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The perinatal period has an important impact on the health of ruminants, and the

imbalance of udder skin microbiota might be an important inducement of bovine mastitis.

However, it is not clear how the perinatal period affects the microbial structure and

stability of the udder skin of yak and cattle. Here, we used 16S rRNA gene high-

throughput sequencing to analyze the udder skin microbiota of yak and cattle during

the perinatal period. We found that the diversity and richness of microbiota of bovine

udder skin during 1–2 weeks postpartum were significantly lower than those in the 1–2

weeks prenatal and 1-month postpartum period (Wilcoxon, p< 0.05). Besides, we found

sharing of 2,533 OTUs in the udder skin microbiota of yak and cattle during the perinatal

period, among which the core microbiota at the genera level was mainly composed

of Staphylococcus, Moraxella, and Acinetobacter. However, the genus Acinetobacter

was significantly abundant in the udder skin of cattle during 1–2 weeks postpartum.

The NMDS and LEfSe results showed that the perinatal period had more effects on the

composition and stability of microbial community in the udder skin of cattle compared to

yak, particularly during 1–2 weeks postpartum. In addition, the average content of total

whey proteins and immunoglobulin G of whey protein were significantly higher in the yak

colostrum when compared to those found in the cattle (p < 0.05). In conclusion, the

structure of udder skin microbiota of yak during the perinatal period is more stable than

that of cattle in the same habitat, and 1–2 weeks postpartum may be a potential window

period to prevent cattle mastitis.

Keywords: udder skin microbiota, core microbiota, perinatal period, postpartum, yak, cattle

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://doi.org/10.3389/fvets.2022.864057
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2022.864057&domain=pdf&date_stamp=2022-05-27
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dingxuezhi@caas.cn
https://doi.org/10.3389/fvets.2022.864057
https://www.frontiersin.org/articles/10.3389/fvets.2022.864057/full


Zhang et al. Dynamic of Udder Skin Microbiota

INTRODUCTION

The skin, functioning as an external interface between the body
and the environment, acts as a physical barrier to prevent the
invasion of foreign pathogens while providing a habitat for
the commensal microbiota (1, 2). Studies have shown that this
commensal microbiota, including bacteria, fungi, viruses, and
mites, has the potential to contribute to the alteration of the
skin immune function (3). The skin is constantly exposed to
environmental bacteria that can become transient and resident
members of the host community, some of which are potentially
pathogenic (2). Once the balance of this commensal microbiota
is disturbed, it may lead to skin infections or diseases, such
as cow mastitis (4). Studies conducted to date have suggested
that an optimum diversity of mammary microbiota is associated
with immune homeostasis, whereas the microbiota of mastitis
quarters, or those with a history of mastitis, are considerably
less diverse (5). Therefore, a healthy and stable commensal skin
microbiota plays an important role in both influencing the skin
immune response and acting as a barrier against colonization
of potentially pathogenic microorganisms and overgrowth of
opportunistic pathogens.

The Qinghai–Tibetan Plateau (QTP) offers one of the
most extreme environments (i.e., high altitude, hypoxia, long
cold season, and strong ultraviolet radiation) for the survival
of human and other mammalian species (6). The yak (Bos
grunniens), a herbivore exclusively inhabiting the QTP and
adjacent high-altitude regions, was differentiated from cattle
(Bos taurus) about 4.4–5.3 million years ago (7). After long
periods of natural selection and evolution, yak were found
to be superior to cattle in feeding and grazing behavior (8),
digestive organ structure (9, 10), nitrogen use efficiency (11), low
rumenmethane emission (12), and interseason energy utilization
efficiency (13, 14). In addition, yak milk is considered to be a
natural concentrated dairy product and is an important part of
the daily diet of Tibetan nomads. Compared with dairy cow
milk, the fat content of yak milk [range of 5.3–8.8% (w/v)]
is almost twice that of dairy cow (Bos taurus) milk (15), but
its yield is only about 10% of dairy cow milk (6). Compared
to some autochthonous cattle breeds, high-yielding dairy cattle
may be more prone to metabolic stress and mastitis (16, 17).
At present, it is not clear how the perinatal period affects
the structure and stability of the udder skin microbiota of
grazing yak and cattle on the QTP. However, yak have adapted
to the extreme natural environment of the QTP over long
periods of evolution, and we hypothesized that the structure
and function of the udder skin microbiota of healthy yak
during the perinatal period were more stable compared to cattle
inhabiting the same habitat. Therefore, based on the 16S rRNA
gene amplification sequence, we described and compared the
structure and succession of udder skin microbiota of healthy
yak and cattle during the perinatal period under the same
management conditions, and the core microbiota of udder skin
was screened. The aim of this study was to describe the changes
in udder skin microbiota and its functional potential in the
healthy cattle and yak from Qinghai–Tibetan Plateau during the
perinatal period.

MATERIALS AND METHODS

Animal Management, Experiments, and
Sampling
All the animals involved in this experiment were from the
same herd, and they grazed together on the same native
pasture (without any supplementation) of Yangnuo Specialized
Yak Breeding Cooperative (34◦43’19.66“N, 102◦28’49.51”E) at
Xiahe County of Gannan Tibetan Autonomous Prefecture,
Gansu Province, China. In this study, yak and cattle were
naturally mated and delivered, and the calves were suckled by
the dam in the same pasture. To ensure that all the animals
remained clinically healthy throughout the study duration, we
had to have a veterinarian check the clinical phenotype of
bovine mastitis before each sampling to ensure the health
of yak and cattle. Unfortunately, we have not been able to
verify the udder health of the test animals through specific
laboratory tests.

Six female yaks (BW = 258.3 ± 22.5 kg) and six female
Tibetan cattle (BW = 246.5 ± 16.5 kg), whose age ranged
between 4 and 6 years, from the same herd were selected and
freely grazed on natural alpine meadow herbage without any
supplementary feed from 7 a.m. to 6 p.m. with free access to
water from the local river. Udder skin swabs from yak and
cattle were obtained by swabbing udder skin (teat apex, teat
barrel, and base) with a sterile cotton swab during the perinatal
period. An overview of the experimental design is shown in
Figure 1A. Udder skin samples from yak and cattle were collected
repeatedly before grazing in the morning for 1–2 weeks prenatal
(Y.Pre.1: n = 6; C.Pre.1: n = 6), 1–2 weeks (Y.Post.1: n = 6;
C.Post.1: n = 6) and 1 month (Y.Post.2: n = 6; C.Post.2: n =

6) postpartum. In particular, the second sampling time was ∼1–
2 weeks postpartum (on average 10 days postpartum), since the
exact time of calving cannot be accurately determined. Briefly,
the swab samples were collected from the udder skin by rubbing
the moistened sterile cotton swab over at least 30 s. When the
sample was collected, the swab was immediately placed inside
the sampling tube and immersed in Amies medium (1.5ml)
(Universal Transport Medium for Bacterium, Beijing, China).
All samples were immediately frozen using liquid nitrogen,
transported to the laboratory, and stored at −80◦C prior to
DNA extraction.

In particular, a total of 24 milk samples from yak and cattle
were collected, of which colostrum samples (yak, n = 6; cattle,
n = 6) were collected within 24 h after parturition, and normal
milk (yak, n = 6; cattle, n = 6) was collected at the second
week after parturition. To collect milk samples, the udder end
was cleaned and disinfected using a cotton gauze pad moistened
in 70% ethanol. Approximately, 100ml of sample from each
animal was collected into sterile sampling tubes and kept in an
ice box, transported to the laboratory, and stored at−80◦C prior
to analysis.

Composition Analysis of Whey Protein in
Colostrum and Normal Milk
The whey proteins were extracted from yak or cattle colostrum
and normal milk, and the concentration of total whey
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proteins (TWP), immunoglobulin G (IgG), lactoferrin (LF), α-
lactalbumin (α-Lac), β-lactoglobulins (β-Lg), and bovine serum
albumin (BSA) was detected by using ELISA method. Bovine
standard ELISA kits for IgG, LF, β-Lg, α-Lac, and BSA were
purchased from Shanghai MLB 10 Biotechnology Co. Ltd
(Shanghai, China). A Coomassie Bradford protein assay kit and
BSA standards for total protein analysis were purchased from
Sangon Biotech (Shanghai, China).

DNA Extraction and Illumina Sequencing of
16S RRNA Genes
These 36 samples were applied to the same sample preparation
and DNA isolation procedure. Sample preparation was
performed prior to DNA isolation to optimize microbial loads
for 16S rRNA gene PCR amplification. The sample preparation
for each sample group was as follows. The swab samples were
oscillated for 15 s to release the bacteria from the swabs, and
then centrifuged at 12,000 × g for 10min at 4◦C. After that, the
cotton swab was carefully removed, and the centrifugation step
was repeated. The obtained pellet was utilized for DNA isolation.
Total genomic DNA from all the samples (n = 36) was extracted
using hexa-decyl tri-methyl ammonium bromide (CTAB)
method (18). DNA concentration and purity were monitored
on 1% agarose gels. DNA was diluted to a final concentration
of 1 ng/µl using sterile distilled water. The bacterial V4 region
of the 16S rRNA gene was amplified using F515/R806 universal
primers under the following conditions: initial denaturation
at 98◦C for 1min, followed by 30 cycles of denaturation at
98◦C for 10 s, annealing at 50◦C for 30 s, elongation at 72◦C
for 30 s, and completed by a final extension at 72◦C for 5min.
Amplicons were purified using Qiagen Gel Extraction Kit
(Qiagen, Germany). Sequencing libraries were generated using
TruSeq R© DNA PCR-Free Sample Preparation Kit (Illumina,
USA) following the manufacturer’s recommendations, and
index codes were added. The library quality was assessed on
the Qubit@ 2.0 Fluorometer (Thermo Scientific) and Agilent
Bioanalyzer 2100 system. Finally, the library was sequenced on
an Illumina NovaSeq PE250 platform, and 250 bp paired-end
reads were generated (Novogene, Tianjin, China).

Bioinformatics and Statistical Analysis
Paired-end reads were assigned to samples based on their
unique barcode and then merged using FLASH (Version 1.2.7,
http://ccb.jhu.edu/software/FLASH/) (19). Quality filtering of
the raw tags was performed under specific filtering conditions
to obtain the high-quality clean tags (20) according to
QIIME (Version 1.9.1, http://qiime.org/scripts/split_libraries_
fastq.html) (21). Sequences with ≥97% similarity were assigned
to the same OTUs by Uparse software (Version 7.0.1001,
http://drive5.com/uparse/) (22). A representative sequence for
each OTU was screened for further annotation. For each
representative sequence, the Silva Database (http://www.arb-
silva.de/) (23) was used based on Mothur (Version 1.36.0)
algorithm to annotate taxonomic information. Alpha diversity
was analyzed to check the complexity of species diversity
through observed species richness and Shannon diversity index
using QIIME and displayed with R software (Version 2.15.3).
For beta-diversity, beta_diversity.py in QIIME was used to

obtain distance matrices, and non-metric multidimensional
scaling (NMDS) plots of the Bray-Curtis metric were calculated
using square root transformed data and visualized in R
(vegan package). Permutational multivariate analysis of variance
(PERMANOVA) was used to examine the differences in the
microbial communities of the udder skin between yak and
cattle in different perinatal periods. The linear discriminant
analysis (LDA) effect size (LEfSe) algorithm was used for
differential analysis to identify significantly different taxa (24).
Moreover, intersections between sets of OTUs were visualized
using the UpSet plot [with the R package UpSetR (Version
1.3.3)] (25). In addition, to understand the correlations among
different core genera, we constructed a co-occurrence network
based on the 16S rRNA gene. The bacterial correlations
between yak and cattle samples were analyzed, according
to the relative abundance of each genus using Spearman’s
correlation coefficient to construct the co-occurrence network.
The correlation was considered significant when the absolute
value of Spearman’s rank correlation coefficient was >0.6 and
P-value was smaller than 0.05. The significantly correlated
genera were visualized using Cytoscape version 3.7.1 (http://
www.cytoscape.org). Meanwhile, the 16S function prediction
was employed to standardize the OTU abundance by PICRUSt
(26), which was used to remove the effect of the number
of copies of the 16S marker gene in the species genome.
The predicted functional contents were summarized at KEGG
pathway hierarchy level 2 for interpretation and subsequent
analysis. In addition, the box plot was constructed to show the
differences between the 10 most important potential functions of
the microbial community in the udder skin of yak and cattle in
different perinatal periods. The Kruskal–Wallis non-parametric
test was used to examine the differences among the groups.

Data Availability
Sequencing datasets of this study are available at the Sequence
Read Archive of the National Center for Biotechnology
Information under the accession number PRJNA724917 (http://
www.ncbi.nlm.nih.gov/bioproject/724917).

RESULTS

Analysis of Whey Protein Components in
Colostrum and Normal Milk of Yak and
Cattle
Through the analysis of the main components of whey protein
in milk samples of yak and cattle during the first and second
weeks of postpartum, the average contents of TWP, IgG, and
LF in the colostrum of yak and cattle were significantly higher
than in normal milk (P < 0.05, Table 1). In addition, there
were significant differences in TWP and IgG of whey protein in
colostrum between yak and cattle, among which the TWP and
IgG content of whey protein in yak colostrum was significantly
higher than those found in cattle (P < 0.05). Nevertheless, there
was no significant difference in the average contents of β-Lg and
α-Lac in colostrum and normal milk between yak and cattle.
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FIGURE 1 | Abundance and diversity of udder skin microbiota of yak and cattle during the perinatal period. (A) Experimental design, including sample collection time,

sample type, and sample number. The diversity and richness of microbial communities in the udder skin of yak and cattle in different periods during the perinatal period

were analyzed. The observed species richness (B) and Shannon Diversity Index (C) are shown by beeswarm plots. (D) Based on Bray_Curtis distance, NMDS maps of

the microbial community in the udder skin of yak and cattle were drawn, and the udder skin microbiota in different periods during the perinatal period were examined

by PERMANOVA. (E) The box plots were used to show the differences in the microbial communities in the udder skin of yak and cattle during different periods of the

perinatal period. The difference between two groups was considered statistically significant when the p-value was <0.05 (*p < 0.05; **p < 0.01; ***p < 0.001).

Abundance and Diversity of Udder Skin
Microbiota of Yak and Cattle During
Perinatal Period
To explore the dynamic changes of udder skin microbial
communities in perinatal cattle, we collected swab samples of
udder skin surface from naturally grazed yak (n =18) and

cattle (n =18) at different perinatal periods (Figure 1A). We

obtained 2,930,796 quality-filtered 16S rRNA gene sequences

from all DNA samples with an average of 81,411 ± 9,621

(mean ± SD) reads per sample. The rarefaction curve and
species accumulation box plot of samples reached the plateau

(Supplementary Figure S1). A total of 11,077 OTUs were
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TABLE 1 | Analysis on the concentration difference of major and minor proteins in colostrum and normal milk between yak and cattle.

Item Colostrum Normal milk SEM P-value

Yak Cattle Yak Cattle Yak vs. cattle Colostrum vs. normal milk

TWP (mg/mL) 78.39a 70.19b 9.11c 7.36c 6.94 0.0015 <0.001

IgG (mg/mL) 60.68a 53.66b 0.78c 0.55c 5.94 0.0059 <0.001

LF (mg/mL) 1.36b 1.61a 0.38c 0.27c 0.13 0.41 <0.001

β-Lg (mg/mL) 2.06 2.07 2.02 1.96 0.04 0.68 0.58

α-Lac (mg/mL) 0.74 0.72 0.7 0.64 0.02 0.26 0.17

BSA (mg/mL) 0.40b 0.58a 0.38b 0.36b 0.03 0.07 0.0083

SEM, standard error of the mean.
a,b,cSignificant levels of major components in whey between yak and cattle (P < 0.05).

annotated based on 97% sequence similarity, of which the
proportion of sequences annotated at the genus levels was 4,016
OTUs (36.26%). We identified 113 unique OTUs in yak and 32
unique OTUs in cattle, while the shared OTUs in yak and cattle
during the perinatal period were 2,533 (Figure 2C).

In particular, the observed species richness and Shannon
diversity index in the udder skin of yak and cattle within 1–
2 weeks after calving were significantly (P < 0.05) lower than
in the samples obtained before and 1 month after calving
(Figures 1B,C). No significant difference was observed in species
richness and Shannon diversity index of the udder skin microbial
community between yak and cattle within 1–2 weeks of prenatal
period and 1 month after postpartum. Moreover, the diversity
and richness of microbial community in the udder skin of cattle
were significantly lower than those of yak in the same period (P
< 0.05; Figures 1B,C and Supplementary Table S1).

Next, based on the NMDS analysis of the Bray-Curtis distance
matrix, we sought to examine how the microbial community
in bovine udder skin varied during different perinatal periods
(Figures 1D,E and Supplementary Table S2). We found that the
microbial community of the udder skin between yak and cattle
was clustered together except during 1–2 weeks postpartum, but
there were significant differences in the udder skin microbiota
structure of cattle at different perinatal periods [PERMANOVA,
F(1, 34) = 2.281, P = 0.001; Stress = 0.158). Specifically, the
microbial community structure of bovine mammary skin in 1–
2 weeks postpartum was more dispersed than that of yak in
the same period [PERMANOVA, F(1, 10) = 3.661, P = 0.001;
Supplementary Table S2].

Composition of Udder Skin Core
Microbiota of Yak and Cattle During
Perinatal Period
Out of the 29 total identified bacterial phyla, four phyla
dominated the udder skin microbiota (average cumulative
abundance = 93.56%): Proteobacteria (Y: 36.09%; C: 47.79%),
Firmicutes (Y: 34.15%; C: 30.18%), Actinobacteria (Y:
13.58%; C: 10.92%), and Bacteroidetes (Y: 8.18%; C: 6.21)
(Supplementary Figure S2A). In addition, two archaeal phyla
Euryachaeota (Y: 0.24%; C: 0.09%) and Thaumarchaeota (Y:
0.20%; C: 0.06%) were also found in udder skin microbiota

(Supplementary Figure S2A). Specifically, within 1–2 weeks
after calving, Acinetobacter (average abundance increased
from 3.45% at prenatal to 37.31% at postpartum) quickly
became the highest average member of udder skin microbial
community in cattle, opposite to Enhydrobacter (average
abundance decreased from 4.98% at prenatal to 0.06%
at postpartum) and Bradyrhizobium (average abundance
decreased from 6.12% at prenatal to 0.54% at postpartum)
(Supplementary Figures S2A,B). Compared to cattle, variation
in the udder skin microbial community of yak before and
after calving was smaller, among which Aerococcus, Atoposipes,
Acinetobacter, and Moraxella were the dominant genera of
the udder skin microbiota in yak at 1–2 weeks postpartum
(Figures 2A,B).

In order to further analyze the composition of the microbial
community of the udder skin microbial community in yak
and cattle, we used set analysis to find that 2,533 OTUs
were enriched in all OTU sequences of yak and cattle udder
skin (Figure 2C). These core microbial communities were also
composed of Proteobacteria, Firmicutes, Actinobacteria, and
Bacteroidetes (Figure 2D and Supplementary Figure S3A). We
found dynamic changes in the core microbiota of udder skin
in yak and cattle at different stages of the perinatal period,
particularly in the cattle at 1–2 weeks postpartum (Figures 2D,E
and Supplementary Figure S3). We also found that among
all OTU sequences of udder skin, the specific OTUs of yak
(113 OTUs) were higher than those of cattle (32 OTUs). In
addition, we found that the shared OTU of udder skin microbial
community in yak during the perinatal period was 3,827 while
that in cattle was 3,057 (Figure 2C).

Effects of Perinatal Period on Udder Skin
Microbial Community of Yak and Cattle
Consistent with the microbial composition results
(Supplementary Figure S3), there were obvious similarities
between the udder skin microbiota of yak and cattle (Figure 3).
For the yak udder skin microbiota in the perinatal period,
Staphylococcus and Bradyrhizobium were the dominant genera
at prepartum, but Dermabacteraceae increased to become
the dominant family within 1–2 weeks postpartum, and
Ruminococcaceae, Lachnospiraceae, and Micrococcaceae were
dominant bacterial families after 1month postpartum (Figure 3B
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FIGURE 2 | Structure analysis of the core microbial community in udder skin of yak and cattle. The ternary plot command in the vcd package of R software was used

to plot the ternary plot at the genus level (top 10) of udder skin microbiota of yak (A) and cattle (B) at different periods during the perinatal period. The three vertices in

the figure represent the sample groups of three different time periods, and the circle represents the species. The size of the circle is proportional to the relative

abundance. The closer the circle is to the vertex, the higher the content of the object in this group. (C) In order to find the OTU structure of the core microbiota of

bovine udder skin, the OTU sharing of all the udder skin microbiota of yak and cattle in different periods during the perinatal period was plotted by upset command of

UpSetR package of R software. Using jvenn online (27), OTU concentrations of microbiota in the skin of the respective udders of perinatal yak and cattle were

mapped. The bar chart shows the composition of the core microbial community at (D) phylum and (E) genus levels in the skin of the udder of cattle (left), yak (middle),

and mean values of both breeds (right). Significant changes are represented by an asterisk (T-test, *p < 0.05).

and Supplementary Figure S4B). At 1–2 weeks postpartum,
Proteobacteria quickly became the dominant phylum of the
udder skin microbiota of cattle, of which Acinetobacter was the

dominant genus (Figure 3C and Supplementary Figure S4C).
However, Actinobacteria and Fusobacteria were relatively
abundant after 1 month postpartum (Figure 3C). Moreover,
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the LEfSe results found that the udder skin microbiota of cattle
was mainly enriched in Cyanobacteria, Proteobacteria, and
Actinobacteria, while that of the yak was mainly enriched in
Fusobacteria and Acidobacteria (at the phylum level, Figure 3A
and Supplementary Figure S4).

Co-Occurrence Network Analysis of Udder
Skin Core Microbiota of Yak and Cattle
To describe the potential relationship between bacteria
occurring in the core microbial community of bovine
udder skin, we further constructed co-occurrence networks
of genera from the udder skin core microbiota of yak
and cattle based on Spearman’s correlation coefficients
(Supplementary Figure S5 and Supplementary Table S3).
We identified that the dominant bacterial genera in both
the networks were mainly distributed from five major
phyla, such as Firmicutes, Proteobacteria, Actinobacteria,
Bacteroidetes, and Fusobacteria (Supplementary Figure S5).
In particular, a strong positive correlation among genera
was observed in the co-occurrence network of yak
(Figure 4A). In contrast, the co-occurrence network of
cattle featured a relatively simple network (Figure 4B).
The correlation between the udder skin core microbiota
of yak was distinctly increased compared to that of cattle
(Supplementary Table S4). Meanwhile, we found that
there was a strong correlation between Acinetobacter,
Bacteroides, Stenotrophobacter, Fusobacterium, Brevibacterium,
unidentified_Cyanobacteria, and other microbial genera in the
co-occurrence network of udder skin core microbiota in yak and
cattle (Figures 4A,B).

Prediction of Potential Function of Udder
Skin Microbial Community of Yak and
Cattle
In this study, the chosen reference OTUs were used to
match the KEGG database to predict microbial functions.
Generally, the potential functions of the udder skin microbiota
of yak and cattle were mainly manifested in membrane
transport (Y: 12.08%; C: 11.89%), amino acid metabolism (Y:
10.30%; C: 10.41%), carbohydrate metabolism (Y: 10.12%; C:
9.91%), replication and repair (Y: 7.92%; C: 7.64%), energy
metabolism (Y: 5.60%; C: 5.52%), and poorly characterized
mechanism (Y: 5.11%; C: 5.16%) (Figures 5A,B). In addition,
we also performed a PCA analysis of the relative abundance
of the KEGG pathway to reveal the clustering of the
samples (Figure 5C). The results of PCA and box plot
both revealed that the perinatal period had little effect on
the potential function of the microbial community in the
udder skin of yak (Figure 5C and Supplementary Figure S6).
However, the perinatal period had an important effect on the
potential function of the udder skin microbial community in
cattle, particularly within 1–2 weeks of the postnatal period,
and the potential function of the udder skin microbiota
in carbohydrate metabolism was significantly different from
other periods (Kruskal–Wallis, P < 0.05; Figure 5C and
Supplementary Figure S6).

DISCUSSION

Mammalian colostrum and milk not only serve as complete
nutrient sources for offspring, but also contain a complex
array of bioactive molecules capable of modulating intestinal
immune homeostasis of newborns, preparing for a microbe-rich
extrauterine environment (5, 28). Immunoglobulin, antibacterial
peptide, lysozyme, lactoferrin, and oligosaccharide are some of
the immunomodulatory components of milk (29–31) that can
target and inactivate pathogens (32). However, we found that
the TWP and IgG of whey protein were significantly higher in
yak colostrum than in cattle colostrum, which may help yak
calves to better adapt to the extreme natural environment of
the QTP. Compared with dairy cow milk, the fat content of
yak milk is almost twice that of dairy cow (Bos taurus) milk
(15), but its yield is only about 10% of the dairy cow (6). In
addition to supporting the immature innate immune response
of newborns, these immunomodulatory compounds may also
act as an important part of the defense mechanism of the
udder itself and protect it against intra-mammary infections by
pathogenic and opportunistic microorganisms (5, 33). Therefore,
we used high-throughput sequencing of 16S rRNA genes to
investigate the dynamics of microbial community structure
in bovine udder skin during the periparturient period. We
found that 1–2 weeks postpartum had a significant effect
on the structure and stability of the microbial community
in the udder skin of yak and cattle, in which the richness
and diversity of the microbial community were significantly
reduced. The defense mechanisms of the udder against microbial
colonization are modulated by several host-associated and
environmental factors (5, 34). This may be due to the fact that
the nutrient supply and dry matter intake of perinatal cows are
insufficient to meet the energy demands for body maintenance,
colostrogenesis, and milk production (35). This unavoidable
state of negative energy balance after calving can result in the
development of several metabolic disorders that could impair
the immune system and subsequently cause alterations in the
skin microbiota (36). Similarly, studies have shown that high-
yielding cows may be at increased risk of mastitis due to
changes in housing, hygiene, and feeding conditions in the
period around calving (37), and the highest peak of new
intramammary infections is usually recorded in the first 2–3
weeks after calving (38). We also found that the structure of the
microbial community in the udder skin of periparturient yak
was less variable than that of cattle, which may be related to
the adaptation of yak to the extreme natural environment on
the QTP during the long-term natural selection. Additionally,
genetic, physiological, and environmental factors are capable of
modulating the defense mechanisms of the bovine mammary
gland against each of these pathogens (39, 40). However, within
complex ecosystems, certain species play disproportionately
large roles in shaping the overall structure and stability of the
community (41).

To date, a combination of culture-dependent and DNA-based
approaches has been used to explore the diversity of bacterial
communities colonizing the teat apex of dairy cows (42, 43).
These studies have revealed wide diversity in the occurrence of
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FIGURE 3 | LEfSe analysis of microbial community structure of bovine breast skin during the perinatal period. (A–C) The cladograms indicate the phylogenetic

distribution of the udder skin microbiota of yak and cattle during different periods of the perinatal period using the linear discriminant analysis (LDA) effect size (LEfSe)

method. The diameters of circles are proportional to the abundance of a taxon. Circles represent taxonomic ranks from domain to species levels from inside to out

layers. The LDA cut-off score is 3.5. Letters in front of OTUs represent taxonomic levels (p, phylum; c, class; o, order; f, family).

the commensal, pathogen, and skin-associated opportunistic
bacteria from four major bacterial phyla, namely Actinobacteria,
Bacteroidetes, Firmicutes, and Proteobacteria, and can reside on
the skin of the teat apex of dairy cows. Similarly, the results of our
study also showed that the microbial community in the udder
skin of yak and cattle was mainly composed of Proteobacteria,
Firmicutes, Actinobacteria, and Bacteroidetes. Besides, archaea
members were found in the microbial community of bovine
udder skin, such as Euryachaeota and Thaumarchaeota. The
most commonly identified genera include Acinetobacter,
Moraxella, Staphylococcus, unidentified_Corynebacteriaceae,
Bradyrhizobium, Lactobacillus, Atopostipes, Alysiella, and
Fusobacterium. Staphylococcus, Ruminococcaceae, Bacteroidales,
Clostridiales, and Pseudomonas have also been identified as
predominant constituents of healthy colostrum microbiota
(44). Staphylococcus chromogenes, followed by Staphylococcus
simulans, Staphylococcus xylosus, Staphylococcus haemolyticus,

and Staphylococcus epidermidis, are the Non-aureus staphylococci
(NAS) species most frequently isolated from cow milk (45, 46).
Some studies found that the ability of some NAS species (e.g., S.
chromogenes) to produce a wide range of bacteriocins capable to
inhibit the growth of major mastitis pathogens is a good example
of mechanisms by which commensal microbiota may contribute
to the modulation of mastitis susceptibility (47, 48). Other
than NAS, Acinetobacter, Aerococcus, and Corynebacterium are
among the most frequently identified genera on the skin of
teat apices in bovine (49). In our study, Acinetobacter quickly
became the most abundant genus in the microbial community
in the udder skin of cattle at 1–2 weeks after parturition,
which indicates that there might be a potential risk of mastitis
in cattle due to the imbalance of microbiota stability in the
udder skin during this period. Additionally, this finding also
suggests that microbiota present on the cattle skin may be more
susceptible to common environmental stress factors such as
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FIGURE 4 | Genera co-occurrence network of core microbiota of udder skin between yak and cattle based on Spearman’s correlation algorithms. Spearman’s

method was used to analyze the correlation between the udder skin core microbiota of yak (A) and cattle (B), respectively, and the Cytoscape_3.7.1 software was

used to draw the co-occurrence network of the core microbiota with P-value < 0.05 and the absolute value of correlation >0.6. Each node presents a bacterial

genus. The node size indicates the relative abundance of each genus per group, and the density of the dashed line represents Spearman’s correlation coefficient. Red

links stand for positive interactions between nodes, and blue links stand for negative interactions.
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FIGURE 5 | Prediction of the potential function of microbial community in bovine udder skin using PICRUST. (A) The bar graph shows the main potential function of

the udder skin microbial community of yak and cattle in the perinatal period on KEGG Level 1 and Level 2. (B) The stacked bar chart shows the major microbial

functions of the microbial community in the udder skin of yak and cattle at KEGG Level 2 at different time points during the perinatal period. (C) Principal component

analysis (PCA) shows microbial functional diversity across all samples.

housing, hygiene, and feeding conditions during the perinatal
period (37).

The composition, stability, and function of the microbial
community in the skin are driven by the interaction between host
factors and microbiota (50). We found that the changes in the
microbial community structure of yak udder skin were different
from those of cattle during the perinatal period, particularly
the differences in the cattle were the most significant. The
feeding conditions (indoor and pasture) of dairy cows play a
central role in the formation of the mammary microbiome.
For example, the microbial diversity of udder skin samples
is higher during the grazing season than during the feeding
season (51). Additionally, some studies have reported that
commensal microbiota that inhabits various niches of the udder,
including teat apex, teat canal, and intramammary ecosystem,
can modulate the susceptibility of a cow to intramammary
infection by mastitis pathogens via direct microbe–microbe
cross-talk, indirect stimulation of immunity, or both (5, 40, 52).
We also found that there was a strong positive correlation among
Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes,
and the understanding of the interaction among these core
bacteria can provide a reference for further screening of the

minimal core drive bacteria as probiotics. Recent studies have
shown that using the ecological network of the community to
identify minimum sets of its driver species and controlling these
microbial communities may help us restore natural ecosystems
and maintain healthy human microbiota (53). In addition to
the known dysfunctions in the barrier function of the skin and
immunologic disturbances, evidence is rising that frequent skin
disorders, such as atopic dermatitis, might be associated with
the disorders of the microbial community and changes in the
skin microbiome (54, 55). We found that the perinatal period
has an important effect on the structure and potential function
of the udder skin microbiota of yak and cattle; in particular,
the potential function of the udder skin microbiota of yak and
cattle during 1–2 weeks postpartum is significantly different
from other periods in carbohydrate metabolism. Compared to
the late lactation stage, calves mainly feed on breast milk in
the early stage, resulting in a large amount of milk attached to
the udder skin surface of cattle, which increases the function
of the udder skin microbiota mainly focusing on carbohydrate
metabolism. Some studies found that the ability of some NAS
species to produce a wide range of bacteriocins, capable of
inhibiting the growth of major mastitis pathogens, is a good
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example of mechanisms by which commensal microbiota may
contribute to the modulation of mastitis susceptibility (47,
48). However, this study is only a preliminary investigation
of the microbial community dynamics in the udder skin of
healthy yak and cattle during the perinatal period in the same
habitat, and the next step is to delve deeper into the differences
in the microbiota structure and function of the udder skin
between healthy and mastitis yak. In addition, we found several
deficiencies in our study, such as a small number of animals,
a lack of diagnosis for mastitis, and a lack of controls for the
DNA extraction kits, PCR amplification, and swab cultures.
Although functional prediction using the 16S rRNA genomemay
provide preliminary information for studies on the udder skin
microbial functions in bovines during the perinatal period, the
detailed functions of the udder skinmicrobiota need to be further
determined by advanced techniques, such as metagenomics,
metatranscriptomics, and metabolomics.

CONCLUSION

The present study revealed that the perinatal period has
important effects on the composition and stability of bovine
udder skin microbiota. Compared to the cattle in the same
habitat, the variation of microbial community structure and
diversity of udder skin of yak during the perinatal period was
smaller. Although yak and cattle share a similar udder skin core
microbiota, the relative abundance of Acinetobacter in the udder
skin of cattle during 1–2 weeks postpartum rapidly increased to
become the dominant genus, and the average relative abundance
of Atopostipes and Streptococcus in the udder skin of cattle was
significantly higher than that of yak.
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