ‘MEASURE’ = ‘KLD’, ‘PARTITION_TYPE’: ‘ALL’,
‘PICK_SMALLEST_PURVIEW’: True, and ‘USE_SMALL_PHI_DIFFERENCE_FOR_CES_DISTANCE’:
‘True’. Custom-made Matlab scripts were used for subsequent data analysis. Spearman rank correlation
coefficients were used to evaluate correlations between measured quantities as the relation between
the evaluated variable pairs is not necessarily linear. All obtained correlation values were highly
significant (p� 10−6) given the large sample sizes.
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Appendix A. Correlation between EI(S), 〈H(Vi,t+1)〉, and ∑ ϕC + ∑ ϕE

Reversible systems all specify a maximum amount of EI(S) (Equation (5)) and entropy upon
perturbation. In deterministic systems, EI(S) = H(Vt+1) (the entropy of the system at t + 1
after imposing a uniform distribution of system states at time t) [36,37], because in deterministic
systems H(Vt|Vt−1) = 0 in Equation (5). Similarly, we can define the average entropy 〈H(Vi,t+1)〉
of the individual system elements at t + 1, again assuming a uniform distribution at t. EI(S)
and 〈H(Vi,t+1)〉 are related to the differentiation measures D1 and D2 described in [73]. In line
with [73], we found that both measures correlate with ∑ ϕC/E with ρSP(EI) = 0.654/0.4697 and
ρSP(〈H(Vi,t+1)〉) = 0.769/0.579, respectively. The overall strongest correlation was observed with
the total amount of irreducible information ∑ ϕC + ∑ ϕE, displayed in Figure A1b,c, which is slightly
higher than for ∑ ϕC alone.

By evaluating the informational composition of a system, we assess how the various parts of the
system constrain its prior and next states. Using DKL as a distance measure, the irreducible information
ϕ essentially quantifies how much of the system’s entropy is reduced by the various parts of the system
in a compositional manner. In deterministic systems, the entropy of the system and its elements at t + 1
(given a uniform distribution at t), is entirely due to the system’s causal mechanisms. Taken together,
this explains the strong correlation between ∑ ϕC + ∑ ϕE and the entropy measures.

Correlation of ∑ ϕC + ∑ ϕE with EI(S) (now different from H(Vt+1)) is very strong in the
random probabilistic example. 〈H(Vi,t+1)〉, however, reflects the average degree of noise present in the
system in addition to its mechanistic constrains, thus limiting the correlation between 〈H(Vi,t+1)〉 and
∑ ϕC + ∑ ϕE.

https://github.com/grahamfindlay/pyphi.git
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Figure A1. Intrinsic cause and effect information in a random sample of 10,000 binary 3-node systems.
(a,b) Deterministic systems. (c,d) Probabilistic systems. (a,c) Correlation between EI(S) and the total
amount of ϕ: ∑ ϕC + ∑ ϕE, again averaged across all possible system states. (b,d) Correlation between
the average entropy 〈H(Vi,t+1)〉 of the individual system elements at t + 1 and the total amount of ϕ.
ρSP is the Spearman rank correlation coefficient. Note that ρSP(EI) is high for both deterministic and
probabilistic systems, as EI(S) is a causal measure. By contrast, ρSP(〈H(Vi,t+1)〉) is high only for
deterministic, not for probabilistic systems. This is because in probabilistic systems a large part of
〈H(Vi,t+1)〉 is explained by noise, while in deterministic system 〈H(Vi,t+1)〉 is due to the system’s
mechanisms only.

Appendix B. Practical Measures of Integrated Information and Composition

Attempts to develop practically applicable, empirical measures of integrated
information [56,74–77] are largely based on φ2.0, the version of integrated information proposed in [58].
While the role of composition in accounting for the quality of phenomenal experience had already
been recognized then [57], it was not incorporated in the quantitative measure φ2.0. A compositional
analysis adds a layer of combinatorial complexity to the already extensive computational demands of
evaluating the integrated information of a system. To elucidate the quantitative impact of composition
on Φ, in the following, we compare Φ⊆ to a state-dependent and state-averaged, non-compositional
measure of integrated information. Throughout we denote compositional measures of system-level
integrated information by Φ, non-compositional measures by φ.

First, we define φH(vt), a non-compositional measure of information integration, which only
assesses how Ψ affects the constraints specified by the full set Vt = S in state vt:

φH(vt) = min
Ψ

(
min

(
ϕΨ

C (vt), ϕΨ
E (vt)

))
, (A1)

again using DKL to evaluate ϕΨ
C/E(vt), the difference in the cause/effect repertoire of vt before and

after the partition Ψ (Equation (16)). φH is closely related to φ2.0 [58], and even more so to φ2.5 as
defined in [78], since φ2.0 only takes constraints of vt onto the prior states of S into account.

Both, Φ⊆ and φH consider unidirectional spatial partitions (Figure 9b) as introduced with Φ3.0

in [27] to evaluate whether each part of the system specifies intrinsic information about the prior and
next state of the rest. In addition, Φ is a state-dependent measure, not a state-independent property of
a system. Accordingly, also the partition that makes the least difference, Ψ∗ = argmin(Φ), should be
identified independently for each state. Doing so for both Φ⊆ and φH , we find that for many systems
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φH = 0 on average, regardless of the average value of Φ⊆ (Figure A2a). Overall, Φ⊆ and φH are only
weakly correlated with ρSP(Φ⊆, φH) = 0.24 for reversible systems (see Figure A2 legend).

This dissociation between Φ⊆ and φH can be understood based on our example system MCX
in state (0, 1, 1) (Figure 3, Table 1), which specifies a value of Φ⊆ = 1.02 bits, where the minimum
is found for ∑ ∆ϕE, under the partition Ψ∗ =

{
{MCt, MCXt+1}, {Xt, ∅}

}
. This partition eliminates

ϕE(Xt = 1), ϕE(CXt = (1, 1)), and ϕE(MCXt = (0, 1, 1)), which sums to Φ⊆ = 1.02 bits.
By contrast, φH = 0 bits as the information specified by MCXt = (0, 1, 1) about MCXt−1

is reducible to the information specified by MCt = (0, 1) alone (Figure 3). The partition Ψ ={
{MCt, MCXt−1}, {Xt, ∅}

}
does not affect the cause information specified by MCXt = (0, 1, 1)).

Nevertheless, Xt = 1 clearly specifies information about the prior (and next) states of the rest of the
system. However, this only becomes apparent when the system’s intrinsic information is evaluated
in a compositional manner. Under the same partition that leads to φH = 0 bit, ∑ ∆ϕC amounts to
2.23 bits.

Generally, φH = 0, whenever the information specified by a part of the system is redundant in
information-theoretic (extrinsic) terms, that is, to predict the next system state or to infer the previous
system state given the present state of the system. Yet, the system may still be causally integrated,
in the sense that every part of the system in its current state specifies causal, intrinsic information
about the rest.

Figure A2. Non-compositional integrated information. (a) Φ⊆ is plotted against φH . The measures are
weakly correlated with ρSP(Φ⊆, φH) = 0.24 for reversible systems, ρSP(Φ⊆, φH) = 0.47 for the random
deterministic sample, and more strongly correlated in the random probabilistic sample ρSP(Φ⊆, φH) =

0.58. (b) φAR is plotted against Φ⊆. The correlation between Φ⊆ and φAR is stronger than for φH ,
with ρSP(Φ⊆, φAV) = 0.48 for reversible systems, ρSP(Φ⊆, φAR) = 0.75 for the random deterministic
sample, and ρSP(Φ⊆, φAR) = 0.69 for the random probabilistic sample. Note that φAV only takes on a
few discrete values in the evaluated deterministic systems. Moreover, φAR = 0 whenever Φ⊆ = 0 and
not otherwise.

Most proposed empirical measures of information integration [56,74–77] do not evaluate φ in a
state-dependent manner, but rather as a difference in conditional entropies or mutual information
under a (bidirectional) system partition (but see [78], which includes state-dependent measures).
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For comparison, we define a state-averaged version of φ, termed φAV , in which the same partition Ψ is
applied across all system states:

φAV = min
Ψ

〈
ϕE(vt, Ψ)

〉
vt∈ΩS

. (A2)

Again, Ψ is a unidirectional partition between sets of system elements. Note that φAV basically
corresponds to the conditional transfer entropy from one part of the system to another as defined
in [56], but imposing a uniform distribution across Vt (which is equivalent to the stationary distribution
for the set of ER systems). Moreover, φAV is defined in terms of ϕE only, as the average causal
constraints imposed by one part of the system onto the rest are largely symmetrical. By contrast,
for the state-dependent measures Φ⊆ and φH , we evaluate both ϕC and ϕE, and take the minimum
between the two, since the state-dependent cause and effect repertoires capture different conditional
probabilities (see Figure 3).

As shown in Figure A2b, we observe a stronger correlation between the state-dependent
compositional Φ⊆ and the state-averaged measure φAV than for φH . Moreover, φAR = 0 whenever
Φ⊆ = 0 and not otherwise. As seen above, φH may be zero even if every part of the system is causally
connected with the rest of the system. This is because, for each individual system state, there may still
be a part of the system that is redundant in information-theoretic terms, i.e., in order to predict the
next system state. It is only if the same part is always redundant, that it actually has no causal impact
on the rest of the system, in which case both φAR = 0 and Φ⊆ = 0 [27,31,79].

Figure A2b also shows that φAR takes on only a few discrete values in the evaluated deterministic
systems, corresponding to the minimal average (extrinsic) information “sent” from one part of the
system to another from time t to t + 1. By contrast, Φ⊆ is much more widely distributed, identifying
differences in the causal composition of the respective systems that would otherwise remain hidden,
and that characterize the intrinsic information lost through the system partition.

In all, a non-compositional measure of integrated information may serve as a practical indicator
for a system’s capacity for Φ, if it is evaluated as an average across (all) possible system states, as done
for φAR. However, in order to assess the amount of integrated information Φ of a system in a particular
state, the system’s causal composition cannot be neglected.

Finally, note that the choice of permissible partitions plays a crucial role in determining the value
of Φ, and the class of systems for which Φ = 0. In line with the canonical measure, Φ⊆ = 0, φH = 0,
and φAV = 0 for any set of elements in which a subset of nodes is connected to the rest in a purely
feedforward manner (see Figure 6a,c). Proposed practical measures of integrated information, such as
geometric integrated information φG [56], decoder-based integrated information φ∗ [75], or stochastic
interaction (SI) [74,76], typically evaluate bidirectional partitions between sets of system elements,
as described for φ2.0 [58] and in [78]. However, unidirectional partitions are necessary to evaluate
whether a system specifies integrated information about both its causes and effects (the prior and next
state of the system), which is a requirement for being a “whole” from the intrinsic perspective of the
system [27].
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