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Statistical shape models (SSMs) are a well established computational technique to

represent the morphological variability spread in a set of matching surfaces by means of

compact descriptive quantities, traditionally called “modes of variation” (MoVs). SSMs of

bony surfaces have been proposed in biomechanics and orthopedic clinics to investigate

the relation between bone shape and joint biomechanics. In this work, an SSM of

the tibio-femoral joint has been developed to elucidate the relation between MoVs

and bone angular deformities causing knee instability. The SSM was built using 99

bony shapes (distal femur and proximal tibia surfaces obtained from segmented CT

scans) of osteoarthritic patients. Hip-knee-ankle (HKA) angle, femoral varus-valgus (FVV)

angle, internal-external femoral rotation (IER), tibial varus-valgus (TVV) angles, and tibial

slope (TS) were available across the patient set. Discriminant analysis (DA) and logistic

regression (LR) classifiers were adopted to underline specific MoVs accounting for knee

instability. First, it was found that thirty-four MoVs were enough to describe 95% of the

shape variability in the dataset. The most relevant MoVs were the one encoding the

height of the femoral and tibial shafts (MoV #2) and the one representing variations of the

axial section of the femoral shaft and its bending in the frontal plane (MoV #5). Second,

using quadratic DA, the sensitivity results of the classification were very accurate, being

all >0.85 (HKA: 0.96, FVV: 0.99, IER: 0.88, TVV: 1, TS: 0.87). The results of the LR

classifier were mostly in agreement with DA, confirming statistical significance for MoV

#2 (p = 0.02) in correspondence to IER and MoV #5 in correspondence to HKA (p =

0.0001), FVV (p = 0.001), and TS (p = 0.02). We can argue that the SSM successfully

identified specific MoVs encoding ranges of alignment variability between distal femur

and proximal tibia. This discloses the opportunity to use the SSM to predict potential

misalignment in the knee for a new patient by processing the bone shapes, removing the

need for measuring clinical landmarks as the rotation centers and mechanical axes.

Keywords: knee alignment, knee instability, femur shape, tibia shape, statistical shape model (SSM)

1. INTRODUCTION

The three-dimensional (3D) rotation of the femur with respect to the tibia, called tibio-femoral
alignment, is a fundamental clinical index in knee diagnosis and surgical planning, as it can
be correlated to a large extent to the kinematic instability of the joint (Laxafoss et al., 2013;
Thienpont et al., 2014). This 3D rotation is represented by five main angular variables, namely the
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hip-knee-ankle, femoral varus-valgus, and tibial varus-valgus
angles, describing the knee stability in the frontal plane, and
the internal-external femoral rotation and tibial slope, for the
axial and sagittal alignments, respectively (Salenius and Vankka,
1975; Fitzpatrick et al., 2011; Schatka et al., 2018; Maillot
et al., 2019). Specific bony landmarks (e.g., head center in
the proximal femur, epicondyles and intercondylar fossa in the
distal femur, epicondyles and frontal tuberosity in the proximal
tibia, malleoli of the distal fibula, and the distal tibia) are
mandatory for computing anatomical and mechanical axes and
the corresponding tibio-femoral alignment in the knee (Lyras
et al., 2016; Bennett et al., 2018). Clinical practice involves
the manual detection of the landmarks on tomographic images
or 3D reconstructed surfaces of bones and soft tissues. Both
methods are time-consuming and prone to detection errors,
even when performed by radiological and orthopedic experts.
In order to improve landmark detection and tibio-femoral
alignment computation, novel methodologies and tools, taking
both semi- and fully-automatic approaches, have been proposed
in the literature (De Momi et al., 2009; Cerveri et al., 2010;
Subburaj et al., 2010; Kainz et al., 2015). However, such tools
can fail in the case of large pathological deformations of the
bony shapes. Indeed, as the degeneration progresses, the bony
morphology deviates from the physiological shape, making the
landmarks difficult to measure or even meaningless. In this
scenario, landmark-free tools such as statistical shape models
(SSMs) can represent an alternative for the evaluation of the knee
joint alignment. SSMs have been extensively studied because of
their ability to represent a set ofmatching surfaces synthetically in
terms of a representative shape, namely the average surface of the
set, and distinct morphological features, usually called “modes
of variation” (MoVs). The magnitude of each MoV outlines the
extent to which the morphological aspect it encodes is present
in the set. Applications of bony surface SSMs in biomechanics
and clinics have spanned anatomical and developmental studies
(Li et al., 2010; Zhu and Li, 2011; Mutsvangwa et al., 2015;
Baumbach et al., 2017; Wang and Shi, 2017; Zhang and Besier,
2017), shape anomaly staging (Van Haver et al., 2014; Agricola
et al., 2015; Zhang et al., 2016; Cerveri et al., 2018; Chan
et al., 2018), joint osteoarthritis (Neogi et al., 2013; Van Dijck
et al., 2018), surgical planning and intervention (Zheng and
Schumann, 2009; Cerveri et al., 2017; Mauler et al., 2017; Youn
et al., 2017), and morphology-function relations (Fitzpatrick
et al., 2011; Rao et al., 2013; Baka et al., 2014; Peloquin et al., 2014;
Smoger et al., 2015; Hollenbeck et al., 2018; Cerveri et al., 2019b;
Clouthier et al., 2019). There have, however, been few studies
attempting to extensively investigate the relationship between
morphological features and the degree of deformity of the tibio-
femoral joint affecting the mechanical stability of the knee. This
lack is probably due to the difficulty of considering the geometry
of multiple bony structures and their relative position and to
the complexity of building statistical models of pathological
bones affected by severe deformations. In Rao et al., the authors
elucidated the relationships between MoV and the relative
alignment of the knee structures by means of an SSM built
using magnetic resonance imaging of 20 knees (Rao et al., 2013).

Interestingly, they reported that some mechanical features of the
tibia (anterior-posterior alignment and varus-valgus angle) and
the femur (internal-external rotation) were encoded by specific
MoVs. However, the tibio-femoral 3D misalignment was not
explicitly encoded in the MoVs. Smoger et al. proposed to link
the knee articular geometry and kinematics using an SSM built
on 20 cadaveric specimens considered normal from a clinical
point of view. Joint kinematic data of knee flexion/extension,
captured by Kansas knee simulator, were used to compare
experimental angular variables to the one simulated by the SSM
(Smoger et al., 2015). Correlations between specific shapes in
the knee and tibio-femoral alignment were reported. However,
SSM parameter variations were not general enough to produce
sufficient pathological alteration and bone deformations. In
Clouthier et al., the authors studied the correlation between
SSM parameters and the biomechanical factors of the knee using
a statistical model built on 14 asymptomatic knees composed
of distal femur, patella, and proximal tibia (Clouthier et al.,
2019). SSMs were used to generate a number of morphological
configurations of the bones, and each one was embedded
into a lower-extremity musculo-skeletal model to evaluate the
corresponding knee mechanics during a simulated gait cycle.
The authors examined changes in knee mechanics (both bone
kinematics and contact forces) as a function of the specific SSM
realization. However, the SSM construction and experimental
tests were performed on healthy subjects, so that SSM parameter
variations did not generate extensive pathological conditions. For
example, changes in the frontal plane affected the mechanical
alignment by at most ±3◦, which is considered the normal
range for frontal stability of the knee. Based on such literature
and capitalizing on our previous works (Cerveri et al., 2017,
2018, 2019a,b), in this paper, an SSM of pathological bony
shapes in the knee is proposed to investigate the correlation
between MoVs and the mechanical deformity of tibia and femur,
assumed to induce kinematic instability. The statistical shape
model of the tibia-femur bone complex was built using 99
pathological cases. The deformity degree was described in terms
of 3D tibio-femoral alignment (Figure 1), considering the HKA
(α), FVV (β), TVV (γ ), IER (θ), and TS (ω) angles. For each
angular variable, a clinical range from the literature, representing
average physiological conditions, was selected to define the
boundary between stability and instability. For each knee joint,
the MoV weights were computed and their relation with each
angular variable investigated. Discriminant analysis and logistic
regression models (Wang, 2014) were adopted to systematically
study the relations between observations (stability/instability
classes as a binomial variable) and MoV weights (covariates). In
the light of these premises and leveraging the main hypothesis
of relationship between shape and function, the proposed work
aims at linking specific MoVs in the SSM to the parameters
describing the tibio-femoral alignment. This can have an impact
in the biomechanical and orthopedic domains, as it opens up
the opportunity to predict knee instability by analyzing the
femoral and tibial morphology in terms of MoVs expressed by
the SSM without the need for direct landmark identification
and analysis.
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FIGURE 1 | Mechanical angular deformity (α) of the knee joint in the frontal plane (A: varus; B: valgus). Femoral (β) and tibial (γ ) varus/valgus angles computed with

respect to the corresponding joint lines (C). In case of parallel joint lines, β + γ = α. Internal-external rotation (D) and tibial slope (E).

2. MATERIALS AND METHODS

2.1. Patient Data
Digital bony shapes of distal femur and proximal tibia were

extracted from a retrospective dataset of 100 patients (70 males
and 30 females) provided in anonymized form by Medacta
company (Medacta International SA, Castel S. Pietro, CH),

including planning CT scans (acquired in a supine position for
all patients) and reconstructed bony 3D surfaces (Cerveri et al.,

2017, 2018). The patients, aged 67 ± 10 years, reported localized
knee pain associated with mechanical knee instability at staging
time. Diagnostic imaging confirmed different degrees of cartilage
defects, femoral osteophytes, and shape abnormalities, mainly at
the condylar regions of the distal femur and at the tibial plateau.
All patients underwent knee resurfacing or knee replacement
surgery between 2014 and 2016. For surgical planning purposes,
the image acquisition protocol included computed tomographic
(CT) scans of the knee, hip, and ankle regions. Each CT scan
consisted of about 520 slices with an image resolution of 512
× 512 pixel and a voxel size of 0.48 × 0.48 × 0.5 mm.
Expert radiological operators manually performed the image
segmentation of the osseous portion of the proximal and distal
femur as well as of the proximal and distal tibia using Mimics
software (Materialize, Belgium). For each labeled CT volume,
the 3D surface meshes, composed of vertices and triangular
faces, were reconstructed automatically. For all the patients,
HKA, FVV, IER, TVV, and TS were computed pre-operatively,

exploiting landmarks manually detected on the surfaces. For SSM
construction, distal femur and proximal tibia surfaces only were
taken into account. As a function of the particular centering of the
knee joint in the CT scan, the distal femur was segmented up to
2–4 cm away from the frontal notch of the trochlear region along
the femur shaft. Similarly, the length of the proximal tibia shaft
was variable across the set in a range of about 2–3 cm. Among
the 100 cases, one was excluded from the set because of the
presence of a fixation screw on the femoral shaft due to a previous
intervention. All the valid surfaces underwent pre-processing
by means of smoothing and sub-sampling starting from about
60,000 vertices, for both distal femur and proximal tibia samples,
down to 10,000 vertices. Left surfaces were mirrored in the
medio-lateral direction to obtain equivalent right surfaces for the
construction of the right distal femur and proximal tibia SSM.
The surface scale and the shaft lengths were not normalized. This
is because, first, the normalization of a bundle of two shapes
(femur and tibia) would have affected the relative size in between.
Preserving the relative size of the two shapes in general increases
the generality of the SSM (Pedoia et al., 2015). Second, the
normalization would also affect the difference in the femur/tibial
shaft lengths. The shaft length can be relevant for the bending in
both sagittal and frontal planes.

2.2. Statistical Shape Model
In order to construct the SSM embedding femur and tibia shapes,
the methodology extensively described in previous papers of our
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group was adopted, which is based on a pair-wise matching
technique (Cerveri et al., 2017, 2018, 2019a). This technique rests
on the manual selection of a reference geometry for aligning
all the surfaces in the training dataset and computing robust
point correspondences. In the present custom implementation,
first, the two reference geometries (distal femur and proximal
tibia) were randomly selected within a subset of surfaces featuring
only small bone deformations. Second, they were meshed and
smoothed to obtain average edge lengths of 1.5 mm, resulting
in triangular surfaces containing about 6,000 nodes each. This
number of vertices is similar to the number of surface nodes
used in previous works in the literature (Zheng and Schumann,
2009; Subburaj et al., 2010; Zhang et al., 2014). Each pair of
surfaces in the overall set of 99 samples (distal femur and tibia)
was rigidly registered to the reference tibio-femoral shape so
that the relative position and the joint space between the two
surfaces were preserved without requiring additional constraints.
The deformable registration, based on a coherent point drift
algorithm (Myronenko and Song, 2010), required to determine
the point correspondences was, conversely, performed separately
for femur and tibia to ensure consistency of the deformation
field. A robust algorithm for determining one-to-one point
correspondences (Cerveri et al., 2019a) was adopted in this
work. The number of correspondences was determined by the
number of vertices of the reference shape. After computing
the mean model m from point correspondences, the covariance
matrix, obtained by stacking the femur and tibia distance data
from the mean model, underwent principal component analysis,
providing 98 independent MoVs. Each MoV was represented
by the eigenvector vi and the corresponding eigenvalue σi. The
percentage amount of morphological variation encoded by the
jth MoV, termed explained variance (EV), was computed as:

EVj =
σ 2
j∑M−1

i=1 σ 2
i

(1)

where M is the number of samples in the dataset. The effect
of each MoV was expressed numerically by one weight λ

that modulates the corresponding eigenvalue, where a value of
0 denotes the mean shape, and negative and positive values
represent the deviance from this mean in either direction.
Accordingly, the SSM-based surface reconstruction, named
morphing, was defined by the following equation:

Š = m+

M−1∑

i=1

λiσivi (2)

where the reconstructed surface Š is obtained by summing up the
mean model m with the series of all MoVs. For each surface, the
weights were computed by projecting the shape pair (distal femur
and proximal tibia) on the SSM by means of the scalar product
(Cerveri et al., 2018). We retained enough MoVs to describe
95% of the overall shape variation, expressed by the cumulative
EV , in the study population. The reconstructed surfaces were
compared with the corresponding samples in the set by means
of the surface distance error distribution (mean ± SD) using the
Hausdorff distance.

TABLE 1 | Stability/Instability class definitions according to the thresholds for the

five clinical variables.

Condition HKA FVV IER TVV TS

Stability 28 25 84 79 70

Instability 71 74 15 20 29

2.3. Modeling Tibio-Femoral Alignment by
SSM Parameters
In order to study the association between the MoVs and the
condition of knee misalignment, the following normality ranges
of the clinical variables were first considered: HKA: 0◦±3, FVV:
−6◦±2 (physiological valgum), IER: ±5◦, TVV: ±5◦, TS: 7◦±4
(Salenius and Vankka, 1975; Iranpour-Boroujeni et al., 2014;
Driban et al., 2016; Schatka et al., 2018). According to each
clinical variable, the 99 cases were separated into two classes,
stable and unstable (Table 1). Note that the same instance may
be considered stable according to one clinical parameter while
being unstable according to another. As an example, two very
different cases are depicted in Figure 2, the first lying within
physiological ranges according to all the five angular quantities
and the second featuring mechanical instability according to
all but one (IER) angular quantities. We adopted two different
data processing techniques, namely the discriminant analysis
(DA) and the logistic regression (LR) classifiers. Both linear
(LDA) and quadratic (QDA) discriminant analysis techniques
were applied for the classification and the detection of low-
dimensional sets of MoVs able to separate the stability from
the instability condition. The accuracy (AC), sensitivity (SE),
and specificity (SP) of the classification were computed for
each dependent variable (clinical quantities) with respect to
the explanatory variables (SSM parameters) using the leave-
one-out (LOO) cross-validation technique. LOO classification
based on LR was computed, and the statistical association (p
< 5%) between SSM parameters and the clinical quantities was
determined. In order to further understand the contribution
of each MoV in discriminating between stable and unstable
conditions, the distributions of relevant MoVs (significant
according to the previous analysis) were compared in the
two conditions using a Wilcoxon signed-rank test (p = 0.05).
Moreover, the correlations between the instability grade and
each MoV were investigated. In other words, it was assumed
that instability increased as the clinical parameter values drifted
away from the reference physiological range and looked for
a correspondence in MoV weight variations. Since both angle
increases and angle decreases from the normal values relate
to instability, a variable change was implemented, introducing
a corrected version X̂ = |X − X| of the clinical parameters
by computing the absolute value of the difference between the
parameter itself and its physiological average value, where X is a
generic clinical parameter, X is its average value (in physiological
cases), and X̂ is its corrected form. The correlation between the
MoVs and the corrected parameters was assessed by means of the
Spearman coefficient (p= 0.05).
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3. RESULTS

3.1. Relation of MoVs to Bone
Morphological Variability
Thirty-four MoVs were sufficient to describe 95% of the shape
variability. Quantitatively, the reconstruction error across the 99
surfaces was 1.38 ± 0.16 mm. Qualitatively, the first (EV1 =

36.4%) MoV primarily encoded the isotropic scale of the bone
complex. MoV #2 (EV2 = 16.3%) represented the size and height
of the shafts of the two bones, concurrently. It also represented
the shaft bending, mainly in the frontal plane (see Table 2). MoV
#3 (EV3 = 9.9%) modeled the elongation of the femoral shaft
(λ3 > 0) and the shortening of the tibial shaft (λ3 < 0).
MoV #4 (EV4 = 5.6%) encoded the enlargement of the tibial
plateau and the relative translation between the two shapes in
the mediolateral direction. MoV #5 (EV5 = 3.6%) represented

FIGURE 2 | According to the five angular quantities, patient #20 featured no

alignment deformation (left). Patient #29, in contrast, featured mechanical

instability in all but one (IER) angular quantities (right).

variations of the axial section of the femoral and tibial shafts
and the relative bending between the two bones, in both the
frontal and sagittal planes (Table 2 and Figure 3). Positive values
of the weight also encoded hypoplasia effects of the anterior
facet of the medial condyle. MoV #6 (EV6 = 2.6%) described
the concurrent modification of the anterior-posterior size of the
femoral condylar region and that of the tibial plateau. Positive
values of MoV #6 represented abnormal flatness in the trochlear
region of the femur. This is unlike MoV #7 (EV7 = 2.1%),
which modeled the tibial and femoral medio-lateral size, with
positive values representing bone shrinkage. MoV #8 (EV8 =

1.9%) again represented the bending in the frontal plane between
the two bones; however, the bending represented by MoV #5
was associated with a concurrent shrinkage/enlargement of the
two shaft diameters, which was not encoded by MoV #8. MoV
#9 (EV9 = 1.6%) modeled the medio-lateral shrinkage of the
tibial plateau, with a concurrent anterio-posterior enlargement
of the condylar region of the femur, up to pathological flattening.
MoV #10 (EV10 = 1.6%) represented tibial inclination in
both the frontal and sagittal planes. MoV #11 (EV11 = 1.3%)
mainly represented tibia inclination on the sagittal plane, with a
concurrent bending of the femur on the same plane. MoV #12
(EV12 = 1.1%) modeled a slight femoral bending on the frontal
plane. MoV #13 (EV13 = 1.1%) modeled the relative bending
between the two bones in the sagittal plane. The remainingMoVs
represented small and spread morphological variations and was
not straightforward to visually relate any to specific local features
(see Supplementary Materials).

3.2. MoV Performance in Instability
Modeling
3.2.1. Discriminant Analysis

Table 3 shows the classification performances (sensitivity,
specificity, and accuracy) obtained using the LOO procedure for
both the linear discriminant analysis and quadratic discriminant
analysis (34 MoVs were employed in the task). Despite the
fact that the LDA accuracy ranged between 0.7 and 0.84,
the respective values of sensitivity and specificity were highly
different: in two cases (IER and TS), the sensitivity was lower
than 0.4 (specificity > 0.8), while, conversely, for HKA and
FVV the sensitivity was as high as 0.85, while specificity reached
0.64 and 0.44, respectively. As far as QDA is concerned, higher

TABLE 2 | Morphological variability of femur (F) and tibia (T) and relative alignments mapped onto the MoVs from 2 to 9.

Bone variability MoV #2 MoV #3 MoV #4 MoV #5 MoV #6 MoV #7 MoV #8 MoV #9

F shaft elongation o o

F shaft diameter o o

F shaft bending o o o

F condylar AP size o o

F condylar ML size o

T shaft elongation o o

T shaft diameter o o

T shaft bending o o o

T plateau AP size o o

T plateau ML size o o
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FIGURE 3 | (Upper) Morphological deviations (mm) from the mean model

(frontal view) for MoVs from #1 to #5. (Lower) Explicit morphology in two SSM

parameter sets (MoV #3 -3σ , MoV #4 +3σ ) with the overlaid mean model.

accuracy levels (range: 0.87–1) corresponded instead with both
high sensitivity (range: 0.79–1) and high specificity (range: 0.86–
1). It is worth noticing that reducing the MoVs to the three
or four most relevant as shown in Tables 4, 5, respectively,
reduces the performance, again causing specificity/sensitivity
mismatches. In fact, in both cases (Tables 3, 4), poor accuracy
was found for TVV (0.4 and 0.55) and TS (0.44 and 0.48), while
FVV (0.32 and 0.60) resulted in low specificity. Nevertheless, it
has to be pointed out that in Table 5, using four MoVs, only
one value fell slightly below the threshold of 0.5 (TS sensitivity:
0.48) suggesting that, even in this reduced form, QDAwas able to
outperform LDA. Interestingly, considering the four-MoV-based
QDA, both MoVs #2 and #5 were representative of all of the
clinical measures except for TVV (MoV #5 only).

3.2.2. Logistic Regression

Classification results (AC, SE, SP) with LOO cross-validation
for HKA, FVV, IER, TVV, and TS were (0.79, 0.88, 0.57), (0.83,

TABLE 3 | Classification test, exploiting LOO cross-validation, of linear vs.

quadratic discriminant analysis using all SSM parameters.

LDA-AC LDA-SE LDA-SP QDA-AC QDA-SE QDA-SP

HKA 0.82 0.88 0.64 0.96 0.96 1

FVV 0.74 0.85 0.44 0.99 0.99 1

IER 0.80 0.33 0.89 0.88 1 0.86

TVV 0.84 0.55 0.92 1 1 1

TS 0.70 0.37 0.82 0.87 0.79 0.91

TABLE 4 | The three most representative SSM parameters for quadratic

discriminant analysis.

MoVs QDA-AC QDA-SE QDA-SP

HKA 2, 5, 13 0.83 0.88 0.71

FVV 5, 14, 17 0.79 0.95 0.32

IER 2, 9, 14 0.92 0.53 1

TVV 5, 12, 15 0.87 0.40 1

TS 3, 13, 18 0.81 0.44 0.97

0.93, 0.56), (0.84, 0.13, 0.97), (0.83, 0.75, 0.97), and (0.75, 0.31,
0.94), respectively. The statistical analysis provided significance
(p < 0.05) in HKA for MoVs #5, #7, and #18, FVV for MoV
#5, IER for MoV#2, TVV for MoVs #11, #14, #16, and #17, and
TS for MoV #5 (Table 6). Nicely, MoVs #2 and MoV #5 were
found to be largely representative of the logistic modeling, in
agreement with the DA results. For these twoMoVs, the box plots
were reported in order to highlight the distribution differences
across mechanically stable and unstable cases for each clinical
parameter (Figure 4). As far as MoV #2 is concerned, stability
and instability were significantly different in IER distributions
(p = 0.02). As far as MoV #5 is concerned, both HKA (p =

0.0005) and TS (p = 0.002) resulted in significant differences.
As far as the correlation analysis is concerned, MoV #5 showed

significant correlation with ĤKA (c = −0.52, p < 10−7), F̂VV
(c = −0.26, p < 0.01), and T̂S (c = −0.23, p < 0.03). Likewise,

MoV #7 showed significant correlation with ĤKA (c = −0.27, p
< 0.008) and F̂VV (c=−0.32, p< 0.002), while MoV #6 resulted
in significant correlation only in the case of F̂VV (c = 0.25, p <

0.02) (see Table 7). A scatter plot showing ĤKA against MoV #5
was reported in Figure 5.

4. DISCUSSION AND CONCLUSIONS

4.1. Findings, Limitations, and Possible
Developments
Computational approaches to study the correlation between
morphological features and functional or pathological conditions
of bony surfaces using SSM have been emerging in the literature,
with impacts in biomechanics, especially for kinematic and
dynamic analysis (Rao et al., 2013; Smoger et al., 2015; Nolte et al.,
2016; Zhang et al., 2016; Hollenbeck et al., 2018; Clouthier et al.,
2019), and clinics, especially for diagnostic and surgical interests
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TABLE 5 | The four most representative SSM parameters for quadratic

discriminant analysis.

Param QDA-AC QDA-SE QDA-SP

HKA 2, 5, 11, 17 0.88 0.93 0.75

FVV 2, 5, 10, 17 0.83 0.91 0.60

IER 2, 8, 9, 12 0.95 0.66 1

TVV 5, 12, 14, 15 0.88 0.55 0.97

TS 2, 5, 8, 11 0.84 0.48 0.99

TABLE 6 | SSM parameters that were statistically significant for the logistic

regression.

MoV/p value

HKA 5 (p = 0.0001), 7 (p = 0.03), 17 (p = 0.02), 18 (p = 0.03)

FVV 5 (p = 0.001), 10 (p = 0.01), 17 (p = 0.01)

IER 2 (p = 0.02)

TVV 11 (p = 0.008), 14 (p = 0.01), 16 (p = 0.01), 17 (p = 0.03)

TS 5 (p = 0.02)

(Neogi et al., 2013; Peloquin et al., 2014; Mutsvangwa et al.,
2015; Cerveri et al., 2018). In particular, three studies addressed
the relation between SSM parameters and knee kinematics by
focusing on the link between the morphological variability of
the bones and tibio-femoral alignment modifications (Rao et al.,
2013; Smoger et al., 2015; Clouthier et al., 2019). The main issue
of such studies was that the relationships between shape and
alignment were simulated by systematically perturbing MoVs,
reaching up to 95% variation with respect to the mean model.
However, SSMs were computed using a very small group of
asymptomatic cases. Therefore, pathological conditions were not
explicitly encoded in the MoVs, leading to the simulation of
mechanical axis misalignment within normality ranges. This
hindered the model’s ability to extrapolate non-physiological
conditions of the knee. Conversely, in our work, the SSM analysis
was addressed by considering a population of 99 knee cases with
different morphological and mechanical anomalies at:

• the distal femur, namely condylar enlargement, osteophytes,
notch narrowing, trochlear flattening;

• the proximal tibia, namely plateau enlargement, osteophytes,
smoothing of the intercondylar eminence, flattening of the
tibial tuberosity.

Moreover, for each case, the tibio-femoral alignment of the knee
was measured not only in the frontal plane (HKA, TVV, and
FVV) but also in the sagittal (TS) and axial (IER) planes. We built
an SSM using the two bone sets (distal femur and proximal tibia),
computed the MoV weights for each case, tested both DA and
LR classifiers of stability/instability as a function of MoV weights,
and analyzed the relevance of each MoV for joint instability. The
major findings of the work can be summarized as:

• the computed SSM was representative of the surface set,
demonstrated by the very low reconstruction error;

FIGURE 4 | Box plots for MoV #2 and #5 distributions across mechanically

stable and unstable cases. Upper plot—HKA (p = 0.90), VVF (p = 0.08), IER (p

= 0.02), VVT (p = 0.08), and TS (p = 0.06). Lower plot—HKA (p = 0.0005), VVF

(p = 0.01), IER (p = 0.13), VVT (p = 0.09), and TS (p = 0.002). I, Instability; S,

Stability.

• the physiological and pathological variations of the knee
morphology found in the surface dataset were consistently
encoded by 34 MoVs (EV > 0.95);

• together, MoV #2 (height/size of femoral/tibial shafts) and
MoV #5 (femoral/tibial bending in the frontal/sagittal plane)
were the most relevant MoVs, representing a total of about
20% of the variation among SSMs;

• MoV classification results were largely in agreement with
morphological features determining tibio-femoral instability
(compare Table 2 with Tables 4, 5);

• QDA outperformed LDA in classifying unstable versus stable
cases with high accuracy for all the five clinical parameters;
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TABLE 7 | Correlation intensity (Spearman coefficient c) and significance (p-value) between relevant MoVs and clinical parameters defining knee instability.

MoV HKA FVV IER TVV TS

c p c p c p c p c p

#1 −0.14 0.17 −0.09 0.36 0.06 0.53 −0.17 0.09 0.15 0.15

#2 0.11 0.26 0.10 0.35 0.18 0.07 0.09 0.40 0.03 0.74

#3 0.14 0.18 0.02 0.84 −0.07 0.47 −0.04 0.68 0.17 0.09

#4 0.12 0.22 0.17 0.10 0.09 0.35 0.05 0.59 0.11 0.26

#5 −0.52 10−8 −0.26 0.01 0.08 0.44 −0.17 0.10 −0.23 0.02

#6 0.14 0.16 0.25 0.01 0.03 0.78 0.15 0.12 0.07 0.49

#7 −0.27 0.01 −0.32 0.001 0.05 0.63 −0.11 0.27 0.08 0.43

#8 −0.11 0.28 0.01 0.92 0.16 0.12 10−4 0.99 −0.10 0.32

#9 0.03 0.78 −0.05 0.65 0.19 0.05 0.01 0.90 0.07 0.47

#10 −0.05 0.59 −0.10 0.34 −0.02 0.82 −0.05 0.65 −0.02 0.83

MoVs #5 and #7 feature significant correlation results.

• despite the fact that the LR-based classification provided
lower-accuracy results, statistically significant MoVs were in
agreement with QDA.

Synthetically, these findings suggest that the computed SSM can

be exploited for assessing whether a knee lies in a pathological

condition according to the more traditional clinical parameters,
namely HKA, FVV, IER, TVV, and TS, without the need for

landmark selection, just fitting the SSM to the shape of interest.
In more detail, the SSM decomposition showed that the first

13 were sufficient to describe 85% of the explained variance,
demonstrating the SSM’s ability to model large morphological
variability in a very compact way. MoVs of the SSM were

also related to tibio-femoral alignment and knee instability
according to the five clinical parameters considered. This was

confirmed by the classification performance, because four MoVs
(see Table 5) were able to ensure more than 80% of accuracy
in the quadratic discriminant analysis. Again, this makes SSM a

prospective candidate tool for distinguishing stable and unstable
knee conditions by analyzing the surfaces only, without the
manual definition of rotation centers and mechanical axes.

An in-depth analysis of the classification performances
showed that the LDA model was under-fitting. The size
imbalance of the two classes (see Table 1) further contributed

to bias the results. This was evident (see Table 3), for example,
when considering the HKA (featuring only 28 stable cases
with respect to 71 unstable cases) and IER (only 15 unstable

conditions). Conversely, QDA appeared to be more robust to
dataset imbalance, showing both higher sensitivity and specificity

than LDA. The LR analysis highlighted a couple ofMoVs relevant
for discriminating between stability and instability, namelyMoVs
#2 and #5, representative of all the clinical measures. These
two specific MoVs were found to be significant to discriminate
between stability and instability. Specifically, MoV #2 mainly
encoded the elongation and partially encoded the bending of
the two shafts. This is in agreement with the relation with the
variation of the two mechanical axes and, by consequence, with
their relative inclination. This can therefore be related to the joint
mechanical alignment, especially in the frontal plane. MoV #5,
encoding the relative bending of the two bones in the frontal

plane (see Table 2), was confirmed to be related to the HKA,
FVV, and TVV angles, which describe the tibio-femoral stability
in the frontal plane. As confirmed by the classification results, this
MoV was able to discriminate between stability and instability.
In synthesis, while the effect of these two MoVs could not be
predicted a priori, the morphological aspects encoded by both
of them could reasonably be considered to be related to the
tibio-femoral alignment. It has to be pointed out, however, that
differences in the bone shaft heights encoded in MoV #2 were
caused by different ranges of interest in CT scans and could not
be ascribed tomorphological variability. However, it is reasonable
to assume that the frontal bending and lateral inclination of the
shaft are morphological features relevant for the overall tibio-
femoral alignment. Therefore, MoV #2 was not discarded, a
choice that was justified a-posteriori, considering that it was
relevant for the classification.

One shortcoming of our work is the inclusion of just
the femoral and tibial surfaces, neglecting the patellar region
and the cartilages. Nonetheless, this choice was motivated by
previous literature findings showing that increasing the number
of geometries to be included in the SSM can easily lead to
difficulty in identifying specific correspondences between MoVs
and morphological features. For instance, Fitzpatrick et al.
used 26 healthy subjects to develop an SSM of the patello-
femoral joint, reporting that the main variability of the patella
articular curvature and sulcus groove was actually spread across
many different MoVs (Fitzpatrick et al., 2011). As a matter of
fact, our approach allowed us to identify correlations between
specific MoVs and clinical parameters of the alignment between
femur and tibia. In this paper, we did not investigate how
a different reference shape selection would have affected the
reconstruction and the classification results. The reference shape
was selected randomly from a subset of surfaces little-affected
by deformities. This was in agreement with the results reported
in a recent paper with similar acquisition techniques, where the
random selection of the SSM also had little effect (Cerveri et al.,
2019a). As far as data acquisition is concerned, all the patients
were lying supine during CT acquisition and images were
acquired using the same protocol. As regards data processing,
the images were segmented by different expert radiological
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operators. Each scan was segmented by one operator, so we
did not have any information about variability in segmentation.
Similarly, the landmark detection and the angle computation
were performed by one expert orthopedic surgeon. As the
scans were all at sub-millimeter resolution, the bony segmented
profiles were affected by such uncertainty, which was present
in the final surface reconstruction. The surface sub-sampling
lowered, on average, the surface quality by <2% (root-mean-
squared-distance: <1 mm) with respect to the original surfaces.
The SSM reconstruction error was, on average, lower than 1.5
mm, reasonably localized in the region affected by the largest
pathological deformations. Actually, we focused on the overall
SSM reconstruction ability without taking local errors into
account. The analysis of the reconstruction quality in critical
regions heavily affected by deformities (e.g., the presence of
large osteophytes) could have provided further information
about the specificity and generality of the SSM model. However,
this analysis would have required a greater effort by the
expert operators to manually detect and classify the regions
with severe deformations, which is a very time-consuming
task beyond the scope of the present work. Conversely, we
aimed at relating MoV weights to angular stability determined
by the five clinical indices. It is reasonable to assume that
the local reconstruction errors should affect the overall knee
joint alignment less, which should be mainly determined by
the overall bony shape. Nevertheless, analysis of how local
reconstruction errors could affect the relative 3D rotation may
be carried out in a future study by means of a sensitivity
analysis. Finally, the SSM model could be used to study the
development of stress and strain in the knee due to applied
loads as a function of surface geometry changes. This would
require that a finite element description be integrated into the
SSM to perform the computations, which could be used to predict
the outcome of surgery, taking into account patient-specific
variability. Moreover, in order to analyze the effects of the relative
tibio-femoral position and orientation on gait motion patterns,
the SSM could be combined with the angular trajectories
reconstructed using surface markers acquired by means of an
opto-electronic motion capture system. For instance, simulations
could be useful for evaluating how gait cycle parameters (e.g., gait
cadence, step length, etc.) would be affected. Likewise, the SSM
could help to study, in knee surgical planning, how the tibio-
femoral spacing would change the flexion-extension patterns
of knee.

4.2. Literature Comparison
Rao et al. developed an SSM of the femur, tibia, and patella
of 20 cadavers, considering different alignments obtained by
using a mechanical simulator applied to the specimens (Rao
et al., 2013). About 95% of the variability was captured by
just 15 MoVs. Fitzpatrick et al. used 26 healthy subjects to
develop an SSM model of the patello-femoral joint (Fitzpatrick
et al., 2011). Similarly, 15 MoVs were sufficient to capture about
97% of the morphological variability. Fourteen asymptomatic
patients scanned by MRI were used in Clouthier et al. to build
an SSM of the knee that was able to represent 70% of the
variability by means of 6 MoVs only (Clouthier et al., 2019).

FIGURE 5 | Scatter plot for HKA distribution as a function of MoV #5 range,

along with the linear fitting (Spearman correlation coefficients: −0.52 with

p<1e-07). The tendency line is depicted (red dashed line).

In our work, we used a wide dataset of pathological knees
featuring large anomalies at both femoral and tibial sites. As a
consequence, the greater number of MoVs needed to represent
most of the variability (34 MoVs accounting for 95% EV)
was to be expected. This corroborates the consideration that
morphological abnormalities cannot be simply extrapolated by
an SSM built on normal joints. In other words, femoral and
tibial deformities cannot be represented just by enlarging the
weight range of the MoVs (e.g., ±3, ±4, ±5 SD, etc), but,
rather, there is a need to encode such information in new
MoVs entirely. This is also in agreement with the limitations
acknowledged in the previous literature (Fitzpatrick et al., 2011;
Rao et al., 2013; Smoger et al., 2015; Clouthier et al., 2019).
For instance, Hollenbeck et al. reported that a maximum range
of ±2 SD was allowed in their lumbar spine SMM in order
to avoid unrealistic deformations (Hollenbeck et al., 2018). As
far as the relation between MoVs and kinematics is concerned,
Smoger et al. reported that their third MoV described differences
in the internal-external relative rotation between femur and
tibia (Smoger et al., 2015); this was nicely in agreement with
our results for MoV #5. Internal−external alignment of the
patellofemoral joint was described by the second mode in Rao
et al. (2013). Interestingly, they also found tibial internal–external
rotation and tibial varus-valgus variations encoded by the third
and fourth MoVs, respectively. However, femoral alignments
were not modeled by their SSM. In Pedoia et al., the authors
developed distal femur and proximal tibia SSMs, avoiding the
normalization of the samples (Pedoia et al., 2015). They reported
that the first mode was related to the size for both SSMs, as
in our case. For the femur, modes #2 and #3 were related to
the relative distance between the condyles and the condylar
width and height, respectively. In our model, these features
were mainly encoded by MoV #6 and #7. As far as the tibia
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FIGURE 6 | The application workflow.

was concerned, modes #2 and #3 were related to the medial
posterior curvature of the tibial plateau and the elevation of
the anteromedial tibial plateau, respectively. In our model, these
morphological features were spread across MoVs #4, #6, and
#7. These differences were expected because we dealt with a
unique SSM for the tibio-femoral joint. Our method may provide
insights regarding concurrent morphological deformations in the
two bones.

5. CONCLUSION

The SSM approach was proven to consistently represent both
morphological anomalies and alignment deviation in the knee
bones by means of few representative MoVs. In the light of
such results, the proposed SSM met the objectives of providing
an alternative to manual definition of bone landmarks to
assess pathological conditions related to knee instability. The
SSM could be exploited in a decision support system that
predicts the potential instability of the joint by processing the
knee scan without requiring images of other body regions
(e.g., hip and ankle) and with no need for manual landmark
identification. This toolbox could thus generate an automatic
report with a diagnosis of stable or unstable according to each
clinical variable of the five indexes considered. A potential
application workflow would rest on: (1) the bone segmentation
in the knee scan; (2) the surface reconstruction; (3) the weight
computation by the SSM; (4) the prediction of the instability
based on the five different clinical factors of alignment by
means of a classifier (e.g., discriminant analysis) (Figure 6).
Another possible exploitation of the proposed SSM approach
is the simulation of the effects of different morphological
conditions (achieved by varying MoV weights) on movement
analysis of the knee, as suggested by Smoger et al. (2015)
and Clouthier et al. (2019), studies that both proposed SSMs
built on healthy subjects. An SSM including large pathological

variability, such as the one developed in this work, opens up
the opportunity to study the effect of a specific misalignment
of the femur and tibia on the simulated motion pattern
and, consequently, the resulting load distribution affecting
cartilage wear.
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