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Background
Long non-coding RNAs (lncRNAs) are RNA transcripts of more than 200 nucleotides 
that are not translated to proteins. Previous research [1, 2] has demonstrated that lncR-
NAs participate energetically in almost the whole process of cells. However, the func-
tions of most lncRNAs are unknown. To understand the function of an lncRNA, it is 

Abstract 

Background:  Long non-coding RNAs (lncRNAs) regulate diverse biological processes 
via interactions with proteins. Since the experimental methods to identify these inter-
actions are expensive and time-consuming, many computational methods have been 
proposed. Although these computational methods have achieved promising predic-
tion performance, they neglect the fact that a gene may encode multiple protein 
isoforms and different isoforms of the same gene may interact differently with the 
same lncRNA.

Results:  In this study, we propose a novel method, DeepLPI, for predicting the interac-
tions between lncRNAs and protein isoforms. Our method uses sequence and structure 
data to extract intrinsic features and expression data to extract topological features. To 
combine these different data, we adopt a hybrid framework by integrating a multi-
modal deep learning neural network and a conditional random field. To overcome the 
lack of known interactions between lncRNAs and protein isoforms, we apply a multiple 
instance learning (MIL) approach. In our experiment concerning the human lncRNA-
protein interactions in the NPInter v3.0 database, DeepLPI improved the prediction 
performance by 4.7% in term of AUC and 5.9% in term of AUPRC over the state-of-
the-art methods. Our further correlation analyses between interactive lncRNAs and 
protein isoforms also illustrated that their co-expression information helped predict the 
interactions. Finally, we give some examples where DeepLPI was able to outperform 
the other methods in predicting mouse lncRNA-protein interactions and novel human 
lncRNA-protein interactions.

Conclusion:  Our results demonstrated that the use of isoforms and MIL contributed 
significantly to the improvement of performance in predicting lncRNA and protein 
interactions. We believe that such an approach would find more applications in pre-
dicting other functional roles of RNAs and proteins.
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necessary to identify what other biological molecules it is able to interact with, especially 
proteins [3, 4]. By interacting with proteins, lncRNAs could regulate the expression of 
genes, influence nuclear architecture and modulate the activity of proteins [5]. There-
fore, identifying lncRNA-protein interactions is an important approach to understand 
the potential functions of lncRNAs.

Current methods to identify lncRNA-protein interactions are based on biological 
experiments and computational models. With the rapid development of molecular biol-
ogy techniques, large-scale experimental approaches such as PAR-CLIP [6], RNAcom-
pete [7], HITS-CLIP [8], and RIP-Chip [9] have been developed to detect RNA-protein 
binding and have been used to find lncRNA-protein interactions. However, these experi-
mental approaches are expensive and time-consuming [3]. Based on the known lncRNA-
protein interactions, many computational methods have been introduced for mining 
novel lncRNA-protein interactions. According to Zhang et  al.  [3], the computational 
methods could be grouped into two broad categories, machine learning-based methods 
and network-based methods. The machine learning-based methods build binary classi-
fiers to predict lncRNA-protein pairs as interactive or non-interactive. These methods 
trained their classifiers using sequence, structure and physicochemical features of lncR-
NAs and proteins. For example, RPISeq [10] utilized the sequence information of RNAs 
and proteins to train a random forest classifier and a support vector machine classifier. 
Bellucci et al. trained catRAPID [11] using the physicochemical properties and second-
ary structure propensities of 592 protein-RNA pairs to predict novel RNA-protein inter-
actions. Wang et  al. [12] built a protein-RNA interaction prediction model using the 
naive Bayes classifier based only on sequence information. LncPro [13] used Fisher’s lin-
ear discriminant approach to compute a matrix based on lncRNA and protein sequence 
information, and used the matrix to score the interactions between an lncRNA-protein 
pair. Based on the sequence and secondary structural information of RNAs and proteins, 
RPI-Pred [14] trained a support vector machine. RpiCOOL [15] trained a random for-
est classifier using sequence motifs and repeat patterns. LPI-BLS [16] used sequence 
information of known lncRNA-protein pairs to learn multiple BLS (broad learning sys-
tem) classifiers and integrated the classifiers with a logistical regression model. Recently, 
IPMiner [17], RPI-SAN [18], RPITER [19] and lncADeep [20] employed deep learning 
techniques to build lncRNA-protein interaction prediction models based on sequence 
and/or structural information.

Note that, there are several recently developed methods for predicting general 
ncRNA-protein interactions based on machine learning [21–24], but they do not con-
sider lncRNAs specifically and are hence less relevant to our work.

The network-based methods integrate heterozygous information associated with lncR-
NAs and proteins into a network   [3] and utilize the topological relationship of lncR-
NAs and proteins to predict lncRNA-protein interactions. Li et al. proposed LPIHN [25] 
that integrated an lncRNA-lncRNA similarity network, an lncRNA-protein interaction 
network and a protein–protein interaction (PPI) network into a heterogeneous network, 
and used a random walk with restart technique on the heterogeneous network to infer 
lncRNA-protein interactions. Ge et al. developed a different network approach LPBNI 
[26] using an lncRNA-protein bipartite network inference method. Based on a heter-
ogenous network similar to LPIHN, Xiao et  al. proposed PLPIHS [27] using HeteSim 
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scores [28] to infer lncRNA-protein interactions, and Hu et al. introduced an eigenvalue 
transformation-based semi-supervised link prediction method LPI-ETSLP [29]. Zhang 
et al. designed a linear neighborhood propagation method LPLNP [30]. Zhao et al. uti-
lized both random walk and neighborhood regularized logistic matrix factorization and 
proposed IRWNRLPI [31]. Deng et al. proposed PLIPCOM [32], which combined dif-
fusion and HeteSim features of heterogeneous lncRNA-protein networks and applied a 
gradient tree boosting algorithm to predict interactions. More recently, [33] combined 
multiple similarities and multiple features related to lncRNAs and proteins into a feature 
projection ensemble learning frame. Zhao et  al. proposed a semi-supervised learning 
method LPI-BNPRA [34]. Shen et al. proposed LPI-KTASLP [35], which used multivari-
ate information about lncRNAs and proteins to conduct a semi-supervised link predic-
tion. Xie et  al. [36] constructed a network integrating the information about lncRNA 
expressions, protein–protein interactions and known lncRNA-protein interactions, 
and adopted a bipartite network recommendation method to predict lncRNA-protein 
interactions.

Though a lot of computational methods for predicting lncRNA-protein interactions 
have been introduced, many challenges still remain. First, in the above studies, the 
machine-learning based methods only focused on the intrinsic features of lncRNAs 
and proteins and the network based methods mostly focused on the topological fea-
tures of associated biological networks of lncRNAs and proteins [3]. An integration of 
all these features might lead to a better prediction. Second, all methods proposed above 
neglected the fact that a gene may encode multiple protein isoforms and different iso-
forms of the same gene may interact differently with the same lncRNA, which could 
inevitably impact their prediction performance. In this paper, we attempt to address 
these issues and propose a novel method, named DeepLPI (multimodal Deep learning 
method for predicting LncRNA-Protein Isoform interactions). DeepLPI uses sequence, 
structure and expression data of lncRNAs and protein isoforms. Instead of using the 
canonical proteins of each gene, DeepLPI considers all protein isoforms, which could 
help to detect lncRNA-protein interactions more accurately. DeepLPI extracts intrinsic 
features such as functional motifs from the sequence and structure data, and obtains 
network topological features from the expression data. Note that, DeepLPI uses mRNA 
expression data to extract network topological features instead of PPI data as done in the 
existing methods because most of the available PPI data do not provide the details about 
isoforms. Moreover, it is possible to build an isoform-isoform interaction network based 
on mRNA expression data [37].

DeepLPI consists of two parts. In the first part, we train a deep neural network (DNN) 
that uses the multimodal deep learning (MDL) [38] technique to extract features from 
the sequence and structure data of lncRNAs and protein isoforms. The MDL fuses these 
extracted features and measures the initial interaction scores between lncRNAs and 
protein isoforms. In the second part, a conditional random field (CRF) is designed to 
exploit the co-expression relationship among lncRNAs and the co-expression relation-
ship among protein isoforms. The CRF assigns final interaction scores between lncR-
NAs and protein isoforms based on initial interaction scores while trying to keep highly 
co-expressed lncRNAs and highly co-expressed protein isoforms attaining similar inter-
action patterns. To overcome the lack of interaction training labels for lncRNAs and 
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protein isoforms, we propose an iterative semi-supervised training algorithm based on 
the multiple instance learning (MIL) framework similar to [39–41]. In MIL, for each 
positive lncRNA and protein interaction pair (r,  p), we initially assign positive inter-
action labels to all pairs (r,  i) for each isoform i of p and negative interaction labels to 
all other pairs of lncRNAs and protein isoforms. In each iteration, the DNN and CRF 
update the initial interaction scores using co-expressed lncRNAs and co-expressed iso-
forms until convergence is reached. In this setting, the isoforms of the a protein/gene 
can interact differently with the same lncRNA. This flexibility and the integration of both 
intrinsic and network topological features may potentially lead to a better prediction.

To evaluate the performance of DeepLPI, we first measure its prediction performance 
using protein (i.e., gene) level interactions with lncRNAs provided in the NPInter v3.0 
database. We make sure at least a half of our negative interaction examples contain lncR-
NAs and proteins that are present in the positive interactions (but do not interact with 
each other). The rest of the negative interactions contain lncRNAs or proteins that are 
not present in the positive interactions. This helps overcome the overfitting issue. Dee-
pLPI achieved an average AUC (area under receiver operating characteristic curve) of 
0.866 and AUPRC (area under the precision-recall curve) of 0.703 on the human inter-
action dataset. We also compare our method with both machine-learning based meth-
ods and network based methods for predicting lncRNA-protein interactions surveyed 
above on the same dataset. Based on availability and ease of use, 11 methods were cho-
sen for the comparison. The experimental results demonstrate that our method signifi-
cantly outperformed the others. We further evaluate the effect of various components 
of our model (i.e., the so-called ablation study), which essentially indicates the effective-
ness of each source of data (isoforms, structures, sequences, and expressions) incorpo-
rated and how these data are effectively captured by their corresponding components 
of the model. We also analyze the divergence of isoform interactions, i.e., how isoforms 
from the same protein may interact differently with lncRNAs. Finally, we validate our 
method via a series of tests including the correlation similarity test, prediction of mouse 
lncRNA-protein interactions using the model trained on human data (since lncRNAs are 
conserved), and case studies of recently discovered lncRNA-protein interactions in the 
literature.

Results and Discussion
In this section, we first compare the performance of DeepLPI with some state-of-the-
art methods and analyze the effectiveness of our method in terms of each type of data 
we used and each component of the model. Next, we validate the prediction results of 
DeepLPI using correlation analyses, a mouse dataset as well as some newly discovered 
human lncRNA-protein interactions in the literature.

Prediction of lncRNA-protein interactions

We first compare the performance of DeepLPI with both of machine-learning based 
methods and network based methods. Then, we evaluate the effectiveness of each com-
ponent of our model (i.e., the ablation study). We also study the divergence of lncRNAs 
interacting with different isoforms of the same protein/gene, and compare the structural 
components of lncRNAs and protein isoforms in both interactive and non-interactive 
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pairs. Finally, we test DeepLPI on some smaller and older lncRNA-protein interaction 
datasets and observe how its performance could be impacted by the size of training data.

Prediction performance comparison between DeepLPI and the existing methods

Since there is no benchmark data for lncRNA-protein isoform interactions, we could 
only evaluate the performance of DeepLPI based on the benchmark data of (human) 
lncRNA-protein interactions downloaded from the NPInter v3.0 [42] database. We com-
pare DeepLPI with some state-of-the-art methods including machine-learning based 
and network based methods.

The popular machine-learning based methods are catRAPID [11], RPISeq [10], lncPro 
[13], RPI-Pred [14], rpiCOOL [15], IPMiner [17], RPI-SAN [18], lncADeep [20], RPITER 
[19] and LPI-BLS [16]. Among these methods, some (lncPro and rpiCOOL) provide 
stand-alone programs, some (catRAPID, RPISeq and RPI-Pred) provide web-based ser-
vices, some (IPMiner, lncADeep, RPITER and LPI-BLS) are re-trainable with available 
source codes, while the others are unavailable. Predicting lncRNA-protein interactions 
on a large scale using web-based services of catRAPID and RPI-Pred is time-consuming 
and often fails in the case of long input sequences. The publicly available network based 
methods are LPIHN [25], LPBNI [26], PLPIHS [43], LPLNP [30], PLIPCOM [32], and 
SFPEL-LPI [33]. Therefore, we compare our method with seven machine-learning based 
methods lncPro, rpiCOOL, IPMiner, lncADeep, RPITER, LPI-BLS and RPISeq, and six 
network based methods LPIHN, LPBNI, PLPIHS, LPLNP, PLIPCOM, and SFPEL-LPI. 
Default parameters of these methods are used as recommended by their authors.

Table 1 shows the average test results in 10 runs of five-fold cross validations on the 
NPInter v3.0 human dataset. The AUC values of RPISeq (RF), RPISeq (SVM), lncPro, 
rpiCOOL, IPMiner, lncADeep, RPITER, LPI-BLS and DeepLPI are 0.708, 0.701, 0.723, 
0.721, 0.714, 0.825, 0.827, 0.782 and 0.866, respectively, and their AUPRC values are 
0.486, 0.473, 0.588, 0.503, 0.569, 0.646, 0.664, 0.575 and 0.685, respectively. DeepLPI 

Table 1  Comparison of  prediction performance on  lncRNA-protein interactions 
on the NPInter v3.0 human dataset

Broad category Methods AUC​ AUPRC

Machine-learning based methods RPISeq (RF) 0.708 0.486

RPISeq (SVM) 0.701 0.473

lncPro 0.723 0.588

rpiCOOL 0.721 0.503

IPMiner 0.714 0.569

lncADeep 0.825 0.646

RPITER 0.827 0.664

LPI-BLS 0.782 0.575

DeepLPI 0.866 0.703

Network based methods LPIHN 0.776 0.421

LPBNI 0.786 0.559

PLPIHS 0.672 0.483

LPLNP 0.801 0.566

PLIPCOM 0.821 0.609

SFPEL-LPI 0.823 0.599
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outperformed these machine-learning based methods by 22.3%, 23.5%, 19.7%, 20.1%, 
21.2%, 4.9%, 4.7%, and 10.7% in terms of AUC and by 44.6%, 48.6%, 19.6%, 39.8%, 23.6%, 
8.8%, 5.9%, and 22.2% in terms of AUPRC, respectively. The AUC values of LPIHN, 
LPBNI, PLPIHS, LPLNP, PLIPCOM and SFPEL-LPI are 0.776, 0.786, 0.672, 0.801, 0.821 
and 0.823, respectively, and the AUPRC values are 0.421, 0.559, 0.483, 0.566, 0.609 and 
0.599, respectively. DeepLPI also outperformed these network based methods by 11.6%, 
10.2%, 28.9%, 8.1%, 5.5% and 5.2% in terms of AUC and 67.0%, 25.8%, 45.5%, 24.2%, 
15.4% and 17.4% in terms of AUPRC scores, respectively. Since these results show that 
DeepLPI, lncADeep and RPITER performed better than the others, we will only com-
pare these three methods in the following experiments.

To test if our sampling method for generating negative interactions is helpful in reduc-
ing overfitting, we repeat the above experiment with all negative interactions sampled 
randomly and compare DeepLPI with two of the best-performing existing methods, 
lncADeep and RPITER. The AUC values of DeepLPI, lncADeep and RPITER are 0.923, 
0.905 and 0.894, respectively, and their AUPRC values are 0.776, 0.753 and 0.747, respec-
tively. While all AUC and AUPRC values of the three methods have increased signifi-
cantly, DeepLPI consistently performs better than the other two.

We also evaluate the performance of the methods using the leave-one-out cross-val-
idation (LOOCV) experiment, although it is computationally more expensive. In this 
experiment, the AUC values of DeepLPI, lncADeep and RPITER are 0.855, 0.801 and 
0.811, respectively, and their AUPRC values are 0.694, 0.638 and 0.649, respectively. 
Compared to those in the five-fold cross-validation experiment, the AUC and AUPRC 
values of all methods decreased a little, which might be due to variance in the data as 
discussed in [44].

In order to test if homologous protein sequences might have an impact on the perfor-
mance of DeepLPI and potentially cause data leak and/or model overfitting, we search 
for homologous proteins in our benchmark dataset based on EggNog [45]. It turns out 
that only 5% of the proteins are homologous (to other sequences). We repeat the above 
five-fold cross-validation experiment for DeepLPI by keeping all interactions involv-
ing homologous proteins in the same fold. The AUC and AUPRC values decrease only 
slightly from 0.866 to 0.861 and from 0.703 to 0.699. This suggests that data leak or 
model overfitting were unlikely or very limited in our experiment.

Analyzing the effects of model components

In order to assess the contribution of the biological features considered in our model as 
well as its major computational components, we conduct an ablation study by remov-
ing various features/components from the model and evaluate how such a change would 
affect the performance of the model. More specifically, we test how the model is affected 
when the MIL learning with protein isoforms is replaced by conventional learning with 
proteins, when the CRF component along with the expression data are removed, and 
when the sequence or structure data are removed.

Figure 1 shows that the average AUC of DeepLPI dropped 1.4%, 2.0%, 3.3%, and 5.5% 
without the structure data, without the CRF component for incorporating expression 
data, without the MIL learning framework for incorporating isoforms, and without the 
sequence data, respectively. Without these components or data, the performance in 



Page 7 of 22Shaw et al. BMC Bioinformatics           (2021) 22:24 	

term of AUPRC shows a similar declining trend with the percentage decreases being 
1.6%, 6.0%, 6.3% and 11.6%, respectively. In particular, when we consider proteins 
instead of protein isoforms in the model, its AUC dropped from 0.866 to 0.842, which 
demonstrates the significance of using isoform data. The results also suggest that the 
CRF component was effective in improving the prediction performance via the integra-
tion of expression data. Among all types of input data, the sequences are clearly the most 
important for the model. Although the usage of structure data did not boost the perfor-
mance of the model significantly, it allows us to observe interesting enrichment of struc-
tural components in interactive lncRNAs, as discussed in the next subsection.

Structural components at important positions in interactive and non-interactive pairs

It would be interesting to study how the structural components of lncRNAs and protein 
isoforms are distributed in interactive pairs, especially around their interacting sites, and 
what structural components may contribute more to the interactions than the others. 
For each lncRNA-protein isoform pair, we use saliency maps [46] to compute impor-
tance weights at each position in both sequences. These weights indicate how a position 
might impact the prediction outcome by our model (i.e., interactive or non-interactive). 
The lncRNA and protein structural components at heavily weighted (i.e., important) 
positions of interactive and non-interactive pairs are profiled and shown in Fig. 2a. For 
each structural component, the average occurrence frequency across all instances is cal-
culated. We can see that at important lncRNA positions, hairpin loops (H) occur much 
more often in interactive pairs than in non-interactive pairs. The same appears to be 
true for inner loops (I). On the other hand, stems (S) occur much often at the important 
lncRNA positions of interactive pairs than at the important lncRNA positions of non-
interactive pairs. These suggest that open/unpaired lncRNA positions perhaps play more 
important roles in their interactions with proteins, and is consistent with several studies 
in the literature [4, 47].

Similar to lncRNA structural components, we also profile protein isoform struc-
tural components in Fig. 2b. However, we are unable to observe a significant difference 

Fig. 1  The effect on performance of removing various components from the model. The average AUC and 
AUPRC values of DeepLPI, DeepLPI without structure data, DeepLPI without CRF, DeepLPI without using MIL/
isoforms, and DeepLPI without sequence data are shown in the figure
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between the distributions of the structural components at important protein isoform 
positions of interactive and non-interactive pairs. We suspect that a more detailed pro-
tein structure representation might help reveal some difference, but was unable to pur-
sue it given the time complexity involved in obtaining such representations with high 
quality.

Divergence of lncRNAs interacting with the isoforms of the same protein

Our ultimate goal is to find lncRNA interactions at the isoform level. Hence, it would 
be useful to analyze how lncRNAs interact divergently with the isoforms of the same 
protein. We first estimate the similarity of predicted lncRNA interactions for each pair 
of isoforms in terms of the semantic similarity score using GOssTo [48]. As in [39, 49], 
the semantic dissimilarity score between two isoforms is then defined as one minus their 
similarity score. We consider only proteins with multiple isoforms (MIPs) and collected 
all interactions between lncRNAs and the isoforms of the MIPs as predicted by DeepLPI 
trained on the the NPInter v3.0 dataset. For each MIP, the interaction divergence of its 
isoforms was calculated by averaging the semantic dissimilarity scores of all pairs of its 
isoforms. Among these MIPs, 71.6% (1548 out of 2163) were estimated to have divergent 
isoform interactions (i.e., with semantic dissimilarity scores greater than 0). The dissimi-
larity score distributions for MIPs that have divergent isoform interactions are shown in 
Additional file 1: Fig. S1 where the mean score value is 0.302.

a

b

Fig. 2  a Distribution of lncRNA structural components. b Distribution of protein structural components
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The impact of training data size

We have collected several (older and smaller) ncRNA-protein interaction datasets 
including RPI369, RPI1807, RPI2241, and NPInter v2.0. We would like to test how the 
DeepLPI, lncADeep and RPITER methods perform when these different datasets are 
used for training and the comparatively newer dataset NPInter v3.0 is used for testing. 
Since the datasets overlap with each other quite a bit, we make sure that the test inter-
actions do not contain any of the training interactions to prevent a possible data leak. 
The prediction results are shown in Table  2. The results suggests that the sample size 
of the training data has a significant effect on the prediction performance of DeepLPI, 
lncADeep and RPITER. When more training samples are available, these models achieve 
a better prediction performance, as expected. However, the rate of improvement with 
respect to the number of interactions is much higher for DeepLPI than for the other two 
methods.

Validation of predicted lncRNA-protein isoform interactions

To validate the prediction lncRNA-protein isoform interaction results of DeepLPI, we 
analyze the correlations between isoform sequence similarity, lncRNA sequence similar-
ity, as well as their structure similarity and expression similarity. Moreover, we evaluate 
the prediction performance of DeepLPI (trained on the NPInter v3.0 human interaction 
data) using a mouse lncRNA-protein interaction dataset and some new human lncRNA-
protein interactions from the recent literature that were not included in the NPInter v3.0 
database as the test data.

Correlation analyses

Our basic assumption is that similar lncRNAs tend to interact with similar protein iso-
forms. To check if our predicted interactions accord to the assumption, we conducted 
a series analyses of correlation between the similarity of lncRNAs and the similarity of 
their interactive protein isoforms.

From the lncRNA-protein isoform interactions predicted by DeepLPI, we grouped 
1,534 involved lncRNAs into 50 clusters according to a hierarchical clustering based on 

a generalized Levenshtein (edit) distance. For each group, we calculated a (sequence, 
structure or expression) similarity score for each pair of lncRNAs in the group and the 

Table 2  Performance of  DeepLPI, lncADeep and  RPITER when  datasets from  RPI369, 
RPI1807, RPI2241, and  NPInter v2.0 are used for  training and  the  NPInter v3.0 dataset 
is used for testing

Here, #int represents the number of positive lncRNA-protein interactions contained in a training dataset. As the training 
data increases, the performance DeepLPI, lncADeep and RPITER improves as expected, but the rate of improvement for 
DeepLPI is higher than the other methods
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average score of the group. We also calculated a similarity score for each pair of protein 
isoforms that have interaction with the lncRNAs in the group and the average score of 
all such pairs of protein isoforms. The similarity score between two lncRNA (or pro-
tein isoform) sequences is defined as the global alignment score normalized by the 
alignment length. All similarity scores were normalized to the range of [0, 1]. At last, 
Pearson’s correlation coefficient (PCC) was used to measure the pairwise correlation 
between lncRNA sequence similarity and protein isoform sequence similarity (Fig. 3a). 
Similarly, we calculated the PCC between lncRNA expression similarity and protein iso-
form expression similarity (Fig. 3b), and the PCC between lncRNA structure similarity 
and protein isoform structure similarity (Fig. 3c). The PCC between lncRNAs sequence 
similarity and lncRNA expression similarity (Fig. 3d) and the PCC between protein iso-
form sequence similarity and isoform expression similarity (Fig. 3e) are also included as 
a useful reference.

Clearly, positive correlations are found in all above analyzes. The strong correlations in 
Fig. 3a–c conform that similar lncRNAs tend to interact with similar protein isoforms. 
An interesting observation is that our correlation analysis results are highly consist-
ent with the experimental results in subsection . For example, the strongest correlation 
between the sequence similarities of lncRNAs and protein isoforms is consistent with 
the most significant drop in the prediction performance when the sequence data was 
removed. The moderate correlation coefficients in Fig. 3d, e suggest that the sequence 
and expression data contain complementary features and thus might explain why their 
combination helped improve the performance of our model.

Performance on an independent interaction dataset of mouse.

To further validate the effectiveness of DeepLPI in lncRNA-protein interaction predic-
tion, we test DeepLPI and the other existing methods on a dataset independent from 
the training data. More specifically, we trained all models with the human lncRNA-pro-
tein interactions from the NPinter v3.0 database and tested the models on 3580 mouse 
lncRNA-protein interactions in the same database. Although there is a high genetic sim-
ilarity between mouse and human (and hence the conservation of lncRNAs), the per-
formance of all models dropped. The AUC of DeepLPI decreased from 0.866 (human) 
to 0.753 (mouse), but it was still the best since the highest AUC of the other models on 
the mouse test data was 0.68. An obvious reason for the performance drops might be 
because lncRNAs do not show the same pattern of evolutionary conservation as protein-
coding genes [50].

To further investigate the prediction performance of DeepLPI on interactions between 
proteins and lncRNAs conserved between human and mouse such as Gas5, Rmst, Neat1 
and Meg3 [50, 51], we selected 39 interactions involving conserved lncRNAs from the 
3580 mouse interactions. Of the 39 interactions, 89.7% have been correctly predicted 
by DeepLPI. In particular, since Gas5 is an extensively studied mouse lncRNA that plays 
an important role in modulating self-renewal [52], we show the interaction prediction 
results concerning mouse Gas5 in Additional file  1: Table  S1. The table demonstrates 
again that DeepLPI achieved the highest prediction accuracy.
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A case study on new interactions

We further validate our model using some new lncRNA-protein interactions from the 
recent literature that were not included in the NPinter v3.0 database. After a careful 
literature search, we found 12 new lncRNA-protein interactions [53–56]. The details 
of these interactions are provided in Additional file 1: Table S2. The prediction results 

a b

c d

e

Fig. 3  Correlation analysis. a Correlation between lncRNA sequence and protein isoform sequence 
similarities. b Correlation between lncRNA expression and protein isoform expression similarities. c 
Correlation between lncRNAs structure and protein isoform structure similarities. d Correlation between 
lncRNAs sequence and lncRNAs expression similarities. e Correlation between protein isoforms sequence and 
protein isoforms expression similarities
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concerning these new lncRNA-protein interactions by the methods are illustrated in 
Additional file  1: Table  S3. The results show that DeepLPI was able to find out novel 
interactions often missed by the other methods.

Conclusion
The knowledge of interactions between lncRNAs and protein isoforms could help 
understand the functions of lncRNAs. In this paper, we proposed a machine-learning 
based method, DeepLPI, to predict interactions between lncRNAs and protein isoforms. 
DeepLPI uses a multimodal deep learning neural network to extract intrinsic features 
from the sequence and structure data of lncRNAs and protein isoforms and a condi-
tional random field to extract network topological features from their expression data. 
We designed a multiple instance learning iterative algorithm to train the prediction 
model using an availablelncRNA-protein interaction dataset, and performed extensive 
experiments to show that DeepLPI achieves a significantly better accuracy in predict-
ing lncRNA-protein interactions compared with the state-of-the-art methods. The mul-
timodal learning feature of DeepLPI allows it to integrate more types of data besides 
sequences, structures and expression profiles. With minor modifications, DeepLPI could 
be adapted to predict miRNA-protein interactions, as well as more complex interactions 
such as lncRNA-miRNA-protein interactions.

Our divergence analysis shows that many isoforms of the same gene interact with 
different lncRNAs. Hence, it would be of practical importance to study the interac-
tions between lncRNAs and protein isoforms (as opposed to proteins or genes). How-
ever, as far as we know, DeepLPI is the first attempt to predict lncRNA-protein isoform 
interactions, and its performance is still far from being desirable. It might be possible 
to improve the performance of DeepLPI by using better (e.g., tissue-specific) expres-
sion data, more detailed protein secondary structure representations and high quality 
isoform-isoform interaction network data. We plan to investigate these directions in the 
near future.

Methods
Datasets

The ground truth interactions between lncRNAs and proteins were downloaded from 
the NPInter v3.0 database [42]. This is the most enriched database that integrates experi-
mentally verified functional interactions. We kept only the interacting pairs labeled 
with ‘Homo sapiens’. Though the data of NPInter has kept on growing, the number of 
involved lncRNAs and proteins is still very small at present. In the current version, there 
are 10031 interactions between 1817 lncRNAs and 151 proteins. These interactions are 
considered as positive interactions. To train a neural network model, we also need to 
sample negative interactions that represent pairs of lncRNAs and proteins that do not 
interact with each other. As the population of negative interactions count is large, com-
plete random sampling of it may contain few lncRNAs and proteins that present in posi-
tive interactions, which might lead to overfitting [57]. To reduce overfitting, we make 
sure that at least a half of the negative lncRNA-protein interaction pairs contain lncR-
NAs and proteins that appear in positive interaction pairs (but do not interact with each 
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other). The rest of the negative interaction pairs consist of randomly chosen lncRNAs 
and proteins that do not appear in positive interaction pairs.

The lncRNA sequences and the protein isoform sequences of human genome were 
downloaded from GENCODE [58] and ENSEMBL [59], respectively. The sequences 
were then used to predict their secondary structures. To predict the secondary structure 
of an lncRNA, we used RNAShapes [60]. The output of RNAShapes was converted to a 
structure sequence using the EDeN tool (http://githu​b.com/fabri​zioco​sta/EDeN) as in 
[61]. An lncRNA structure typically consists of six structural components: stem (S), mul-
tiloop (M), hairpin loop (H), internal loop (I), dangling end (T), and dangling start (F). 
To predict the secondary structure from a protein isoform sequence, we used SPIDER2 
[62]. SPIDER2 uses a deep neural network to predict a 3-state protein secondary struc-
ture whose structural components consist of helix (H), strand (E) and coil (C).

The third type of data that we collected are mRNA and lncRNA expression data. The 
mRNA expression data are obtained from the literature [49], and the lncRNA expression 
data were downloaded from the Co-LncRNA database [63]. The mRNA and lncRNA 
expression data are based on high-throughput human RNA sequencing experiments 
of 334 studies (1,735 samples) and 241 studies (6,560 samples), respectively. We used 
the expression data to build co-expression networks. To ensure network quality, we 
only considered RNA sequencing studies with at least ten samples. Finally, 42 mRNA 
sequencing studies and 54 lncRNA sequencing studies were kept with a total of 1134 
samples and 1429 samples, respectively. Note that an mRNA transcript uniquely cor-
responds to a protein isoform. In the following, an isoform means either an mRNA 
transcript or protein isoform. Since different databases use different identifier nam-
ing conventions to record protein isoforms, mRNA and lncRNA, ID conversion tools 
from [63–65] were used to identify the same moleculars from different data sources and 
perform the mapping between protein isoforms and mRNAs. Finally, we filtered the 
data and kept the isoforms and lncRNAs that appear in both the sequence data and the 
expression data.

Data representation

An lncRNA is a character sequence composed of 4 unique ribose nucleotides: cytosine 
(C), adenine (A), guanine (G), and uracil (U). A protein isoform is a sequence consist-
ing of 20 unique amino acid codes. We generate hexamers and trimers from an lncRNA 
sequence and a protein isoform sequence, respectively. An lncRNA of length n is rep-
resented as n− 5 consecutive hexamers of ribose nucleotides, and a protein isoform of 
length n is represented as n− 2 consecutive trimers of amino acids. A hexamer of nucle-
otides is encoded as an integer from 0 to 46 − 1 , and a trimer of amino acids is encoded 
as an integer from 0 to 203 − 1 . As in [66], to help our deep learning model to learn the 
intrinsic properties of the sequences efficiently, the integer encoding sequences of lncR-
NAs and proteins are further encoded using a standard dense embedding technique [67]. 
A dense embedding maps an integer index of the vocabulary to a dense vector of floats, 
which is achieved by an embedding layer of our deep learning network using the train-
ing data. The embedding layer aims to obtain meaningful dense vectors, which could be 
utilized to calculate correlations between sequences and are used as the input features of 

http://github.com/fabriziocosta/EDeN
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lncRNA and protein isoforms. We used a 64-dimensional dense vector to encode a hex-
amer of nucleotides (or a trimer of amino acids).

Different from the sequence data, the structure of an lncRNA or a protein is often not 
unique, since multiple structures could be predicted for a single sequence by RNAShapes 
and SPIDER2. To keep more predicted structural information of an lncRNA of length n, 
a 6× n matrix as shown in Fig. 4 is used to encode multiple predicted structures, where 
the six rows represent six different structural component types and the value at the ith 
row and jth column is the sum of probabilities of the predicted structures with the jth 
nucleotide of the lncRNA being of the ith structural component type. Similar to the 
lncRNA structure representation, a 3× n probability matrix as shown in Fig. 5 is used 
to represent multiple predicted structures of SPIDER2 for a protein with n amino acids.

Model architecture and training

DeepLPI predicts the interactions between lncRNAs and protein isoforms by integrat-
ing the information of sequence, structure and expression data into a unified predictive 
model. It consists of two learning submodels. The first is a multimodal deep learning 
neural network (MDLNN) model and the second a conditional random field (CRF) 
model. The MDLNN model extracts and fuses the (intrinsic) features from the sequence 
and structure data of lncRNAs and protein isoforms, and calculates the initial scores of 
the interactions between lncRNAs and protein isoforms. The CRF model makes a final 
prediction based on both the initial interaction scores and the expression data of mRNAs 

Fig. 4  The representation of multiple predicted structures of an lncRNA. Four predicted structures are 
merged into a single matrix based on their probabilities

Fig. 5  The representation of multiple predicted structures of a protein. SPIDER2 predicts the probability 
of each candidate structure, which is summed into a matrix according to structural component types and 
amino acid positions
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(corresponding to protein isoforms) and lncRNAs. To overcome the lack of ground truth 
interactions between lncRNAs and proteins, we develop a semi-supervised algorithm 
following [39–41] to train the MDLNN and CRF models together iteratively. Figure 6 
shows a schematic illustration of DeepLPI. More details of the method are described in 
the following subsections.

Extracting sequence and structure features using multimodal deep learning neural network

To learn intrinsic features related to lncRNA-protein isoform interactions from the 
sequence and structure data, we construct a multimodal deep learning neural network 
(MDLNN). We use convolutional layers to extract local features and long short-term 
memory layer (LSTM) layers to extract short-range and long-range dependencies. At 
first, MDLNN uses a standard dense embedding technique [67] to map the sequences 
of lncRNAs and protein isoforms into a 64-dimensional vector space, which is imple-
mented by using embedding layers (denoted as embed(.)) of Keras [68]. After a training 

Fig. 6  A flowchart of DeepLPI. It begins with a multimodal deep learning neural network (MDLNN) that 
uses embedding layers, convolutional layers, LSTM layers and other layers of Keras to extract features 
from the sequence and structure data of lncRNAs and protein isoforms, and calculate initial interaction 
scores. Weighted correlation network analysis (WGCNA) is used to construct co-expression networks from 
expression data of lncRNAs and protein isoforms. Based on the pairwise potentials and unary potentials 
inferred from the co-expression relationship and the initial interaction scores, respectively, a conditional 
random field (CRF) optimization is used to predict the interactions between lncRNAs and protein isoforms. 
The whole model is trained using an iterative semi-supervised learning algorithm based on multiple instance 
learning (MIL)
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process, the embedding layers are able to learn appropriate mappings such that the 
mapped dense vectors could capture similarities between the sequences. Then, the dense 
vector matrices representing the sequences and the matrices encoding the predicted 
structures of lncRNAs and protein isoforms pass through one-dimensional convo-
lutional layers with 4 convolutional filters (denoted as conv(.)) to obtain the local fea-
tures of the sequence and structure data. After that, max pooling (denoted as pool(.)) 
layers are used to downsample the output of the convolutional layers to reduce the 
learning time of the subsequent layers. Based on downsampled features, LSTM layers 
(denoted as lstm(.)) are used to learn the features that represent the short-range and 
long-range intrinsic properties of the sequences and structures as in [69, 70]. These fea-
tures extracted from lncRNA sequences, lncRNA structures, protein isoform sequences 
and structures are merged together as the input of an LSTM layer followed by a dense 
layer. The LSTM layer and dense layer (denoted as dense(.)) are intended to learn the 
interaction patterns between lncRNAs and protein isoforms. Finally, the output of the 
dense layer is fed into a logistic regression layer (denoted as logit(.)) to compute an initial 
interaction score. Given an lncRNA sequence ls , a protein isoform sequence ps , and the 
predicted structures lt and pt of the lncRNA sequence and protein isoform sequence, 
respectively, the initial interaction score (IIS) is calculated as follows:

Incorporating co-expression relationships using a CRF

Based on the experimental evidence that we have found in the literature, co-expressed 
isoforms and co-expressed lncRNAs often exhibit similar interactions [71]. To incorpo-
rate the co-expression relationships between the isoforms and between the lncRNAs, we 
use a weighted correlation network analysis (WGCNA) method [72] to construct a co-
expression network for the isoforms and one for the lncRNAs separately. In the lncRNA 
(or protein isoform) co-expression network, the vertices are the lncRNAs (or isoforms, 
respectively). The edge between vertices i and j has weight wij = s

β
ij , where sij is the abso-

lute value of the Pearson correlation coefficient (PCC) between the expression profiles 
of the corresponding lncRNAs (or isoforms) and β is the soft thresholding parameter 
( β = 6 in our experiments as suggested by [73] for unsiged networks). Based on the pair-
wise potentials inferred from the co-expression relationships and the unary potentials 
inferred from the initial interaction scores output by the MDLNN, DeepLPI next uses a 
conditional random field (CRF) optimization to predict the interactions between lncR-
NAs and protein isoforms. Note that our CRF optiimzation framework is very similar to 

(1)

IIS(ls, ps, lt , pt)

= logit(dense(lstm(merge(fl(fls(ls), flt (lt)), fp(fps(ps), fpt (pt))))))

fp(fps(ps), fpt (pt)) = lstm(merge(fps(ps), fpt (pt)))

fl(fls(ls), flt (lt)) = lstm(merge(fls(ls), flt (lt)))

fls(ls) = pool(conv(embed(ls)))

fps(ps) = pool(conv((ps)))

flt (lt) = pool(conv(embed(lt)))

fpt (pt) = pool(conv((pt)))
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the framework introduced in [39] for inferring isoform functions. Since many details are 
different, we will still include a full description of it below for completeness.

For the ith lncRNA-protein isoform pair, denote the lncRNA sequence as lsi , the pro-
tein isoform sequence as psi , the lncRNA structure as lti , the protein isoform structure as 
pti , the lncRNA expression profile as lei , the protein isoform expression profile as pei , and 
the binary label indicating whether there is an interaction between the lncRNA and the 
protein isoform as yi . The CRF optimization model aims to obtain the labels y for each 
lncRNA-protein isoform pair by minimizing the Gibbs energy function below:

 Here, the Gibbs energy is a weighted summation of unary potentials ψu , isoform pair-
wise potentials ψip and lncRNA pairwise potentials ψlp . The unary potentials ψu are cal-
culated from the the initial interaction scores as ψu(0|lsi , psi , lti , pti) = IIS(ls, ps, lt , pt) 
and ψu(1|lsi , psi , lti , pti) = 1− IIS(ls, ps, lt , pt) . For the ith and jth lncRNA-protein iso-
form pairs, their pairwise potential is defined as follows:

where wq(pei , pej ) is the weight of the edge between isoforms i and j in the q-th isoform 
co-expression network and wr(pei , pej ) is the weight of the edge between lncRNAs i and 
j in the r-th lncRNA co-expression network. µp(yi, yj) is a label compatibility function 
whose value is 1 if yi  = yj or 0 otherwise. It is used to penalize highly co-expressed iso-
forms and highly co-expressed lncRNAs assigned with different interaction labels. The 
weights θ1 , θ2 and θ3 are used to control the relative importance of ψu , ψip and ψlp in the 
Gibbs energy. They will be discussed in the next subsection.

By searching for an assignment ŷ of labels minimizing the Gibbs energy 
E(ŷ|ls, ps, lt , pt , le, pe) , we attempt to find appropriate labels for lncRNA-protein isoform 
pairs with low unary energies such that highly co-expressed isoforms would have the 
same interaction patterns with highly co-expressed lncRNAs. Since computing an exact 
solution to the Gibbs energy minimization problem is challenging, we apply an efficient 
approximation algorithm called the mean-field approximation as in [74] to obtain an 
approximate solution, sketched below.

It is easy to see that minimizing the Gibbs energy is equal to maximizing the following 
probability:

where Z =
∑

y exp(−E(y|ls, ps, lt , pt , le, pe)) is a normalization constant. Let 
Q(y|ls, ps, lt , pt , le, pe) be the product of independent marginal probabilities, i.e.,

(2)

E(y|ls, ps, lt , pt , le, pe) = θ1

∑

i

ψu(yi|lsi , psi , lti , pti)+

θ2

∑

i<j

ψip(yi, yj|pei , pej )+ θ3

∑

i<j

ψlp(yi, yj|lei , lej )

(3)

ψip(yi, yj|pei , pej ) = µp(yi, yj)
∑

q

wq(pei , pej )

ψlp(yi, yj|lei , lej ) = µp(yi, yj)
∑

r

wr(lei , lej )

(4)P(y|ls, ps, lt , pt , le, pe) =
1

Z
exp(−E(y|ls, ps, lt , pt , le, pe))
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 Instead of computing the exact distribution of P(y|ls, ps, lt , pt , le, pe) , we use 
Q(y|ls, ps, lt , pt , le, pe) with the minimum KL-divergence D(Q||P) to approximate P, 
and adopt the following iterative update equation to obtain a Q with the minimum 
KL-divergence:

Here, we initialize Qi with the unary potential and update it iteratively according to Eq. 6 
until convergence, when the final output of our model is obtained.

Training the model with the MIL framework

Because the ground truth lncRNA-protein isoform interactions are generally unavail-
able, conventional supervised training algorithms cannot be directly applied to our 
model. Similar to [39] again, here we adopt a semi-supervised training algorithm under 
the MIL framework as in [40, 41]. In this MIL framework, for each lncRNA, a protein/
gene is treated as a bag, the isoforms of a protein/gene are treated as the instances in 
the bag, and only the ground truth of the bag (i.e., the true lncRNA-protein interaction 
label) is assumed. We further require that a positive bag should contain at least one posi-
tive instance and a negative bag should contain no positive instances. DeepLPI first ini-
tializes all instances of positive bags with positive labels, and the other instances with 
negative labels. Then, the model parameters are optimized with the initial labels in the 
following standard supervised learning manner.

Given a batch of training instances (ls, ps, lt , pt , le, pe, ŷ) , the loss functions in terms of 
the MDLNN parameters w and in terms of the CRF parameters θ are defined as the fol-
lowing negative log likelihoods, respectively.

In Eq. 8, the parameter σ is used to regularize the importance of the co-expression net-
works in the model optimization and set as 0.1 in our following experiments. We use the 
Nadam optimization algorithm to update the MDLNN parameters w so ℓMDLNN could 
be minimized. To minimize ℓCRF , we use the L-BFGS-B algorithm as in [39] to update 
CRF parameters θ.

(5)Q(y|ls, ps, lt , pt , le, pe) =
∏

i

Qi(yi|lsi , psi , lti , pti , lei , pei)

(6)

Qi(yi|lsi , psi , lti , pti , lei , pei) =
1

Zi
exp{−θ1ψu(yi|lsi , psi , lti , pti)

− θ2

∑

i �=j

∑

q

wq(pei , pej )Qj(1− yi|lsj , psj , ltj , ptj , lej , pej )

− θ3

∑

i �=j

∑

r

wr(lei , lej )Qj(1− yi|lsj , psj , ltj , ptj , lej , pej )}

(7)
ℓMDLNN (w : ls, ps, lt , pt , ŷ) = −

∑

i

(ŷi log(IIS(lsi , psi , lti , pti))

+ (1− ŷi) log(1− IIS(lsi , psi , lti , pti)))

(8)ℓCRF (θ : ls, ps, lt , pt , le, pe, ŷ) = − log P(ŷ|ls, ps, lt , pt , le, pe)+
∑

i

θ2i

2σ 2
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We perform inference for every instance in the positive bags after each update of 
the parameters of the model, using the model with the updated parameters. Here, the 
label of an instance is updated according to the inference: ŷi = argmaxyiPi(yi) . We also 
adopt the following constraint: for each positive bag, if all its instances are assigned 
with negative labels, we force the instance with the largest positive prediction score 
Pi(1) in the bag as positive. The steps of updating parameters and labels are repeated 
alternately until convergence.
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