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The incidence of superficial fungal infections is assumed to be 20 to 25% of the global human population. Fluorescence microscopy
of extracted skin samples is frequently used for a swift assessment of infections. To support the dermatologist, an image-analysis
scheme has been developed that evaluates digital microscopic images to detect fungal hyphae.The aim of the study was to increase
diagnostic quality and to shorten the time-to-diagnosis.The analysis, consisting of preprocessing, segmentation, parameterization,
and classification of identified structures, was performed on digital microscopic images. A test dataset of hyphae and false-positive
objects was created to evaluate the algorithm. Additionally, the performance for real clinical images was investigated using 415
images. The results show that the sensitivity for hyphae is 94% and 89% for singular and clustered hyphae, respectively. The mean
exclusion rate is 91% for the false-positive objects.The sensitivity for clinical images was 83% and the specificity was 79%. Although
the performance is lower for the clinical images than for the test dataset, a reliable and fast diagnosis can be achieved since it is not
crucial to detect every hypha to conclude that a sample consisting of several images is infected. The proposed analysis therefore
enables a high diagnostic quality and a fast sample assessment to be achieved.

1. Introduction

It is assumed that 20 to 25% of the global human population
is affected by superficial fungal infections, with a constantly
increasing incidence [1]. In tropical areas they are a major
cause of morbidity due to the ideal warm and humid
conditions for fungal growth [2].The dermatophytes, a major
cause for the infections [3, 4], digest keratin and can therefore
be found on skin and its annexes (hair, nail) [5]. They are
transmitted through direct person-to-person contact or indi-
rectly through desquamated infected epidermis or hairs [5].

Due to the widespread occurrence and the resulting large
number of patients, it is a frequent task for dermatologists to
diagnose and to treat fungal infections. Direct microscopic
examination is generally used as a screeningmethod, because

it is fast and cost-effective [6]. Fluorescence staining increases
sample contrast and therefore further facilitates the detec-
tion of fungi [7, 8]. A drawback of microscopy is that no
information on the fungal species can be obtained. Hence,
additional methods such as fungal culture or DNA-based
polymerase chain reaction methods have to be performed,
whenever information about the fungal species is important
[9]. However, direct microscopic examination is considered
an essential method for the diagnosis of superficial fungal
infections [6].

Although microscopy is faster and cheaper than culture-
or DNA-based methods, it has some drawbacks. Depending
on user experience, sample condition, and sample size, it
may still be time-consuming to evaluate complete samples.
Diagnosing multiple samples at once may therefore be
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a tedious task that could lead to classification errors and
increased intra- and interobserver variability.

To overcome these drawbacks, an image-analysis scheme
has been developed that automatically detects fungal infec-
tions in digital fluorescence microscopy images. The use of
image-processing methods to detect fungal structures is a
common approach in biotechnology for the characterization
and analysis of fungal growth in fermentation processes [10–
13]. However, the automated evaluation of clinical images of
fungal infections is, to our knowledge, a new topic.

The developed analysis scheme should be useful for
clinical routine and has to be designed to meet the specific
requirements. Most importantly, in addition to a high sensi-
tivity and specificity, a reliable diagnosis should be available
during patient contact time. Hence, the image analysis and
the visualization of the results have to be adapted to the
clinical workflow. In this context it is necessary to reduce the
time-to-diagnosis to as great an extent as possible. This can
be accomplished by choosing algorithmswith low calculation
time and by online visualization of the detection results.

The approach presented in this study used multiple
image-processing steps to preprocess, segment, and param-
eterize the images taken with an automated fluorescence
imaging system. The parameters to describe the detected
structures were used in a rule-based classification scheme
to decide whether a fungal infection is present. Image-
processing methods were chosen to achieve acceptable cal-
culation times. The method’s performance was evaluated for
manually chosen test datasets and clinical images of infected
and uninfected patients.

2. Materials and Methods

2.1. Sample Material and Preparation. Infected samples con-
sisting of small skin scales were taken from clinical cases
in a university hospital. The samples were gathered during
routine examination where fungal infections were diagnosed
by clinicians. Additionally, uninfected samples from healthy
subjects were also taken at the hospital. The sample prepara-
tion consisting ofmaceration and stainingwith commercially
available MykoColor (RSC Pharma, Giessen, Germany) was
performed at our laboratory. The skin scales were located on
an object slide and 0.02mL ofMykoColor was added. A cover
glass was used to gently flatten the sample.

2.2. Imaging Device. The imaging was performed using
an experimental automated fluorescence imaging system
(Helmut Hund GmbH, Wetzlar, Germany) that provided a
complete 1 cm2 area scan (consisting of 100 single images)
of the object slide on which the skin scales were randomly
located. The system is equipped with a monochrome camera
(5 megapixel), an objective (10x magnification, 0.25NA), and
an LED illumination unit (excitation peak: 365 nm) and is
capable of autofocusing on sample structures.

2.3. Description of Images, Hyphae, and Other Structures.
The fluorescence images of the samples captured with the
automated device typically show a dark background with

bright fluorescent structures. These structures are either
hyphae that belong to a fungal infection or false-positive
structures and artefacts that can bemisinterpreted as hyphae.
Figure 1 shows the two classes of hyphae, singular (a) and
clustered (b), which can be generally observed and which
were under investigation in this study. Singular hyphae are
characterized by relatively uniform width and intensity. The
shape is often elongated or curved without branches. The
clustered hyphae can be described as an agglomeration of
overlapping singular and branched hyphae that may have
multiple junctions.

False-positive structures that were present in the samples
weremainly cellulose fibers of clothing, circular and irregular
reflections of the illumination unit occurring at air inclusions,
and other miscellaneous objects such as plastic particles and
dirt.

Cellulose fibers (see Figure 2(a)) can often be found in
skin samples.The characteristic features are the elongated but
irregular surface and texture with varying widths. Further-
more, the fibers are often larger than hyphae.

Circular and irregular air inclusions (Figures 2(b) and
2(c)) occur during the sample preparation process. Small
inclusions form circular structures with bright transitions
between air and the staining reagent due to reflections of the
illumination unit. Larger inclusions show various irregular
shapes with similar transitions as small inclusions.

Miscellaneous structures are external contaminations
such as plastic particles from the sample containers
(Figure 2(d)) used for transport and storage, dirt, and dust.
The shape of miscellaneous objects is variable but in most
cases different than hyphae. Additionally, these objects can
be identified due to the high intensities.

Figure 3 shows an exemplary overview of the clinical
images with multiple structures like skin scales, cellulose
fibers, and miscellaneous particles that can often be found.
The images indicate the variety of suspicious objects that have
to be dealt with while detecting hyphae and the challenges
in evaluating the data for dermatologists and software algo-
rithms.

2.4. Image Analysis. The developed image-analysis scheme
(overview shown in Figure 4) is divided into the stages of
image preprocessing and segmentation, parameterization,
and object classification. The open-source image-processing
framework OpenCV [14] is used for the implementation.
Furthermore, a graphical user interfacewas developed to load
image data and to visualize the results.

Preprocessing and segmentation starts with the Canny-
Algorithm [15] for background reduction and detecting
structure edges. After binarization, the algorithm closes
discontinuous objects (using morphological dilatation) and
extracts connected structures into single region of interests
(ROI) using the connected components approach based on a
region growing algorithm.

For filling holes, whichmight be present in the objects, the
next preprocessing step extends the ROI by a one-pixel wide
border to separate objects from the ROImargin.Then a flood
filling algorithm is used to assign an arbitrary intensity value
to all pixels surrounding the object. In the last step we assign
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(a) (b)

Figure 1: Image of a singular (a) and clustered (b) hyphae using the automated fluorescence imaging system.

(a) (b)

(c) (d)

Figure 2: False-positive structures: cellulose fiber (a), circular reflection (b), irregular reflection (c), andmiscellaneous structures such as dirt
or plastic particle (d).

the object intensity value to all pixels that do not correspond
to the arbitrary intensity value.

After preprocessing all single objects are stored in a
dataset that is used in the successive parameterization and
classification steps.

Figure 5 shows the result of each preprocessing step for a
hypha.

In the parameterization stepmorphological and statistical
features are calculated for every suspicious object in the
dataset. It has to bementioned that all thresholds stated below

are only valid for the used imaging system and camera setup.
Hence, they ought to be reviewed on other systems. First, a
preselection of the objects by object size and object intensity
is performed.

Object Size. To sort out small artefacts that are often present
in the samples, only objects that consist of a certain amount
of pixels are considered in the classification. For the used
imaging setup a threshold of 250 pixels was manually chosen
based on the size distribution of hyphae.
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(a) (b)

(c)

Figure 3: Exemplary overview of clinical images. Fungal infection is indicated by elliptical markers (b, c). The rectangular marker (a)
represents the extracted skin scales. False-positive structures are indicated by arrows: cellulose fiber (a), obscuring and misc. particles (b,
c). Circular and irregular air inclusions are present in all images.
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Figure 4: Overview of the analysis scheme.

Object Intensity. The exposure time and the gain of the used
camera are configured to match the brightness of stained
hyphae. Therefore, a threshold for the mean intensity of the
structures (value of 130 for the used setup) was investigated
to sort out very bright false-positive structures.

Then, the following features are calculated for the remain-
ing suspicious objects. A subsequent rule-based classification
uses these features and thresholds to exclude false-positive

objects (no hyphae) from the dataset of objects and to keep
true-positive hyphae.

Histogram Analysis. The intensity distribution of irregular air
inclusions shows a characteristic first peak at low intensities
and a second peak on the falling slope of the first peak. This
is due to the fact that air and staining reagent yield different
intensity values in the image. Therefore, ROIs containing
irregular air inclusions contain two background intensity lev-
els which are only present in air inclusions. This information
is used to distinguish these structures from hyphae. For the
identification of the characteristic shape the position and
the amplitude of the peaks in the smoothed histogram of
the objects are calculated and compared to manually derived
thresholds (position of peak 1 not after bin 30 and amplitude
of peak 2 not lower than 15). These thresholds were obtained
by evaluating all observed irregular air inclusions.

Detecting Circular Structures. An algorithm based on the
Hough Transformation principle [16] for circular structures
is used to exclude circular air inclusions. As the surrounding
rectangle of circular objects is quadratic, the algorithm is
calculated only for objects with a width-to-height ratio
between 0.8 and 1.2. The pixel intensities along a circle
centered at the middle of the surrounding rectangle with
the corresponding radius are summed up and normalized to
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(a) (b) (c)

Figure 5: Image preprocessing performed on a hypha. (a) Original image detail. (b) After segmentation using Canny-Algorithm. (c) After
closing and filling of holes.

Figure 6: Binarized representation of a singular hypha (white pixel)
with skeleton (red line) and perpendicular width evaluation along
the exemplarily shown green lines.

the circles perimeter. A threshold of 10% of the pixels lying
on the circle was investigated to decide that the object is a
circular air inclusion.

Width Analysis. As hyphae are of uniform width and show
a smooth surface, the width distribution perpendicular to
the structures skeleton is calculated between two adjacent
pixels for every other pixel position (example shown in
Figure 6). Furthermore, junctions in the skeleton are detected
to distinguish between singular and clustered hyphae. The
mean thickness and the standard deviation are subsequently
compared to thresholds (for singular hyphae: mean thickness
between 4.4 and 9 pixel, standard deviation lower than 2.8; for
clustered hyphae: mean thickness between 4.4 and 10 pixel,
standard deviation lower than 12). Using this information,
irregular structures such as cellulose fibers, plastic particles,
other contaminations, and too thin or thick structures such
as air inclusions are identified and excluded from the dataset
of infected structures.

After the classification all identified false-positive objects
are excluded from the dataset and only true-positive hyphae
are left. For presenting the results the images in which
infected objects are found are visualized in the graphical user
interface.

2.5. Specification of Classification Parameters. A test dataset
consisting of subsets ofmanually selected objects of all occur-
ring true- and false-positive findings was created to specify
the classification features. 100 singular hyphae, 70 clustered
hyphae, 90 circular reflections, 90 irregular reflections, 44
cellulose fibers, and 19 miscellaneous particles were chosen
for the subsets. The classification parameters shown above
were manually optimized in an iterative process to yield the
highest sensitivity.The classification results for the test dataset
are shown in Tables 1 and 2, respectively. As only objects of
sufficient size were chosen, the performance of the “object
size” criteria was not evaluated.

2.6. Evaluation. The overall performance of the method for
clinical fluorescence microscopy images using the automated
imaging system was evaluated. Therefore, the sensitivity,
specificity, and calculation time for a total of 415 images
were investigated. These images were initially classified into
“infected” and “uninfected” by experienced clinicians. The
algorithm was used for the automated classification and the
results were compared.

The results are presented on a “per image” perspective,
which means that a given image is recognized as infected
as soon as one hypha is found. Hence, the “per image”
perspective can be used to reach a correct classification
without detecting all hyphae that are present in the image.
The correct classification of an uninfected image, by contrast,
means that the algorithm has to sort out every false-positive
structure.

The “per image” evaluation method is chosen because of
the clinical relevance of single images. Dermatologists do not
need to recognize all hyphae that are actually present in a
sample. Theoretically, it is sufficient to detect one hypha to
diagnose a fungal infection.
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Table 1: Classification results for the test dataset for true- and false-positive structures.

True-positive structures False-positive structures
Hyphae: singular Hyphae: cluster Circular reflection Irregular reflection Cellulose fiber Misc. particles

Total number 100 70 90 90 44 19
Classified correctly 94 62 88 77 38 17
Detection rate 94% 89% 98% 86% 86% 89%

Table 2: Performance of the processing steps in the reduction of false-positive structures.

Circular reflections Irregular reflections Cellulose fibers Misc. particles
Total number in test dataset 90 90 44 19
After segmentation 40 90 47 30
Sorted out by

Intensity 0 0 17 12
Circularity 21 0 0 2
Histogram analysis 2 65 1 0
Width calculation 15 12 23 14

Recognized as hyphae 2 13 6 2
Detection rate 98% 86% 86% 89%

3. Results

All calculations were performed on an Intel Core 2 Quad
Q9650 CPU at 3.00GHz. Although the image import and the
image processing are performed separately on single cores,
no parallelization of the image processing itself has been
implemented so far.

3.1. Performance of Classification. The results of the classifi-
cation for the test dataset of true- and false-positive struc-
tures are shown in Table 1. In the given context, “classified
correctly” means that objects are recognized as hyphae for
true-positives and that objects are not recognized as hyphae
for false-positives.

The detection rate after optimizing the classification
parameters of the algorithm is 94% and 89% for singular and
clustered hyphae, respectively. Regarding the false-positive
structures the detection rate for circular reflections is 98%,
for irregular reflections 86%, for cellulose fibers 86%, and for
miscellaneous particles 89%.

The performance of the classification features on false-
positive structures is shown in Table 2. The detection rate
varies for the different types (circular reflection, irregular
reflections, cellulose fibers, and misc. particles) of false-
positive structures. The “object intensity” feature was espe-
cially useful for cellulose fibers and miscellaneous particles.
The circularity measure and histogram analysis sorted out
false-positives due to reflections of air inclusions successfully
and the width calculation detected false-positives of all
classes.

Furthermore, the Canny-Algorithm used for segmenta-
tion has a strong influence on the classification performance.
In the case of circular reflections the algorithm sorted out 50
false-positive objects due to their low intensities. On the other
hand, the algorithm did not detect all originally continuous
objects as singular objects. It tends to split large structures

Table 3: Total performance of the algorithm for 415 clinical
fluorescence microscopy images.

Infected images Uninfected images
Total amount 194 221
Classified correctly 160 174
Classified correctly in % 83 79

into multiple objects.This effect can be observed for cellulose
fibers and miscellaneous particles.

A more detailed evaluation of the algorithm showed that
the methods used to reduce false-positive structures wrongly
excluded true-positive hyphae from the dataset of suspicious
objects. The width calculation, the detection of circular
structures, and the histogram analysis each sorted out two
singular hyphae. For clustered hyphae five and three objects
were excluded by the width calculation and the histogram
analysis, respectively (data not shown).

3.2. Performance on Clinical Images. The developed algo-
rithm detected 160 out of 194 infected images and 174 out
of 221 uninfected images correctly. Hence, the total sensi-
tivity is 83% and specificity is 79% for clinical fluorescence
microscopy images (see Table 3). In total, 8,433 objects were
segmented using the background reduction. After rejecting
small structures, 2,311 objects remained for classification.

Analysis of the processing steps showed that the calcu-
lation times per object and per image were 18 and 96 mil-
liseconds for preprocessing, 18 and 101 milliseconds for seg-
mentation, and 11 and 61 milliseconds for parameterization
including classification, respectively. The average calculation
time for the whole processing was 47 milliseconds for an
object and 258 milliseconds for an image (see Table 4).
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Table 4: Calculation time per object and per image for preprocessing, segmentation, and parameterization including classification based on
the 415 clinical images. Data are rounded.

Calculation time Preprocessing Segmentation Parameterization In total
Per object [ms] 18 18 11 47
Per image [ms] 96 101 61 258
In total for 415 images [s] 40.0 41.7 25.2 106.9

4. Discussion

An image-analysis scheme to detect fungal infections in
digital fluorescence microscopy images is presented. The
scheme consists of the image preprocessing, segmentation,
parameterization, and classification steps that all have a
strong influence on the detection rate. Results show that the
classification parameters yield high detection rates for hyphae
(94% and 89% for singular and clustered hyphae, resp.) of
the test dataset. However, the overall performance on clinical
images is lower. This can be explained by the different image
quality of the test dataset and the clinical images. As the
aim of the test dataset was the evaluation of the algorithm’s
sensitivity for morphological and statistical features, the only
objects that were chosen are those of high image quality
in terms of sharp contours and high object-to-background
contrast. The image quality of the clinical images, on the
other hand, is poor compared to the test dataset. The object-
to-background contrast can be low because other structures
overlap the hyphae. Additionally, due to the sample thickness,
some structures may be located in out-of-focus areas and
therefore appear blurred.

However, the “per image” approach increases the sensi-
tivity as it is sufficient to detect one hypha to diagnose an
infection. In this context, it has to be considered that, as a
consequence of fungal growth, often multiple singular and
clustered hyphae are present in infected samples. The like-
lihood for correctly classifying images as infected therefore
increases with an increasing number of hyphae.

The same results can be observed for the specificity of
the method. The detection rate of false-positive structures of
the test dataset is higher than the overall specificity. Here,
the “per image” approach deteriorates the results as an image
often consists of multiple false-positive structures that all
have to be classified correctly. In particular irregular air
inclusions, cellulose fibers, and miscellaneous particles can
reduce specificity, since more than 10% of the objects are
classified incorrectly (see Table 2).

Therefore, the high sensitivity’s tradeoff is the lower
specificity, which, in consequence, is responsible for a high
number of uninfected objects that are detected as hyphae.
To facilitate the process of diagnosis for the dermatologists
images classified as true-positive are presented without high-
lighting the detected objects. In this way well experienced
dermatologists can decide more quickly whether an image
contains hyphae as they do not explicitly need to evaluate
every single object.

The limitation of the current evaluation is that the analysis
is performed on a “per image” base and not on a “per
patient” base. The “per image”-approach is used to optimize

the processing algorithms, because it is more sensitive for
slight improvements of the algorithms. Using this approach
a more profound insight into the performance is gained and
optimization potentials can be derived.However, to assess the
system’s performance on a clinical trial for numerous subjects
the “per patient” approach has to be used and a ROC analysis
[17] has to be performed.

The analysis of the calculation times shows that an image
is completely classified within an average time of 258ms.This
means an infection can be diagnosed directly after starting
the processing if it is present within the first images. On the
other hand if no infection is present or the infection is located
in the last images, it takes about 30 seconds (assuming that
100 images are scanned per sample) to receive the complete
results.

Minimizing calculation time has the main drawback that
complex segmentation and classification algorithms that are
computationally expensive cannot be implemented in this
context. The segmenting of elongated objects such as hyphae
could be performed, especially, by active contour models as
presented by Liu et al. [18]. The drawback of this iterative
method is that the segmentation time for an easy cone-like
object on an ideal image background is about one second
and up to about three seconds on a noisy background. For
elongated vessels that resemble fungal hyphae, calculation
time is stated to be about 13 to 141 seconds depending on the
iterations used and the desired segmentation quality. Inglis
and Gray also report expensive processing time for contour
segmentation for clustered hyphae [19]. These algorithms
provide very accurate outlines of the hyphae but are too slow
to be used in the context of clinical routine diagnosis. To
use these complex algorithms in future works, calculations
will have to be speeded up. Parallelization or using GPU
calculations might be a promising approach.

However, the less complex edge-detection approach for
segmentation used in this study has also been reported
to successfully detect hyphae or elongated structures in
images. Baum et al. describe a processing framework called
HyphArea that uses an edge-detection algorithm based on
the Sobel operator [20] to measure fungal growth in biotech-
nological applications. Kumar et al. report the successful use
of the Canny edge-detection filter to find vessel contours in
cross section images [21]. Our study also showed good seg-
mentation results; due to various inhomogeneities of image
quality and interfering objects, however, some structures are
separated into multiple objects.

In comparison to studies performed for measuring
biomass and characterizing growth processes of fungi in
fermentation processes, the processing schemes used are
similar to the approach presented here. Papagianni reviewed
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commonly used approaches in biotechnology and summa-
rizes the outline of the image-processing steps as follows:
image enhancement, image segmentation, object detection,
binary image processing, measurements/calculations, and
data analysis [13]. This outline is also implemented in the
presented study.

The results of the reviewed studies showed very good
segmentation performance [10–12, 22, 23]. The most impor-
tant difference of clinical dermatological images used in our
study compared to biotechnology images is the increased
complexity and wide variability of structures. Biotechnology
approaches do not need to deal with false-positive structures,
unintended contaminations, and reduced perceptibility of
structures due to varying sample conditions, meaning that
segmentation results cannot be readily compared.

In general, the parameters of the preprocessing and
classification algorithms themselves need to be configured
very thoroughly. All processing steps rely on size and intensity
information of the images.They depend on themagnification
used, the numerical aperture of the objective, the illumination
unit, and the camera. Therefore, the values and thresholds
used in this study are valid only for the used experimental
imaging system and are shown as examples. Considering that
the morphology of fungal hyphae and false-positive objects
does not vary with changing imaging systems the presented
parameterization approach can generally be transferred. For
the classification, in contrast, it is unlikely that images from
other systems, taken under different conditions, can be evalu-
ated successfully without tuning the thresholds, unless image
resolution, magnification, image quality, and fluorescence
intensity are preserved. In this study, however, the algorithm
was exclusively developed for the presented imaging system
and no further assessment on the needed effort to transfer the
results to other imaging platforms was performed.

Furthermore, it has to be considered that the results
depend on the performance of the algorithms but can be
optimized by careful sample preparation. Reducing the incor-
poration of false-positive structures during transportation
and storage and trying to avoid air inclusions during staining
are important steps to increase specificity and to minimize
the time needed for diagnosis. To increase sensitivity, it is
useful to assure uniform sample thickness to avoid out-
of-focus structures in the images. This can be achieved by
ensuring an adequate time for themaceration and application
of the staining reagent and applying sufficient pressure to the
sample.

The benefits and drawbacks of supporting medical per-
sonnelwith computed “second opinions” have been discussed
in the field of radiology [24] since the early 1990s. Here,
the so-called computer-aided diagnosis (CAD) is nowadays
a common and widely accepted tool to improve the accuracy
and consistency of radiological diagnosis and also to reduce
the image reading time [25, 26]. Gurcan et al. report that the
approaches have also been transferred to pathological images,
an area inwhichCADalgorithms have begun to be developed
for disease detection, diagnosis, and prognosis prediction to
complement the opinion of the pathologist. Gurcan et al.
further describe the need for quantitative image-based assess-
ment to complement the educated but subjective opinion

of pathologists [27]. The approach presented in this study
follows these ideas and transfers the CAD methodologies to
the dermatological field of superficial fungal infections.

5. Conclusion

The presented method can speed up the process for the
diagnosis of fungal infections for dermatologists. It provides
standardized and reproducible results that help to increase
overall diagnostic quality in this field. To be applicable
in clinical routine, the microscope, probe preparation, and
software have to be combined into a commercially available
automated imaging system.
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