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Vasoactive intestinal peptide (VIP) plays an important role in the neuro-endocrine-immune
system. Mast cells (MCs) are important immune effector cells. This study was conducted
to investigate the protective effect of L. casei ATCC 393 on Enterotoxigenic Escherichia
coli (ETEC) K88-induced intestinal mucosal immune barrier injury and its association with
VIP/MC signaling by in vitro experiments in cultures of porcine mucosal mast cells
(PMMCs) and in vivo experiments using VIP receptor antagonist (aVIP) drug. The
results showed that compared with the ETEC K88 and lipopolysaccharides (LPS)-
induced model groups, VIP pretreatment significantly inhibited the activation of MCs
and the release of b-hexosaminidase (b-hex), histamine and tryptase. Pretreatment with
aVIP abolished the protective effect of L. casei ATCC 393 on ETEC K88-induced intestinal
mucosal immune barrier dysfunction in C57BL/6 mice. Also, with the blocking of VIP
signal transduction, the ETEC K88 infection increased serum inflammatory cytokines, and
the numbers of degranulated MCs in ileum, which were decreased by administration of
L. casei ATCC 393. In addition, VIP mediated the regulatory effect of L. casei ATCC 393
on intestinal microbiota in mice. These findings suggested that VIP may mediate the
protective effect of L.casei ATCC 393 on intestinal mucosal immune barrier dysfunction
via MCs.

Keywords: probiotic, Lactobacillus casei ATCC 393, mast cells, vasoactive intestinal peptide, mucosal immune,
intestinal barrier
INTRODUCTION

The intestinal barrier is essential for maintaining intestinal homeostasis and health. It prevents the
loss of water and electrolytes and the invasion of antigens and microorganisms (1, 2). Therefore,
the integrity of the intestinal barrier is particularly important for human and animal health. One of
the main causes of gastrointestinal diseases such as necrotizing enterocolitis, irritable bowel
syndrome (IBS) and inflammatory bowel disease (IBD) is the impairment of intestinal epithelial
org November 2021 | Volume 12 | Article 7231731
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barrier integrity (3, 4). The intestinal mucosal immune barrier is
mainly composed of intestinal mucosal epithelial cells and
intestinal associated lymphoid tissues. Intestinal mucosal
immune cells mainly include lymphocytes, goblet cells, mast
cells, etc. The intestinal microbiome as a key component of the
intestinal barrier system are strongly associated with the host
health (5). Lactobacillus casei (L. casei) strains are commonly
added to yogurt and fermented dairy products to improve their
health benefits (6). L. casei could relieves constipation and
diarrhea (7, 8). L. casei has also shown promise in preventing
or alleviating human IBDs (9). However, the attenuation of
colitis by L. casei BL23 was found to be dependent on the
dairy delivery matrix (10). The impact of L. casei on the
cecal microbiome and innate immune system is strain specific
(11), and dose and time-dependent (12). L. casei expressing
internalins A and B significantly reduced Listeria monocytogenes-
induced cell cytotoxicity and epithelial barrier dysfunction (13).
Moreover, L. casei ATCC 393 alleviated ETEC K88-induced
intestinal barrier dysfunction via the toll-like receptors (TLRs)/
mast cells (MCs) pathway (14).

MCs are an important natural immune effector cells, which
participate in mucosal immunomodulatory process by releasing
cytokines. The activation and degranulation of MCs is involved
in the regulation of variety of physiological and pathological
conditions in various settings (15). The reversal of ion
permeation and transmembrane transport of macromolecules
byMCs stabilizers was demonstrated in animal studies (16). MCs
serve as a line of defense against antigens entering the body, and
contribute to maintain the homeostasis of the immune system
(17). MCs express various receptors including pathogen-
associated molecular patterns (PAMPs), vasoactive intestinal
peptide receptors (VPACs), NOD-like receptors (NLRs) as well
as TLRs, all of which are involved in MC activation and immune
response (18). A variety of endogenous and exogenous drugs can
stimulate MCs to release mediators. The impairment of the
intestinal barrier is related to the increase of intracavity
antigens entering the mucosa, which further promotes the
activation of MCs in the mucosa inflammatory response and
changes in MC-enteric nerve interaction (19). Vasoactive
intestinal peptide (VIP) plays a crucial role in the neuro-
endocrine-immune system. Some studies have demonstrated
the role of VIP in intestinal permeability regulation (20). Other
studies have shown that MCs and VIP regulate the ileal barrier of
healthy people and the stress response in rats through the
VPAC1/VPAC2 receptors on the surface of MCs (21). An
increase in plasma VIP levels was found in IBS patients and
animal models. Also, intestinal epithelial permeability appears to
be a positively correlated with mucosal MCs (22). However, the
association of the protective effect of L. casei ATCC 393 on
intestinal barrier function with VIP/MCs remains unclear.

This study was aimed to investigate the role of VIP in the
protective effect of L. casei ATCC 393 on intestinal barrier
dysfunction in mice challenged by ETEC K88 and its
association with MCs. The ETEC K88 and LPS-induced VIP-
mediated regulatory effect on MCs activation, and its association
with the protective effect of L. casei ATCC 393 on intestinal
Frontiers in Immunology | www.frontiersin.org 2
epithelial barrier function were evaluated through in vitro co-
culture experiments of porcine intestinal mucosal mast cells
(PMMCs) with L. casei ATCC 393 and in vivo experiments
using VIP receptor antagonist (aVIP) drug.
MATERIALS AND METHODS

Bacterial Strains, Cell Line, and Reagents
L. casei ATCC 393 and ETEC K88 strain were kept in our
laboratory. PMMCs were purchased from Saiqi (Shanghai)
Biological Engineering Co., Ltd (Cat # CBR-131443). Man,
Rogosa and Sharpe (MRS) broth (Cat # CM1153B) was
purchased from Oxoid (Basingstoke, UK). Luria-Bertani (LB)
broth (Cat # 12780052) were purchased from Gibco-Invitrogen.
The reagents for cell culture were purchased from Invitrogen/
Gibco (Carlsbad, CA, USA). Enzyme-linked immunosorbent assay
(ELISA) Kits for porcine tumor necrosis factor-a (TNF-a, Cat#
JL13203), porcine and mouse interferon-g (IFN-g, Cat# JL11792),
porcine interleukin-6 (IL-6, Cat# JL21880), porcine interleukin-8
(IL-8, Cat#JL45446), porcine granulocyte-macrophage colony
stimulating factor (GM-CSF, Cat#JL21931), porcine b-
hexosaminidase (Cat# JL45717), porcine tryptase (Cat# JL17996),
and porcine histamine (Cat#JL10076), and mouse TNF-a
(Cat#JL10484), mouse IFN-g (Cat#JL10967), mouse IL-6
(Cat#JL20268), mouse IL-1b (Cat#JL18442), mouse b-
hexosaminidase (Cat#JL20214), mouse tryptase (Cat#JL20445),
mouse histamine (Cat#JL10420) , and mouse MPO
(Cat#JL10367) were purchased from Jianglaibio Co., Ltd
(Shanghai, China). The bicinchoninic acid (BCA) protein assay
kit (Cat#P0012S) was purchased from Beyotime Biotechnology
(Shanghai, China). VIP and VIP receptor antagonist (VIP6-28,
aVIP) were synthesized by Shanghai Qiangyao Biological Co.,Ltd
(Shanghai, China). Lipopolysaccharides (LPS, Cat#L4391) from
Escherichia coli O111:B4 was purchased from Sigma Aldrich
Company (Saint Louis, MO, USA). Primary antibodies for
MUC2, Occludin, ZO-1, TLR4, NF-kB, p-NF-kB, MyD88 and b-
actin were purchased from ABclonal Company (Wuhan, China).

Cell Culture Conditions
PMMCs were cultured in high glucose Dulbecco’s modified
Eagles’s medium (DMEM) supplemented with 10% fetal
bovine serum (FBS) and 1% antibiotic mixture (100 U/mL of
penicillin and 100 mg/mL streptomycin) in an incubator at 37°C
in a humidified atmosphere with 5% CO2.

Bacterial Culture Conditions
L. casei ATCC 393 was incubated in MRS broth at 37°C for 24 h
without shaking. ETEC K88 was cultured in LB broth with
shaking at a speed of 120 rpm at 37°C overnight. Bacteria
pellets were collected by centrifuging at 5,000 × g at 4°C for 10
min, and then washed with phosphate-buffered saline (PBS). The
obtained bacteria were suspended in FBS-free cell culture
medium and diluted to different concentrations. The
supernatants of 1×108 CFU/mL L. casei ATCC 393 and 1×108

CFU/mL of ETEC K88 culture medium were separately
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harvested by centrifugation at 5000 × g at 4°C for 10 min. The
bacterial supernatants and bacterial resuspension solution were
collected and used for subsequent experiments.

Effect of VIP, aVIP and L. casei ATCC 393
on PMMCs Activation
PMMCs were seeded at a concentration of 4×105 cells/mL in 24-
well cell culture plates and cultured at 37°C for 24 h. Normal control
cells were exposed to 1 mL of FBS-free DMEM. For the L. casei
ATCC 393 treatment group, 1 mL of 1×108 CFU/mL of L. casei
ATCC 393 bacterial culture supernatants was added to each well.
Other groups received 1 mL of FBS-free DMEM. VIP and aVIP
treatment groups were administrated with 1mL of FBS-free DMEM
containing 0.1 mMVIP and/or 0.1 mMaVIP, respectively. The plates
of all groups were incubated at 37°C for 12 h. After the above
treatments, supernatants of cell culture medium supernatants were
collected, and the concentration of b-hexosaminidase, tryptase, and
histamine were determined using the corresponding ELISA kits
according to the manufacture’s instruction.

Effect of VIP and aVIP Interaction on the
Activation of PMMCs
PMMCs were seeded at a concentration of 4×105 cells/mL in 24-
well cell culture plates and cultured at 37°C for 24 h. The cells
were divided into four groups and treated accordingly: the
normal control group received 1 mL of FBS-free DMEM; VIP
and aVIP treatment group received 1 mL of FBS-free DMEM
containing 0.1 mM VIP or/and 0.1 mM aVIP, respectively, and
cultured at 37°C for 12 h. Afterwards, the cell culture medium
supernatants were collected, and the concentration of b-
hexosaminidase, tryptase, and histamine were determined
using corresponding ELISA kits.

Effect of L.casei ATCC 393 on VIP-
Mediated Activation of PMMCs
PMMCs were inoculated at a density of 4×105 cells/mL in sterile
24-well cell culture plate and cultured at 37°C for 24 h until the
cell confluence reached higher than 90%. Normal control cells
received 1 mL of FBS-free DMEM. The VIP alone group was
treated with 1 mL of FBS-free DMEM containing 0.1 µM VIP for
12 h. The L. casei ATCC 393 alone group was exposed to 1 mL of
1×108 CFU/mL L. casei ATCC 393 culture supernatant for 3 h.
The VIP and L. casei ATCC 393 co-cultured cells were first
administered with 1 mL of 1×108 CFU/mL of L. casei ATCC 393
culture supernatant for 3 h, then changed to 1 mL of FBS-free
DMEM containing 0.1 µM VIP and culured for 12 h. Afterwards,
the cell culture supernatants were collected, and the
concentration of b-hexosaminidase, tryptase and histamine
were determined using the corresponding ELISA kits.

Effect of VIP and aVIP on ETEC K88 or
LPS-Induced PMMCs Activation
PMMCs were seeded at a density of 4×105 cells/mL in sterile 24-
well cell culture plates and cultured at 37°C for 24 h. First,
normal control cells were exposed to 1 mL of FBS-free DMEM,
the VIP alone treatment group was given 1 mL of FBS-free
Frontiers in Immunology | www.frontiersin.org 3
DMEM containing 0.1 µM VIP, and the aVIP treatment group
received 1 mL of FBS-free DMEM containing 0.1 µM aVIP, and
the aVIP-VIP co-treatment group received 1 mL of FBS-free
DMEM containing 0.1 µM aVIP and 0.1 µM VIP. Then all group
cells were cultured at 37°C for 12 h. Control groups were exposed
to 1 mL of FBS-free DMEM, other experimental groups were
changed to 1 mL of 1×108 CFU/mL ETEC K88 culture
supernatant or 1 mL of FBS-free DMEM containing 0.1 µM of
LPS. After additional incubation for 2 h, cell culture medium
supernatants were collected. The concentration of b-
hexosaminidase, tryptase, histamine, IL-6, IL-8, TNF-g and
GM-CSF were determined by the corresponding ELISA kits.

Animal Experimental Design
Animals can produce endogenous VIP, but whether it mediates
the regulation of the L. casei ATCC 393 effect on intestinal
barrier function remains unclear. We hypothesized that L. casei
ATCC 393 can regulate the effect of pathogenic bacteria such as
ETEC K88-induced intestinal mucosal MC activation and inhibit
the release of MCs released mediators, regulate inflammatory
responses, and further regulate intestinal barrier function
through the binding of VIP and VIP receptors on the surface
of intestinal mucosal MCs. To verify the above hypothesis, we
conducted experiments to assess the effect of a VIP receptor
antagonist (aVIP) in C57BL/6 mice challenged by ETEC K88.
This animal experimental protocol was approved by the
Laboratory Animal Welfare and Ethics Committee of
Northwestern Polytechnical University and the experiment was
conducted strictly in accordance with the International
Laboratory Animal Assessment and Accreditation Committee
guidelines for the care and use of laboratory animals. The 50
healthy male C57BL/6 mice (20 ± 2 g) used in the experiment
were purchased from the Experimental Animal Center of Xi’an
Jiaotong University (Xi’an, Shaanxi, China). The entire feeding
experiment was conducted at the Experimental Animal Center of
Northwestern Polytechnical University. After an adaptive period
of 7 days, the mice were randomly divided into five groups with
10 mice per group: normal control group, ETEC K88 infected
group, L. casei ATCC 393 protective group, aVIP + ETEC K88
treatment group, L. casei ATCC 393 + aVIP + ETEC K88
treatment group. The living conditions were as follows: relative
humidity of 55 ± 5%, ambient temperature of 22 ± 5 °C, and
under a 12 h light and dark cycle. The experimental scheme is
depicted in Figure 3A. The mice in the L. casei ATCC 393
protective group were orally administered with 200 µL of 1×108

CFU/mL of L. casei ATCC 393 resuspension solution per day for
14 days. The other groups were orally given the same volume of
MRS broth. On days 1, 3, 5, 7, 9, and 11, mice in the ETEC K88-
infected group were orally given 100 µL of 1×108 CFU/mL ETEC
K88 resuspension solution, and the other groups were given the
same volume of LB broth. On days 0, 5 and 10, the aVIP
treatment groups were intraperitoneally (i.p.) injected with
aVIP (10 nmol/kg/BW). Other groups were i.p. injected with
the same volume of normal saline. The body weight, diarrhea
and mental status were observed and recorded daily. After the
above treatments, mice were anesthetized with ether. Peripheral
November 2021 | Volume 12 | Article 723173
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blood was drawn from mice and centrifuged immediately at
1,500×g for 15 min at 4°C to obtain serum. Serum samples were
stored at -80°C until analyzed. Then, immediately the mice were
dissected, the tissues of interest (the duodenum and ileum)
were collected.

Histological Analysis of Duodenum and
Evaluation of Intestinal Barrier Function
The duodenum is an important intestinal segment of the digestive
tract for nutrient digestion and absorption. Its histology and
morphology are closely related to intestinal function. The tissues
samples of the proximal duodenumwere fixed in 10% neutral buffer
formalin, dehydrate, and paraffin-embedded. Then, the sections
prepared from the paraffin-embedded tissue blocks were stained
with hematoxylin-eosin (H&E) and observed under a phase-
contrast microscope for histological and morphological
characterization of the duodenum. To further evaluate the
changes in intestinal barrier function, the expression level of
MUC2, Occludin, and ZO-1 proteins in duodenum were detected
by immunofluorescence and Western Blot respectively. The
expression levels of MUC2 and Reg3g genes were detected by q-
PCR. Primer sequences are shown in Table 1.

Detection of Intestinal Immune Responses
Intestinal mucosal MCs are key modulators of barrier function
and homeostasis, which widely distributed in ileum. Therefore,
the numbers of MCs and the degranulated MCs in proximal
ileum were detected by toluidine blue (TB.) staining. Serum b-
hexosaminidase, tryptase and MPO activities, as well as VIP,
sIgA, histamine, TNF, IFN-g, IL-6 and IL-1b concentrations
were determined by the corresponding ELISA kits according to
the manufacture’s instruction.

Intestinal Microbiota Analysis
To investigate the changes of intestinal microbiota, we detected
the cecal contents of mice by 16S rRNA amplicon sequencing. As
in previous research methods, whole-genome DNA was
extracted and sequenced for analysis (23). The sequences with
similarity ≥97% were clustered. OTUs were assigned to each
representative sequence in the cluster by searching against the
GreenGene Database.

Effects of aVIP and L. casei ATCC 393 on
TLRs/MyD88/NF-kB Signaling Pathway
To further explore the mechanism of the effect on intestinal
immune barrier function, we detected the protein expression
levels of MyD88, TLR4, NF-kB (p65), and p-NF-kB (p-p65) by
Western Blot.

Statistical Analysis
All experimental data were statistically analyzed using Graphpad
Prism 5.0 statistical software (GraphPad Software Inc., San
Diego, CA, USA) and are presented as the mean ± standard
error of mean (S.E.M.). The statistical significance was calculated
by one-way analysis of variance (ANOVA) or Student’s t-test.
Frontiers in Immunology | www.frontiersin.org 4
Differences were considered significant at P<0.05. All assays were
performed in at triplicate three independent experiments.
RESULTS

Effect of VIP, aVIP and L. casei ATCC 393
on PMMCs Activation
As shown in Figure 1A, compared with the normal control
group, exposure to L. casei ATCC 393 or VIP significantly
induced the activation of PMMCs, and promoted the release of
MCs-related mediators including b-hexosaminidase, tryptase
and histamine. However, aVIP had no effect on PMMCs.

Effect of Interaction Between VIP and aVIP
on PMMCs Activation
As shown in Figure 1B, compared with the normal control
group, treatment with VIP significantly increased the
concentration of b-hexosaminidase, tryptase and histamine in
the supernatant of PMMCs. Exposure to aVIP alone had no
effect on PMMCs. However, administration of aVIP significantly
inhibited VIP-induced activation of PMMCs.

Effect of VIP Mediated L. casei ATCC 393
on Activation of PMMCs
As shown in Figure 1C, compared with the normal control
group, both VIP and L. casei ATCC 393 treatments increased the
b-hexosaminidase, tryptase and histamine concentration in the
supernatant of PMMCs. However, L. casei ATCC 393
pretreatment significantly inhibited the VIP-induced activation
of PMMCs and the release of MCs-related mediators.

Effects of VIP and aVIP on ETEC K88- and
LPS-Induced Activation of PMMCs
As shown in Figure 2, compared with the normal control group,
both ETEC K88 and LPS induced a significant increase of the
TNF-a, IFN-g, IL-6, IL-8, GM-CSF, b-hexosaminidase, tryptase
and histamine levels in PMMCs supernatant. VIP significantly
inhibited the increase of inflammatory factors, histamine, b-
hexosaminidase and tryptase concentration in the supernatant of
ETEC K88- and LPS-induced PMMCs. Administration with
aVIP alone had no effect on ETEC K88- and LPS-induced
activation of PMMCs. However, aVIP pretreatment
TABLE 1 | Primer sequences of MUC2 and Reg3g genes for q-PCR.

Gene producta Primer

Directionb Sequence (5’–3’)

MUC2 F CAGACTACACGACAGGTGGG
R GTGGTGGTCGTTGATCCAGT

Reg3g F ATCAGCTGTCCCAAAGGCTC
R CATTTGGTTCCAAGCCCTCG
November 202
aMUC2, Mucin 2; Reg3g, Regenerating islet-derived protein III-gamma.
bF, forward; R, reverse.
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significantly inhibited the regulatory effect of VIP on ETEC K88-
and LPS-induced activation of PMMCs.

Effects of aVIP and/or L.casei ATCC 393
on the Body Weight of Mice
The change of body weight of the mice during the whole
experiment is shown in Figure 3B. According to the overall
trend, except for the ETEC K88-infected group and L. casei
ATCC 393 protection group, the body weight of the other groups
remained relatively stable. On the days 6, from days 8 to 13, the
body weight of mice in the ETEC K88-infected group was
significantly lower than that in the normal control group. The
groups that were orally administered L. casei ATCC 393, aVIP
and L. casei ATCC 393 + aVIP all showed a significant alleviation
of the reduction of body weight caused by ETEC K88. Moreover,
the body weight of mice treated with L. casei ATCC 393 + ETEC
K88+aVIP were significantly higher than that of mice in the L.
casei ATCC 393 + ETEC K88 co-treated group.
Frontiers in Immunology | www.frontiersin.org 5
Effects of aVIP and/or L. casei ATCC 393
on Intestinal Morphology and Intestinal
Barrier Function in Mice Challenged by
ETEC K88
As shown in Figures 4A, B, compared with the normal control
group, infection by ETEC K88 caused a significant increase in
crypt depth (CD), a significant decrease in villus height (VH) and
VH/CD of duodenum. Orally administered L. casei ATCC 393
significantly alleviated the above phenomenon. However,
compared with the ETEC K88-infected group, the
administration of aVIP alone had no effect on the VH, CD and
VH/CD in mice exposed to ETEC K88. In addition,
administration of aVIP significantly inhibited the effects of L.
casei ATCC 393 on the VH, CD and VH/CD. As shown in
Figure 4C, ETEC K88 significantly reduced the expression levels
of ZO-1 and Occludin. L. casei ATCC 393 significantly alleviated
the occurrence of the above phenomenon. aVIP showed
antagonistic effect with L. casei ATCC 393 and inhibited the
A

B

C

FIGURE 1 | Effect of L. casei ATCC 393, vasoactive intestinal peptide (VIP), VIP receptor antagonist (aVIP), and the interaction between VIP and aVIP, L. casei
ATCC 393 and VIP on the activation of porcine mucosal mast cells (PMMCs). The cells were treated with the supernatants of 1×108 CFU/mL L. casei ATCC 393
culture medium for 12h. The cells were treated with 0.1mM VIP and aVIP in the same way. (A) The effect of L. casei ATCC 393, VIP, aVIP on the activity of b-
hexosaminidase, tryptase and the concentration of histamine in cell culture medium. (B) The effect of VIP and (or) aVIP on the activity of b-hexosaminidase, tryptase
and the concentration of histamine in the cell culture medium. (C) The effect of L. casei ATCC 393 and (or) VIP on the activity of b-hexosaminidase, tryptase and the
concentration of histamine in the cell culture medium. All data are presented as the mean ± S.E.M. (n=6). *P < 0.05, **P < 0.01, ***P < 0.001. VIP means the
PMMCs were exposed to VIP. L means the PMMCs were exposed to L. casei ATCC 393. aVIP means the PMMCs were exposed to aVIP. aVIP-VIP means the
PMMCs were exposed to VIP and aVIP. L-VIP means the PMMCs were exposed to L. casei ATCC 393 and VIP.
November 2021 | Volume 12 | Article 723173
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protective effect of L. casei ATCC 393 on intestinal barrier
function. As shown in Figure 4D, compared with the control
group, the expression levels of MUC2 protein in ETEC K88
group was significantly increased. Administration of L. casei
ATCC 393 significantly inhibited the above phenomenon.
However, aVIP had antagonistic effect on the regulatory effect
of L. casei ATCC 393. As shown in Figure 4E, L. casei ATCC 393
significantly alleviated the increase of MUC2 and Reg3g mRNA
expression levels induced by ETEC K88. However, the regulatory
effects of L. casei ATCC 393 on MUC2 expression was inhibited
by aVIP under ETEC K88 challenge.

Effects of aVIP and/or L. casei ATCC 393
on Intestinal Mucosal Immunity in Mice
Challenged by ETEC K88
TB staining of MCs in the proximal ileum of mice reveals, as
shown in Figures 5A, B, that the number of total degranulated
Frontiers in Immunology | www.frontiersin.org 6
MCs in the proximal ileum of ETEC K88-infected mice was
significantly higher than that in the normal control mice. Also,
L. casei ATCC 393 or (and) aVIP treatment significantly
attenuated the ETEC K88-induced increase in the number of
total degranulated MCs in the proximal ileum. However,
compared with the L. casei ATCC 393 treatment group,
i.p. administration of aVIP significantly inhibited the regulatory
effect of L. casei ATCC 393 on ileal mucosal MCs in mice infected
by ETEC K88. As shown in Figures 5C, D, compared with the
normal control group, infection by ETEC K88 significantly
increased serum TNF-a, IL-6, IL-1b, IFN-g, VIP, sIgA and
histamine levels, as well as the b-hexosaminidase, tryptase and
MPO activities. However, pretreatment with L. casei ATCC 393
or (and) aVIP significantly inhibited the increase of TNF-a, IL-6,
IL-1b, IFN-g levels, as well as the MPO activities induced by ETEC
K88. L. casei ATCC 393 significantly inhibited the increase of sIgA
and VIP levels induced by ETEC K88. Moreover, aVIP exhibited
FIGURE 2 | Effect of the interaction between vasoactive intestinal peptide (VIP) and VIP receptor antagonist (aVIP) on the degranulation of porcine mucosal mast
cells (PMMCs) induced by Enterotoxigenic Escherichia coli K88 (ETEC K88) and lipopolysaccharide (LPS). The cells were treated with the supernatants of 1×108

CFU/mL of ETEC K88 culture medium and 0.1mM LPS for 2h. The cells were treated with 0.1mM VIP and aVIP for 12h. All data are presented as the mean ± S.E.M.
(n=6). *P < 0.05, **P < 0.01, ***P < 0.001. VIP means the PMMCs were exposed to VIP. aVIP means the PMMCs were exposed to aVIP. aVIP-VIP means the
PMMCs were exposed to VIP and aVIP.
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significantly antagonistic effect on the regulation of the release of
TNF-a, IL-6, IL-1b, IFN-g, VIP, sIgA and MCs-related mediators
by L. casei ATCC 393.
Effect of aVIP and/or L. casei ATCC 393 on
The Microbial Community in Cecum of
Mice Challenged by ETEC K88
As shown in Figure 6A, compared with the other groups,
administration of aVIP significantly increased the a-diversity of
cecum microbiome. As for the ACE, Chao1 and Shannon index,
there was no significant difference between each experimental
group. As shown in Figure 6B, there was no significant difference
for b-diversity in the genus level among each experimental group.
In Figure 6C, there was no significant difference among those
groups in the phylum level. However, as shown in Figures 6D, E,
compared with the control, ETEC K88 significantly reduced the
abundance of norank_f_Bacteroidales_S24-7_group. However,
L. casei ATCC 393 and aVIP interventions alleviated the reduce
of norank_f_Bacteroidales_S24-7_group. As shown in Figure 6F,
LEfSe analysis showed that g_Lachnospiraceae_NK4A136_group
and g_Ruminococcus_1 were dominant species in mice challenged
by ETEC K88, and g_unclassified_f_Peptostreptococcaceae and
f_Peptostreptococcaceae were dominant species in mice
administered with L+ETEC K88.
Frontiers in Immunology | www.frontiersin.org 7
Effect of aVIP and/or L. casei ATCC 393 on
the Mechanism of Intestinal Barrier
Function
As shown in Figures 7A, B, compared with the control group,
ETEC K88 challenge improved the expression levels of MyD88,
p-NF-kB and TLR4. However, administration of L. casei ATCC
393 significantly inhibited the upregulation of MyD88, p-NF-kB
and TLR4 induced by ETEC K88. Moreover, aVIP intervention
exhibited antagonistic effects on L. casei ATCC 393.
DISCUSSION

The intestinal mucosal immune barrier plays a critical role in
maintaining host homeostasis (24, 25). Studies have shown that
intestinal barrier dysfunction is closely associated with the
occurrence and development of various diseases, such as
inflammatory bowel disease (IBD), chronic kidney disease, type
II diabetes, fatty liver and heart disease (26, 27). Intestinal
symbiotic bacteria and exogenous probiotics work together to
maintain the integrity of the intestinal barrier, meaning that
probiotics protect the intestinal barrier function (28). Lactobacilli
MTCC 5690, LrhS3, Lp9, Lp4 and Lr120 can improve intestinal
barrier function through toll-like receptor 2 (TLR2)- and toll-like
receptor 4 (TLR4)-mediated mechanism and regulation of the
expression of mucin 2 (MUC2) and tight junction proteins (29).
The mixed probiotics of bifidobacteria, Lactobacillus acidophilus
and Enterococcus faecalis can reduce the dextran sodium sulfate
salt (DSS)-induced intestinal inflammation, improve multiple
barrier functions, increase mucosal integrity, enhance
transepithelial electrical resistance, reduce the permeability of
the epithelium and endothelium to macromolecules, and
increase the abundance of bifidobacteria, lactobacillus and
bacteroides (30). In this study, we found that oral administration
of L. casei ATCC 393 effectively protected the intestinal
histomorphology and intestinal barrier function, and improve
the ETEC K88-induced cecum microbiome dysbiosis.

MCs are fundamental elements of the intestinal barrier (18),
MCs as important immunological effector cells play a key
regulatory role in adaptive and innate immunity (31). In
pathological conditions, MCs release pro-inflammatory
compounds, including cytokines (32). Our preliminary
research indicated that L. casei ATCC 393 can relieve ETEC
K88-induce intestinal barrier dysfunction via the TLRs/MCs
pathway (14). However, the regulatory mechanism of the
intestinal barrier function mediated by MCs has not been
elucidated. According to the recent studies, it may be
associated with the release of neurotransmitters (such as VIP,
substance P), and inflammatory mediators (such as cytokines)
(33, 34). MCs not only senses the stimulation of harmful
substances through the numerous receptors on their surface,
including Fc receptor, complement receptor, TLRs, neuropeptide
receptors, such as VPACs and antimicrobial peptide receptor,
but also can synthesize and release transmitters to act on mucosal
epithelium, nerve and other immune cells (35). As an extremely
A

B

FIGURE 3 | The experimental scheme and the change of body weight during
the entire experimental period. The concentrations of both L. casei ATCC 393
and ETEC K88 were 1×108 CFU/mL, and the drug concentration of aVIP was
10nmol/kg BW. (A) The experimental scheme. (B) The change of body weight.
All data were presented as mean ± S.E.M. (n=10). *P < 0.05, **P < 0.01;
#P < 0.05; &P < 0.05, &&P < 0.01; aP < 0.05. * means ETEC K88 infected group
v.s. Con; # means L + aVIP +ETEC K88 v.s. ETEC K88 infective model group;
& means aVIP + ETEC K88 v.s. ETEC K88 infected group; a means L+ETEC
K88 v.s. ETEC K88 infected group. aVIP means the mice administered with the
VIP receptor antagonist by i.p. injection. L means the mice orally received
L. casei ATCC 393. ETEC K88 means the mice orally received ETEC K88.
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important neuroendocrine immunomodulatory peptide, VIP
may be strongly associated with the regulation of intestinal
barrier function (19). VIP can have a good therapeutic effect
on necrotizing enterocolitis by reducing the inflammatory
Frontiers in Immunology | www.frontiersin.org 8
response and the destruction of TJ proteins (36). Furthermore,
DSS induced colitis was associated with VIP and VPAC1
receptors (37). Moreover, VIP regulates a variety of immune
cells, including MCs (38). VIP protects testis from torsion injury
A

B

D

E

C

FIGURE 4 | Effects of VIP receptor antagonist (aVIP) and L. casei ATCC 393 on intestinal barrier function. (A) The histomorphology of proximal duodenum was
observed by hematoxylin-eosin (H&E) staining. (B) Quantitative analysis of villus height and crypt depth. (C) Expression levels of tight junction proteins ZO-1 and Occludin.
(D) Immunofluorescence of MUC2 protein in duodenum. (E) The expression levels of MUC2 and Reg3g genes. All data are presented as the mean ± S.E.M. (n=4). *P <
0.05, **P < 0.01, ***P < 0.001. aVIP means the mice were intraperitoneally (i.p.) injected with aVIP. L means the mice orally received L. casei ATCC 393. ETEC K88
means the mice orally received ETEC K88.
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by inhibiting the activation of MCs (39). Additionally, VIP can
also play a protective role on septic mice by regulating the
activation of MCs (40). In this study, we found that VIP
promoted the activation of PMMCs, and inhibited the
activation of PMMCs exposed to ETEC K88 or LPS. These
results suggested that the regulatory effect of VIP on PMMCs
activation was strongly associated with the physiological and
pathological conditions of cells. However, L. casei ATCC 393 or
the aVIP can inhibit the VIP-induced activation of PMMCs.

MCs are important mediators of allergic responses on host
surfaces including the intestine. When MCs is challenged by an
external stimulus, it may respond by degranulation. In this
Frontiers in Immunology | www.frontiersin.org 9
process, a number of powerful preformed inflammatory
“mediators” are released, including cytokines, histamine,
serglycin proteoglycans, and several MC-specific proteases:
chymases, tryptases, and carboxypeptidase A (41). In this
study, the high numbers of degranulated MCs were observed
in mice exposed to ETEC K88. MCs not only senses the
stimulation of harmful substances through many receptors on
the surface (including Fc receptors, complement receptors,
TLRs, neuropeptide receptors, antimicrobial peptide
receptors, etc.), but also can synthesize and release
transmitters to act on mucosal epithelium, nerve, and other
immune cells (35). Intestinal flora not only produces ligands for
A

B

D

C

FIGURE 5 | Effect of VIP receptor antagonist (aVIP) and L. casei ATCC 393 on the number of degranulated mast cells (MCs) in the ileum of mice challenged by
ETEC K88 and the release of mast cells (MCs)-related mediators. (A) The number of degranulated MCs in proximal ileum was observed by Toluidine Blue (TB)
staining. (B) Quantitative analysis of the number of MCs. (C) Effects of VIP receptor antagonist (aVIP) and L. casei ATCC 393 on the release of mast cells (MCs)-
related mediators. (D) Effects of VIP receptor antagonist (aVIP) and L. casei ATCC 393 on serum myeloperoxidase (MPO) activity, VIP, sIgA and cytokines levels in
mice challenged by ETEC K88. All data are presented as the mean ± S.E.M. (n=4) *P < 0.05, **P < 0.01, ***P < 0.001. aVIP means the mice were intraperitoneally
(i.p.) injected with aVIP. L means the mice orally received L. casei ATCC 393. ETEC K88 means the mice orally received ETEC K88.
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pattern recognition receptors (PRRs) (42), but also releases
neurotransmitters and neuromodulators that target specific
nervous systems on the brain-gut axis (43). If a TLR on MCs
is activated, myeloid differentiation factor 88 (MyD88) and
MyD88-adaptor like (MAL)/Toll-interleukin 1 receptor
domain containing adaptor protein (TIRAP) associate and
promote nuclear factor kappa-B (NF-kB) translocation to the
nucleus resulting in cytokines transcription (44). TLR4 can be
activated by LPS from Gram-negative bacteria (45).
Frontiers in Immunology | www.frontiersin.org 10
Antimicrobial peptides themselves have the function of
protecting epithelial barrier and adjusting intestinal microbial
balance (46). Probiotic L. rbamnosus Lc705 and L. rbamnosus
GG could diminish mast cell activation (47). In this study, we
observed that orally given L. casei ATCC 393 significantly
inhibited the activation of ileal mucosal MCs in mice infected
by ETEC K88. However, administration of aVIP by
intraperitoneal injection abolished the regulatory effect of L.
casei ATCC 393 on MCs activation in ileum, reduced the serum
A B

D

E F

C

FIGURE 6 | Effect of L. casei ATCC 393 and VIP receptor antagonist (aVIP) on microbial community in cecum of mice challenged by ETEC K88. (A) a-diversity
analysis. (B) PCA plot of microbial community composition showed the compositional variance. (C) Differences in composition of microbial communities at phylum
level. (D) Differences in composition of microbial communities at genus level. (E) LEfSe analysis of microbiota. All data are presented as the mean ± S.E.M. (n=4).
*P < 0.05, **P < 0.01. aVIP means the mice were intraperitoneally (i.p.) injected with aVIP. L means the mice orally received L. casei ATCC 393. ETEC K88 means
the mice orally received ETEC K88.
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VIP level, and alleviated the inflammatory response in ETEC
K88-infected mice. aVIP (VIP6-28) is the VIP receptor
antagonist, which can competitively bound to the VPACs on
the surface of MCs cells, counteracting the activation of
endogenous VIP on MCs. In addition, administration of L.
casei ATCC 393 or aVIP significantly alleviated the intestinal
microbiome dysbiosis. Moreover, administration of L. casei
ATCC 393 inhibited the activation of TLR4/MyD88/NF-kB
signaling pathway induced by ETEC K88. VIP is an important
secretomotor transmitter extensively expressed throughout the
intestinal mucosa. Stress increased epithelial permeability, an
effect that was largely blocked by a VIP receptor antagonist,
and also the mast cell stabilizer doxantrazole (21). The
above research results support the functional observations
in the current study. The role of VIP in regulating anti-
inflammatory- proinflammatory balance and intestinal barrier
function has been demonstrated in humans and mice (20, 48,
49). The regulation of VIP on MC function may be bidirectional.
It has been reported that VIP can affect the secretory activity of
MCs, but the results are contradictory (38, 50). Therefore,
the roles of VIP and mast cells in the regulatory effect of
probiotics on intestinal barrier function require confirmation in
further experiments.
CONCLUSIONS

The regulatory effect of VIP on MCs activation may be related
to the physiological and pathological conditions of cells. L. casei
Frontiers in Immunology | www.frontiersin.org 11
ATCC 393 inhibited the ETEC K88- and LPS-induced
activation of intestinal mucosa MCs, and alleviated the
intestinal mucosal injury in mice challenged by ETEC K88.
VIP receptor antagonist abolished the protective effect of L.
casei ATCC 393 on barrier function. Therefore, we speculated
that the mechanism of L. casei ATCC 393 regulating intestinal
mucosal injury may be related to VIP/MCs-mediated signaling
pathway. However, the roles of VIP/MCs in the regulatory
effects of probiotics on intestinal mucosal immune barrier
function need further confirmation. This study is useful
because it revealed the interaction of probiotics with enteric
neuro-immunity and intestinal barrier function. L. casei ATCC
393 may be investigated as a potential and promising
microecological food or feed additives in order to modulate
intestinal barrier dysfunction.
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FIGURE 7 | Expression levels of relevant inflammatory markers. (A) The
expression levels of related inflammatory markers were detected by Western
Blot. (B) Quantitative statistical results. All data were presented as mean ±
S.E.M. (n=3). *P < 0.05, **P < 0.01, ***P < 0.001.
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