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Abstract: Since the first polyethylene glycol (PEG)ylated protein was approved by the FDA in 1990,
PEGylation has been successfully applied to develop drug delivery systems through experiments,
but these experimental results are not always easy to interpret at the atomic level because of the
limited resolution of experimental techniques. To determine the optimal size, structure, and density of
PEG for drug delivery, the structure and dynamics of PEGylated drug carriers need to be understood
close to the atomic scale, as can be done using molecular dynamics simulations, assuming that these
simulations can be validated by successful comparisons to experiments. Starting with the development
of all-atom and coarse-grained PEG models in 1990s, PEGylated drug carriers have been widely
simulated. In particular, recent advances in computer performance and simulation methodologies
have allowed for molecular simulations of large complexes of PEGylated drug carriers interacting with
other molecules such as anticancer drugs, plasma proteins, membranes, and receptors, which makes
it possible to interpret experimental observations at a nearly atomistic resolution, as well as help
in the rational design of drug delivery systems for applications in nanomedicine. Here, simulation
studies on the following PEGylated drug topics will be reviewed: proteins and peptides, liposomes,
and nanoparticles such as dendrimers and carbon nanotubes.

Keywords: PEGylation; molecular dynamics simulation; drug delivery; protein; peptide; liposome;
dendrimer; carbon nanotube

1. Introduction

Polyethylene glycol (PEG) and polyethylene oxide (PEO), which are hydrophilic polymers
composed of the subunit –(CH2–CH2–O)n–, have been often covalently or noncovalently attached
to the surfaces of drug molecules or transporters, a process called PEGylation [1,2]. PEG chains can
sterically shield the encapsulated drugs from plasma proteins in the bloodstream and maintain good
water solubility, leading to increased circulating lifetime and decreased cytotoxicity [3–9]. Therefore,
the PEGylation method has been widely applied to pharmaceutical industries over the past three
decades, since the first PEGylated protein was clinically approved by the FDA in the early 1990s [10,11].
Despite this successful application of PEGylation, the effects of PEG size, structure, and grafting density
on the efficiency of drug delivery have not been well interpreted because of the limited resolution
of experimental techniques. To complement experimental observations at nearly the atomic scale,
molecular dynamics (MD) simulations have been performed. Figure 1 lists the number of publications
on the development of PEG force fields (FFs) and MD simulations of PEGylated biomolecules and
nanoparticles. Since all-atom and coarse-grained (CG) PEG FFs have been developed after 1995, short
linear PEG chains were mainly simulated up until the 2000s, but recent advances in computer power
and simulation methodologies have allowed many more simulations of large complexed (e.g., branched)
PEG chains, PEGylated nanoparticle (or protein)-drug complexes and their self-assemblies interacting
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with plasma proteins and lipid membranes [12–14]. In particular, simulations have revealed that
PEGylation influences the conformations and surface properties of drug molecules or transporters and
thus modulates the efficiency of drug delivery and release, which helps explain atomic-level phenomena
and determine the optimal size, structure, and density of PEG for drug delivery applications [12,14].
Note that the conformation of PEGs and their interactions with other molecules can be reasonably
predicted only in the presence of accurate FFs. For the development of all-atom [15–23] and CG
models [24–31] for PEG and PEO, previous review papers are recommended [12–14].
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In this review, we will first (Section 2) review MD simulations of PEGylated biomolecules such as
proteins, antimicrobial peptides (AMPs), and coiled coil peptides, focusing on their structural changes
induced by PEGylation. Next (Section 3), MD simulations of PEGylated liposomes interacting with
drugs and plasma proteins will be reviewed, which are interpreted by the polymer theory regarding the
effect of PEG size and density on protein adsorption. Lastly (Section 4), we will focus on simulations of
PEGylated nanoparticles such as dendrimers and carbon nanotubes (CNTs).

2. PEGylated Biomolecules: Proteins, Antimicrobial Peptides, and Coiled Coil Peptides

Since Abuchowski et al. found the effect of PEGylation on immunogenicity and circulating
lifetime of serum albumin proteins in 1977 [32,33], PEGylated protein-based drugs or drug transporters
have been clinically approved such as Neulasta [34], Oncaspar [35], Cimzia [36], Mircera [37],
Omontys [38], Macugen [39], Plegridy [40], Krystexxa [41], Adagen, Pegasys, Sylatron, PEGlntron,
Somavert [3,10,42,43]. Although PEGylation has been successfully applied for protein- and
peptide-based pharmaceutics [7,44–46], the structural stability and surface properties of PEGylated
proteins need to be understood to increase drug delivery efficiency. Since the structural change of
proteins cannot be negligible, most simulation studies have been performed using all-atom models
rather than CG models, although some CG simulations have shown the conformation of the grafted
PEG. Here, PEGylated proteins, AMPs, and coiled coil peptides will be reviewed.

2.1. Proteins

Manjula et al. performed all-atom simulations of PEGylated hemoglobin and showed that
PEG chains on the protein surface have the folded structure rather than the extended conformation,
which weakens the interactions between hemoglobin and other biopolymers [47,48]. The Liu group
simulated PEGylated insulin in water, showing that PEG chains do not only interact with hydrophobic
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residues of insulin but also form hydrogen bonds with water, leading to the increased size and stability
of insulin, which helps explain the longer circulating lifetime as observed in experiments [49]. They also
investigated the interactions of PEG with lysozyme [50] and cytochrome c [51], showing the effect of
PEGylation on the conformation and stability of proteins at different temperatures. Xue et al. simulated
a series of five small peptides grafted with PEG, showing that PEGylation more significantly influences
the conformations of charged peptides than those of neutral peptides [52]. Mu et al. showed that PEG
size and PEG-conjugated position modulate the hydrodynamic volume of the Staphylokinase–PEG
complex and the flexibility of grafted PEG chains [53]. Khameneh et al. simulated PEGylated human
growth hormone with its receptor and performed the docking analysis, showing the random-coil
formation of PEG and the reduced binding affinity between human growth hormone and its receptor
in the presence of PEG [54]. The Accardo group simulated PEGylated hexa-phenylalanine [55,56],
tetra-tryptophan [57], and tyrosine-containing aromatic peptides [58], showing the effect of PEGylation
on the conformation and stability of assembled structures.

Recently, the interactions between PEG and individual amino acids have been quantified and
applied to predict the extent of protein folding. Settanni et al. simulated a mixture of PEG and plasma
proteins such as serum albumin, transferrin, complement Cq1, and apolipoprotein A1, and calculated
the local density of PEG near individual amino acids, the preferential binding coefficient of each
peptide for PEG [59,60], and the conformation and thickness of PEG layer adsorbed on the protein
surface [61], showing that PEG–protein interactions can be quantified by a simple model in terms
of the solvent-accessible surface area exposed by each amino acid type on the protein surface,
favorably compared with experimental results obtained by label-free proteomic mass spectrometry.
Kurinomaru et al. [62], Zaghmi et al. [63], and Sindhu et al. [64] found the effect of PEGylation on the
structure, dynamics, and binding affinity of enzyme-therapeutic drugs such as α-amylase, glutamate
dehydrogenase, and L-asparaginase, respectively. The Colina group reparameterized non-bonded
potential parameters of the MARTINI CG PEG FF that was previously developed by Lee et al. [25] and
Rossi et al. [26], which allows the accurate prediction of the interactions between PEG and proteins [65].
Using this CG model, they simulated PEG interacting with plasma proteins such as bovine serum
albumin, human serum albumin, and apo-human serum transferrin, which reasonably predict the
experimentally observed local densities of PEG around individual amino acids [65,66]. In particular,
they simulated PEGylated chymotrypsin (a digestive enzyme), showing that PEG chains stabilize
partially unfolded intermediates and even help the refolding to an active conformation, to an extent
dependent on pH as described in Figure 2 [67], which supports the experimental hypothesis regarding
the effect of PEG on protein folding and helps in the rational design of protein–polymer conjugates.
They also observed the dependence of the PEG–peptide hydrogel interaction on peptide sequence and
solvent condition [68].

2.2. Antimicrobial Peptides

AMPs are cationic amphipathic peptides composed of less than 50 amino acids that can be
extracted from eukaryotic organisms for their defense mechanism [69]. Cationic AMPs selectively
bind to anionic bacterial cell membranes rather than neutral human cell membranes and thus have
been considered a promising possible antibiotics [70,71]. To achieve this, the high concentration of
AMP is required, but AMP at high concentrations can nonspecifically attack human cells, leading to
a decrease in the efficiency of specific targeting, which limits the application of AMP as antibiotics.
To overcome this, PEGylation has been experimentally applied to AMPs such as nisin [72], magainin 2,
tachyplesin I [73,74], KYE28 [75], LL-37 [76] and synthetic AMPs (CaLL [77] and M33 [78]), showing
decreased antimicrobial activity and increased solubility, which has motivated simulation studies on
the interactions between AMP and PEG.
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chymotrypsin at pH 1, and (c) PEGylated chymotrypsin at pH 12. PEG chains stabilize partially
unfolded intermediate states and thus inhibit irreversible denaturation at pH 1 but not at pH 12
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Wu et al. performed all-atom simulations of cecropin P1 grafted to the silica surface via a PEG
cross-linker, showing the effect of PEG size and ionic strength on the conformation and antimicrobial
activity of the peptide [79,80]. Our group simulated PEGylated magainin 2 and tachyplesin I interacting
with lipid bilayers, showing that PEGylation reduces the binding strength between peptides and
bilayer surfaces, which occurs more significantly for α-helical magainin 2 than for β-sheet tachyplesin
I [81]. Recently, Jafari et al. simulated PEG-encapsulated magainin 2 and found that the PEG–peptide
interaction is significantly modulated by aromatic and basic residues of the peptide [82], and Souza et al.
simulated the insertion of PEG-encapsulated human beta-defensin-3 to lung surfactant models, showing
that PEG chains promote the translocation of the peptide from gas phase to water phase [83]. Asadzadeh
et al. simulated GF-17 (17th–32nd residues of LL-37) interacting with chitosan, PEG, or both, showing
that the peptide interacts more tightly with PEG than with chitosan (Figure 3), leading to lower helicity
in the presence of PEG [84].

2.3. Coiled Coil Peptides

Coiled coils are peptides composed of two or more α-helices wound into a superhelix. Sequences
of coiled coils contain a heptad repeat of seven amino acid residues, where the 1st and 4th
residues of each heptad repeat are hydrophobic [85]. These hydrophobic residues are located in
the core of coiled coils and thus stabilize the superhelical structure of coiled coil bundles [85].
Coiled coils are found in approximately 10% of all proteins and serve critical roles as mediators
of oligomerization of many proteins such as transcription factors, molecular motors, receptors and
signaling molecules [86]. In addition, coiled coils can self-assemble to mechanically rigid protein
fibers and thus have been synthesized for drug delivery applications as templates to promote the
assembly of other molecules [87,88]. To increase their solubility and stability, PEGylated coiled coils
have been experimentally synthesized by the Klok group [89–93], the Kros group [94–103], and the Xu
group [104–113], showing membrane fusion and micelle assembly modulated by peptide sequence,
PEG size and density, which have been theoretically complemented by simulations.
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Jain and Ashbaugh performed replica exchange simulations of PEGylated coiled coils, showing
the higher helicity of coiled coils grafted with larger PEG chains due to the interactions between
PEG and lysine residues of peptides [114]. The Keten group found strong interactions of PEG chains
with both hydrophobic and polar residues of peptides, leading to increased helicity and decreased
solvent-accessible surface area of the peptide in the presence of PEG, to an extent dependent on solvent
hydrophobicity [115]. The binding energy of a cyclic peptide dimer was influenced by PEG length
and grafting density [116]. They also found the high helicity and stability of coiled coils grafted with
low-molecular weight PEG chains [117], and the extended structure of PEG chains grafted to helix
micelles [110]. In particular, PEGylation influences the micelle size and stability, which is interpreted
by a competition between the entropy of PEG conformations in the assembled state [111,118]. Recently,
they performed both all-atom and CG simulations of PEGylated coiled coils composed of three or four
helices, showing the formation of self-assembled micelles and the effect of the coiled coil oligomeric
state on micelle size and stability [119]. Our group also performed all-atom and CG simulations
of PEGylated trimeric coiled coils and their self-assembled micelles (Figure 4), and calculated their
radii of gyration and hydrodynamic radii, which favorably compare with experimental values [120].
In particular, we found that hydrophobic residues in the exterior sites of coiled coils tend to be less
exposed to water and thus interact with PEG, leading to the compact conformation of adsorbed
PEG [120].



Pharmaceutics 2020, 12, 533 6 of 23

Pharmaceutics 2020, 12, x FOR PEER REVIEW 6 of 23 

 

coil oligomeric state on micelle size and stability [119]. Our group also performed all-atom and CG 
simulations of PEGylated trimeric coiled coils and their self-assembled micelles (Figure 4), and 
calculated their radii of gyration and hydrodynamic radii, which favorably compare with 
experimental values [120]. In particular, we found that hydrophobic residues in the exterior sites of 
coiled coils tend to be less exposed to water and thus interact with PEG, leading to the compact 
conformation of adsorbed PEG [120]. 

 
Figure 4. Initial and final snapshots of PEGylated trimeric coiled coils, showing the compact 
conformation of PEG due to the hydrophobic interaction (top). Snapshots of self-assembled micelles 
having a hydrodynamic radius of 7 nm for each micelle (bottom) (reprinted with permission from 
[120]. Copyright (2014) American Chemical Society). 

3. PEGylated Liposomes 

Liposomes, which are synthetic vesicles composed of phospholipid membranes, can transport 
drug molecules across specific cell membranes and thus have been widely used for drug delivery 
applications [121–123]. To increase solubility and circulating time of drug-encapsulating liposomes, 
PEG has been often attached to the liposome surface [2], since the first PEGylated liposomal 
doxorubicin (hydrophobic anticancer drug) was approved by the FDA in 1995 [124]. As the PEG size 
and concentration increase, encapsulated drug molecules can be more safely shielded from plasma 
proteins in the bloodstream, but also liposome membranes become unstable [125,126]. Therefore, 
many experiments have been performed to determine the maximum size and grafting density of PEG 
that can still maintain liposome stability [125,127–140], which has motivated theoretical studies on 
the effect of PEG size and grafting density on the conformation and dynamics of PEG chains grafted 
on the surface. 

The Alexander–de Gennes theory has been applied to predict the transition of hydrophilic 
polymer chains between hemisphere (mushroom) and brush-like states on the surface [141]. Briefly, 
at very low grafting density, the grafted chain behaves like an isolated chain in solution, leading to a 
hemisphere (mushroom) conformation with a size given by the Flory radius, RF = aN3/5, where N is 
the degree of polymerization and a is the monomer size (Figure 5). At high grafting density (D < RF), 
polymer chains become crowded and repel each other, leading to a brush-like conformation with a 
thickness given by L = Na(a/D)2/3, where D is the distance between the grafting points of polymers. 
Jeon et al. calculated free energies of steric repulsion, van der Waals attraction, and hydrophobic 
interaction for the binding between spherical model proteins and PEO chains grafted on the 
hydrophobic surface, to an extent dependent on PEO length and grafting density [142]. Their free-
energy calculations show that longer size and higher density (i.e., the brush state) lead to the optimal 
protein resistance, although surface density is more influential than chain length [142]. In particular, 
they determined optimal grafting densities of PEO for differently sized proteins, which was 
interpreted by steric repulsion and hydrophobic interaction between protein and PEO layer [143]. 
Szleifer also calculated free energies and showed the dependence of protein adsorption on the PEG 
density as well as on the protein conformation and concentration [144]. Halperin found that 
adsorption of small proteins can be repressed by increasing the grafting density, while adsorption of 
large proteins can be suppressed by increasing the brush thickness [145]. They also distinguish 

Figure 4. Initial and final snapshots of PEGylated trimeric coiled coils, showing the compact
conformation of PEG due to the hydrophobic interaction (top). Snapshots of self-assembled micelles
having a hydrodynamic radius of 7 nm for each micelle (bottom) (reprinted with permission from [120].
Copyright (2014) American Chemical Society).

3. PEGylated Liposomes

Liposomes, which are synthetic vesicles composed of phospholipid membranes, can transport
drug molecules across specific cell membranes and thus have been widely used for drug delivery
applications [121–123]. To increase solubility and circulating time of drug-encapsulating liposomes,
PEG has been often attached to the liposome surface [2], since the first PEGylated liposomal doxorubicin
(hydrophobic anticancer drug) was approved by the FDA in 1995 [124]. As the PEG size and
concentration increase, encapsulated drug molecules can be more safely shielded from plasma proteins
in the bloodstream, but also liposome membranes become unstable [125,126]. Therefore, many
experiments have been performed to determine the maximum size and grafting density of PEG that
can still maintain liposome stability [125,127–140], which has motivated theoretical studies on the
effect of PEG size and grafting density on the conformation and dynamics of PEG chains grafted on
the surface.

The Alexander–de Gennes theory has been applied to predict the transition of hydrophilic polymer
chains between hemisphere (mushroom) and brush-like states on the surface [141]. Briefly, at very low
grafting density, the grafted chain behaves like an isolated chain in solution, leading to a hemisphere
(mushroom) conformation with a size given by the Flory radius, RF = aN3/5, where N is the degree
of polymerization and a is the monomer size (Figure 5). At high grafting density (D < RF), polymer
chains become crowded and repel each other, leading to a brush-like conformation with a thickness
given by L = Na(a/D)2/3, where D is the distance between the grafting points of polymers. Jeon et al.
calculated free energies of steric repulsion, van der Waals attraction, and hydrophobic interaction for
the binding between spherical model proteins and PEO chains grafted on the hydrophobic surface,
to an extent dependent on PEO length and grafting density [142]. Their free-energy calculations
show that longer size and higher density (i.e., the brush state) lead to the optimal protein resistance,
although surface density is more influential than chain length [142]. In particular, they determined
optimal grafting densities of PEO for differently sized proteins, which was interpreted by steric
repulsion and hydrophobic interaction between protein and PEO layer [143]. Szleifer also calculated
free energies and showed the dependence of protein adsorption on the PEG density as well as on the
protein conformation and concentration [144]. Halperin found that adsorption of small proteins can
be repressed by increasing the grafting density, while adsorption of large proteins can be suppressed
by increasing the brush thickness [145]. They also distinguish specific and nonspecific attractive
interactions between various plasma proteins and PEG brushes [146]. Taylor and Jones found that
the amount of proteins adsorbed onto PEGylated gold surfaces exponentially decreases as the brush
density increases [147].
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Figure 5. Schematic illustrations of the mushroom and brush conformations (top), and snapshots of
the side (middle) and top-down (bottom) views at the end of simulations of PEG chains grafted
on a hydrophobic surface (reprinted with permission from [25]. Copyright (2009) American
Chemical Society).

To complement these theoretical models, MD simulations have been performed. The Roccatano
group performed all-atom simulations of PEGylated lipid bilayers, and their free-energy calculations
showed the strong interactions between PEG and lipid headgroups of bilayers [148,149]. Bunker and
coworkers parameterized the all-atom PEG model and simulated PEGylated lipid bilayers, showing
the interactions between PEG oxygens and Na+ ions, and the penetration of PEG chains into a
liquid-crystalline membrane but not into a gel-phased membrane [16]. They also found that the
strength of the interaction between PEG and salt is modulated by PEG density, salt concentration and
type such as NaCl, KCl, and CaCl2 [150]. They simulated small peptides interacting with PEGylated
lipid bilayers, showing the dependence of peptide penetration on hydrophobicity [151]. In particular,
Na+ ions bind to lipid bilayers and PEG chains grafted to drug molecules, which induces electrostatic
repulsive interactions between lipid bilayers and PEGylated drugs [152]. PEGylation modulates the
effect of cholesterol on the conformation and dynamics of lipid bilayers [153]. Their simulations
also captured the insertion of hydrophobic drug or light-sensitizing molecules (e.g., porphyrins,
indocyanine green, itraconazole, and piroxicam) to the PEG layer and the hydrophobic region of the
bilayer (Figure 6) [154–158]. Recently, they simulated linear and branched PEG chains grafted on lipid
bilayers, showing that the architecture and length of PEG–lipid conjugates influence the structure and
dynamics of membranes, in agreement with experimental results [159].

Although all-atom simulations have captured the conformation and dynamics of PEGylated
bilayers and their interactions with hydrophobic drug molecules and salt ions, the effects of PEG size and
grafting density on liposome formation and protein adsorption have not been systematically simulated
due to computational limitations of system size and time scale. To resolve this, the Klein group
parameterized the CG model for PEG and PEGylated surfactants [160] and investigated the interactions
between PEGylated surfactants and lipid bilayers [161] and the conformation of self-assembled
PEGylated bicelles [162]. Our group also developed CG PEG model within the framework of the
MARTINI FF [163,164], which lumps a monomer of PEG (–(CH2–CH2–O)n–; three heavy atoms)
into each CG bead [18,25]. This CG PEG model was further parameterized to increase dihedral
stability by Rossi et al., showing the effect of PEGylation on the curvature of the surfactant bilayer [26].
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Using this CG PEG model, Yang and Faller found that the presence of PEGylated lipid promotes
the conformational transition from bilayers to micelles [165]. Hezaveh et al. developed another
version of the MARTINI-based PEG model and showed the insertion of block copolymers into lipid
bilayers, although their model does not include a dihedral potential and thus cannot reproduce the
experimentally observed conformation of PEG chains in water [166].Pharmaceutics 2020, 12, x FOR PEER REVIEW 8 of 23 
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Our group simulated a mixture of lipids and PEGylated lipids at different molar ratios, showing
the formation of self-assembled liposomes, bicelles, and micelles, respectively, at 0–2.2, 10.5–27.4,
and higher mol% of PEGylated lipid, in qualitative agreement with experiments [167]. This indicates
that the phase behavior and size of lipid assemblies can be modulated by PEG density because their
bulky headgroups increase membrane curvature [167]. Moreover, our CG simulations of PEG chains
grafted to a nonadsorbing surface captured the conformational transition between brush and mushroom
states, showing good agreement of simulation and Alexander–de Gennes theory [25]. In particular,
we characterized the extent of protein adsorption to PEGylated lipid bilayers in terms of different
PEG sizes (Mw = 750, 2000, and 5000) and grafting densities (1.6–25 mol%), showing that the binding
between proteins and membranes is suppressed by the PEG layer in a brush but not in a mushroom
(Figure 7), in quantitative agreement with the Alexander–de Gennes theory and experiments regarding
much less adsorption of plasma proteins onto the membrane surface grafted with PEG in the brush
state than in the mushroom state [168]. It is worth noting that the binding between plasma protein and
bilayer surface can be predicted from the boundary between mushroom and brush states of PEG with
different sizes and grafting densities, as highlighted in Figure 7. Recently, Sammalkorpi and coworkers
showed the formation of self-assembled liposomes, bicelles, and micelles at different PEGylated-lipid
concentrations [169,170], similar to our previous work [167].
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4. PEGylated Nanoparticles

4.1. Dendrimers

Dendrimers, which consist of regularly branched monomeric building blocks with many surface
terminal groups, have shown great potential for drug delivery applications because of their controlled
mass, surface valency, and surface functionality [171]. Drug molecules can be either conjugated to the
terminal group of dendrimer or encapsulated into the inner vacancy of dendrimer and then delivered to
the desired site [172]. However, charged dendrimers have nonspecific interactions with cell membranes
and thus have been neutralized by acetylating their surface terminals. In addition, PEG chains have
been often attached to the dendrimer surface, which does not only decrease nonspecific cytotoxicity
but also increases dendrimer solubility [173]. In particular, PEG can sterically shield drug molecules
from plasma proteins in the bloodstream and thus increase their circulation lifetime [174], which has
motivated many simulation studies on the conformation of PEGylated dendrimers and their interaction
with drugs, proteins, and lipid membranes.

Tanis and Karatasos performed all-atom simulations of a dendrimer grafted with a single PEO
chain, showing the effect of pH on the conformation of PEO and its hydrogen-bond interaction with
dendrimer [175]. Karatosas also simulated the complex of PEGylated hyperbranched polyesters and
doxorubicin, showing the effects of PEG size and doxorubicin charge on the hydrogen-bond interactions
between PEGylated polyesters and doxorubicin [176]. Our CG simulations showed that PEGylation
induces interparticle dispersion [177] and the lower extent of cytotoxicity and membrane permeability
than acetylation does [178]. In particular, we found that longer chains with higher grafting densities
promote PEG–PEG crowding and thus stretch dendrimer terminals towards water, leading to a larger
dendrimer with a dense-shell structure [179]. Albertazzi et al. simulated dendrimers containing 2-
and 4-arm PEG cores, showing more swollen conformation of dendrimer at higher concentrations of
PEG core [180]. Their metadynamics simulations also showed that PEGylated dendrimers have a tight
globular shape rather than an open conformation [181]. Pearson et al. showed conformational changes
of PEGylated dendrimers at different charge densities [182], and Lin et al. found that PEGylated
dendrimers adsorb to lipid monolayers but do not significantly influence the structure and properties
of monolayers [183].

Recently, large complexes of PEGylated dendrimers and proteins (or drugs) have been
simulated. Lim et al. [184] and Barraza et al. [185] respectively simulated paclitaxel and methotrexate
drugs interacting PEGylated dendrimers, showing that PEG–PEG crowding decreases the extent
of drug release, which helps determine the size and density of PEG for optimal drug release.
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Sampogna-Mireles et al. simulated dendrimers grafted with PEG and folic acid, showing that PEG
chains do not reduce the binding affinity between folic acid and folate receptor (Figure 8) [186], which
should be highlighted because their simulations captured the effect of PEG on the binding affinity to
the receptor protein. Hsu et al. simulated PEGylated dendron micelle and serum albumin, showing
that the penetration of serum albumin into the micelle core can be suppressed by PEGylation [187].
Diaz et al. compared the conformations of dendrimers grafted with PEG or folic acid, showing different
effects of PEG and folic acid on dendrimer size, which helps explain the experimentally observed
relationship between dendrimer size and circulation time [188]. Wang et al. found that PEGylation
significantly weakens the binding between dendrimers and plasma proteins such as human serum
albumin and immunoglobulin [189]. Overall, the conformation of PEG and its effect on the internal
structure of dendrimer were mainly studied until early 2010s, while the effect of PEGylation on the
binding affinity to proteins and drug release efficiency have been more focused for the past five years.
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4.2. Carbon Nanotubes

Since CNTs are mechanically strong and chemically stable, they have been considered to be good
candidate nanomaterials for use as drug transporters [190–192]. However, CNTs are highly hydrophobic
and thus immediately aggregate in aqueous environment, which limits the application of CNTs at
the physiological condition. To overcome this, PEG chains have been covalently or noncovalently
attached to the CNT surface. Experiments have revealed the conformation and interparticle dispersion
of PEGylated CNTs and their interactions with membranes, proteins, and drug molecules [193–200],
which has motivated simulation studies.

In the early 2010s, most simulation studies focused on the conformation of PEG chains and their
interactions with the CNT surface. Uddin et al. performed all-atom simulations of CNTs with a
mixture of PEO and water, and their free-energy calculations showed the weak adsorption of PEO
onto the CNT surface, which were explained by entropic and enthalpic contributions [201]. Our group
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simulated random adsorption of PEGylated lipids onto the CNT surface [202] and found the effects of
PEG size and grafting density on the conformation of PEG grafted onto CNT [203], which favorably
compares with the transition of mushroom and brush states in the Alexander–de Gennes theory [141].
Di Crescenzo et al. simulated CNTs interacting with PEG (homopolymer) or PEG–propylene sulfide
(PPS) block copolymers and found the stronger interaction of CNT with PEG–PPS than with PEG and
the parallel arrangement PEG chains along the tube axis [204]. Aslan et al. compares density profiles
of PEGylated lipids adsorbed onto isolated and bundled CNTs, which helps explain their different
extents of antimicrobial activity [205]. Sarukhanyan et al. [206] and Han et al. [207] simulated CNTs
interacting with various polymers, showing the effect of polymer hydrophobicity on the CNT-polymer
conformation and interparticle dispersion. Maatta et al. found the dependence of CNT dispersion on
PEG length and CNT diameter [208].

Recently, large complexes of PEGylated CNTs and other molecules such as lipid membranes,
plasma proteins, and anticancer drug molecules have been simulated using all-atom and CG models.
Skandani and Al-Haik showed slower penetration of PEGylated CNT into the lipid bilayer than
unPEGylated CNT, which was explained by lower adhesion energy of PEGylated CNT [209], as observed
in their previous experiments [210]. Our group showed interparticle dispersion and membrane
curvature induced by PEGylated CNT [211], and the effects of protein shape, PEG size and grafting
density on the adsorption of proteins onto PEGylated CNT [212]. Lin et al. investigated the binding
affinity between CNTs and PEGylated proteins such as hormones, neurotransmitter, and vitamin [213],
and Hashemzadeh and Raissi showed the adsorption of paclitaxel onto the PEGylated CNT [214].
Kavyani et al. compared the binding strength of CNTs with PEGylated and unPEGylated dendrimers,
showing the stronger interactions of CNTs with PEGylated dendrimers than with unPEGylated
dendrimers [215]. The Panczyk group performed all-atom simulations of PEGylated and folic
acid-functionalized CNTs that encapsulate doxorubicin, showing the release of doxorubicin from CNTs
at acidic pH but not at neutral pH [216]. Fullerene molecules were also included to the inner cavity of
CNT functionalized with PEG and folic acid, where fullerenes act as magnetic pistons at acidic pH,
leading to an increase in the release of doxorubicin from nanotube [217], which helps explain the effect
of PEG on the efficiency of drug release as well as suggests the use of fullerene, as presented in Figure 9.
Meran et al. simulated CNTs coated with PEGylated pyrene and showed the adsorption of PEGylated
pyrene onto the CNT surface via π-π stacking interactions, which does not significantly depend on
PEG length and CNT size [218]. Saberinasab et al. performed quantum-mechanics (QM) calculations
and all-atom MD simulations of a mixture of PEGylated CNTs and Temozolomide (anticancer drug),
showing the adsorption of Temozolomide on PEGylated CNT because of strong hydrogen-bond
interactions [219]. Moradnia et al. also performed QM calculations and all-atom MD simulations of a
mixture of PEGylated CNTs and Gemcitabine (anticancer drug), showing the effect of PEG size on the
hydrogen-bond interactions of Gemcitabine with PEGylated CNT and water [220]. Overall, simulation
studies focused on the conformation of PEG and its effect on CNT dispersion until the mid-2010s,
but have recently focused more closely on the effect of PEGylation on the efficiency of drug release and
the binding affinity to drugs and proteins.
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Figure 9. Snapshots of simulations of the carbon nanotubes (CNT) functionalized with PEGylated folic
acid (yellow). Doxorubicin (green) and fullerene (light blue) were initially located in the inner cavity of
CNT. After 1.5 ns of simulations, doxorubicin molecules are released from CNT at acidic pH but not at
neutral pH (reprinted with permission from [217]. Copyright (2018) American Chemical Society).



Pharmaceutics 2020, 12, 533 12 of 23

5. Conclusions

All-atom and CG MD simulations have revealed much useful information about the structure
and dynamics of PEGylated drug transporters such as proteins, peptides, liposomes, dendrimers,
and CNTs, which cannot be easily captured by experiments. In 1995–2000s, all-atom and CG PEG
FFs have been developed and used for simulations of short linear PEG and their interactions with
small molecules and solvents, while recent advances in computer power and simulation methods
have allowed simulations of large complexes of PEGylated drug carries and their interactions with
anticancer drugs, plasma proteins, lipid membranes, and receptors.

Although the molecular simulation has proven to be a powerful tool for the in silico design of
PEGylated drugs for the past two decades, there are still problems that need to be considered for
the future work. Firstly, biological complexes, reaction kinetics and mass transport conditions of
experiments and simulations differ, which precludes any quantitative comparison between simulations
and experiments. For instance, there are hundreds of plasma proteins that flow through the bloodstream,
and hundreds of membrane proteins that control cellular behavior and interactions with drug carriers.
Recently, MD simulations start to simulate the corona formation of various plasma proteins [221]
and human cell membranes composed of 63 different lipid species [222], showing promising efforts
in mimics of biological systems. Secondly, more accurate FFs need to be developed to predict the
interactions between PEG and other molecules such as nucleotides and amino acids. As reviewed
above, all-atom and CG PEG FFs have accurately predicted the conformation and physical properties
of PEG in solvent, but the prediction of their interactions with other molecules need to be improved.
Lastly, large complexes of PEGylated drugs interacting with other molecules should be considered.
This can be done by multiscale simulations of the transition between all-atom and CG models [223],
where the conformation and dynamics can be equilibrated by CG simulations, and then CG coordinates
can be converted to all-atom models that offer insights into the atomic-level interactions such as
electrostatic, hydrophobic, and hydrogen-bond interactions. To achieve this, simulation methodologies
need to be developed for the transition from CG to an all-atom model that can be compatible with
various biomolecules, polymers, surfactants, and solvents.

Despite these limitations, MD simulations have successfully interpreted experimental observations
at nearly the atomic scale and determined the optimal size, structure, and grafting density of PEG.
Moreover, an increase in computational speed and methodology development (e.g., multiscale
simulations of the transition between all-atom and CG models) will allow for more realistic simulations
of larger biological systems, leading to a promising tool for the rational design of highly efficient
PEGylated drug delivery systems.
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