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Abstract: The pattern of bounding box representation and regression has long been dominant in
CNN-based pedestrian detectors. Despite the method’s success, it cannot accurately represent
location, and introduces unnecessary background information, while pedestrian features are mainly
located in axis-line areas. Other object representations, such as corner-pairs, are not easy to obtain
by regression because the corners are far from the axis-line and are greatly affected by background
features. In this paper, we propose a novel detection pattern, named Axis-line Representation and
Regression (ALR), for pedestrian detection in road scenes. Specifically, we design a 3-d axis-line
representation for pedestrians and use it as the regression target during network training. A line-box
transformation method is also proposed to fit the widely used box-annotations. Meanwhile, we
explore the influence of deformable convolution base-offset on detection performance and propose a
base-offset initialization strategy to further promote the gain brought by ALR. Notably, the proposed
ALR pattern can be introduced into both anchor-based and anchor-free frameworks. We validate
the effectiveness of ALR on the Caltech-USA and CityPersons datasets. Experimental results show
that our approach outperforms the baseline significantly through simple modifications and achieves
competitive accuracy with other methods without bells and whistles.

Keywords: pedestrian detection; object representation; axis line; road scene

1. Introduction

Pedestrian detection is a necessary prerequisite and key component of recent research
hotspots (e.g., pedestrian reidentification [1–3], human pose estimation [4]), for these
tasks it is necessary to detect all the existing pedestrians accurately from images or videos
before they go to the next step. In engineering fields, pedestrian detection is also an
urgent need in the Advanced Driving Assistance System (ADAS) to help to reduce the
occurrence of people-vehicle collisions, or in smart buildings for air conditioner control
and monitoring systems [5]. The main purpose of pedestrian detection is to localize and
classify each pedestrian accurately in images or videos. Traditional pedestrian detection
methods include handcrafted feature descriptors (e.g., HOG [6], Haar [7]) for pedestrians
based on basic features such as texture and gradient, which is intuitive but hard to design
manually due to the diversity of pedestrian samples. With the rapid development of CNN-
based general object detection, many researchers modify the benchmark general object
detection method to suit pedestrian detection, such as Adapted FRCNN [8] and RPN+BF [9].
These methods can learn features automatically and achieve significant improvement in
pedestrian detection. Generating 4-d rectangular proposals, and computing confidence for
each proposal to get the final results, is the most common detection pattern. In recent years,
there have been other forms of detection patterns such as CornerNet [10], which detects
the left-top and right-bottom points and matches the two corners by post processing to
represent an object. Later, CenterNet [11] adds the center-point as extra information to the
two corners in CornerNet.
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Compared with the above patterns, we believe detecting the axis-line of a pedestrian
is more effective. From the perspective of feature extraction, the internal features of
a pedestrian cannot be effectively sensed in the process of detecting corners, because
the corners are actually outside the pedestrian and easily influenced by the background
information. The axis-line is located at the position with the strongest internal features of a
pedestrian, and there is no need to match key points where errors may occur. From the
perspective of localization target regression in mainstream detection patterns, the network
needs to learn 4-d coordinates (e.g., Faster RCNN [12], MS-CNN [13]), while using our
method we only need to learn the 3-d coordinates of the center-point position and the
height of the axis-line (or the x-coordinate of the center-point and y-coordinates at both
ends of the axis-line), which has the benefits of a smaller hypothesis space and simplifies the
localization targets. Besides, for a pedestrian of small-scale, directly learning the axis-line
is more feasible compared with accurately learning four edges of a bounding box.

In this work, we named the above pattern as Axis-line Representation and Regression
(ALR) and introduced it into both anchor-free and anchor-based methods. For the anchor-
free method, RepPoints [14], we designed an ALR pattern that cooperates well with its
sampling modules based on deformable convolutions [15] (DCN). To be consistent with
the benchmark dataset annotations, we proposed a line-box transformation method by
the prior average pedestrian aspect ratio. We found that a different base-offset of the
kernel would influence the performance of the detector through different initial receptive
fields. Thus, a base-offset initialization strategy was proposed to further improve detection
performance by forcing the aspect ratio of the DCN kernel close to the pedestrian aspect
ratio. For the anchor-based method Faster R-CNN [12] (simplified as FRCNN), we also
introduced the ALR pattern into both the RPN and the detection head. Although the
modifications made in the two types of methods are slightly different in implementation,
they all follow the main idea of ALR.

Several experiments were carried out on two pedestrian detection benchmark datasets
of Caltech-USA [16] and CityPersons [8] to verify the effectiveness of the proposed ALR
pattern. Our RPDet+ALR (RPDet means RepPoints detector) obtained absolute gains of
3.6% and 4.6% in MR−2 compared to the baseline method on the Caltech-USA test set and
CityPersons validation set, respectively. Our FRCNN+ALR achieved an MR−2 of 6.5% on
the Caltech-USA dataset without any tricks, which is comparable with some state-of-the-art
methods. On the CityPersons dataset, FRCNN+ALR also obtained an absolute gain of 1.4%
in MR−2. The main contributions of this work are summarized as follows:

1 We propose a detection pattern ALR, which uses a simpler 3-d axis-line representation
and regression strategy as an alternative to the traditional 4-d bounding box to obtain
purer and stronger internal information of pedestrians in road scenes. In addition,
we propose a line-box transformation method to fit the benchmark annotations. In
particular, the idea of ALR can be introduced into both anchor-free and anchor-
based methods.

2 We propose a deformable convolution base-offset initialization strategy towards a
more aligned receptive field, and further improvement of detection performance by
forcing the aspect ratio of the deformable convolution kernel close to the pedestrian
aspect ratio.

3 Several experiments are carried out on two benchmark datasets (the Caltech-USA and
the CityPersons) to demonstrate the effectiveness and generalization of the proposed
ALR pattern in both anchor-free and anchor-based methods.

The remainder of this paper is organized as follows: Section 2 introduces the related
work. Section 3 introduces the proposed ALR pattern and its applications in both the
anchor-free method and anchor-based method. Our deformable convolution base-offset
initialization strategy and the line-box transformation method are also introduced in
Section 3. Section 4 provides the experimental results related to the proposed ALR pattern
on two benchmark datasets and verifies effectiveness and generalization by comparisons
with the baseline methods and other methods. Section 5 concludes this paper.
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2. Related Work
2.1. Generic Object Detection

In the deep learning era, an object detection task is usually modeled as a problem of
classification and regression of candidate regions. In one-stage detectors, these candidate
regions are predefined anchors. In two-stage detectors, the candidate regions are propos-
als generated by the region proposal network (RPN) [12], whose purpose is to classify
and regress anchors. Detectors that utilize predefined anchors to cover possible object
positions, scales and aspect ratios are called anchor-based detectors [12,13,17–19]. They
first lay anchors with different scales and aspect ratios on the whole input image, then
perform classification and regression based on these prior regions to obtain the final results.
The common detection pattern used by anchor-based methods is the 4-d bounding box
representation and regression, which is effective but has limitations to the performance
and robustness of detectors because it cannot accurately represent the location and will
inevitably contain irrelevant information of background or other objects.

In recent years, object detection methods [10,11,20–22] tended not to use the predefined
anchors but to directly classify and locate objects from each position on the feature maps.
Beyond the premise of anchors, methods using various detection patterns have sprung up.
CornerNet [10] predicts the top-left and bottom-right corners of the object, enhances the
corner features through the corner pooling strategy, and finally performs corner pairing
by embedding vectors. CenterNet [11] additionally predicts a center point based on
CornerNet to improve localization accuracy. PLN [20] regresses the corner/center points
of the bounding box and their links using a fully convolutional network [23]. The above
methods attempt to represent objects in a more flexible way, but they may suffer from
misdetection or mismatching of corners. ExtremeNet [24] converts object detection into
an appearance-based key-point estimation problem. It detects four extreme points and
a center point for each object, then groups these key-points by geometric relationships.
RepPoints [14] uses a deformable convolution module to automatically learn a set of
representative points, which realizes flexible feature sampling and avoids the drawbacks
of anchors. We think RepPoints has the potential for pedestrian detection, so we choose it
as one of the baseline methods.

2.2. Pedestrian Detection

An early pattern of pedestrian detection is using bottom-up representations, such as
the deformable part-based model (DPM) [25] and its variants [26,27]. DPM consists of a
coarse root template and a set of high-resolution parts templates and their relative position
relationships. In each template, HOG is used to extract local features. However, it may
suffer from limitations brought by handcrafted features.

The success and popularity of Faster R-CNN [12] motivated the construction of CNN-
based pedestrian detection methods. RPN+BF [9] uses RPN followed by boosted forests
(BF) as classifiers on shared high-resolution feature maps. Adapted FRCNN [8] uses
five simple modifications on the Faster R-CNN and obtains competitive performance for
pedestrian detection on the Caltech-USA [16] dataset. ATT-part [28] uses an attention
mechanism across channels to represent various occlusion patterns in one single model
based on Faster R-CNN. Similar to MS-CNN, SA-FRCNN [29] adopts the divide-and-
conquer philosophy that consists of two subnetworks for pedestrians of large-size and
small-size, respectively. Bi-Box [30] predicts a visible-part box and full-body box for each
pedestrian to produce complementary outputs, as well as a criterion for selecting positive
training examples, which contributes largely to heavily occluded pedestrian detection.
Double Anchor [31] detects the body and head for each person simultaneously with the
help of a crossover strategy and develops a Joint NMS module for robust postprocessing.
Like Bi-Box and Double Anchor, there are other methods, e.g., MGAN [32], PedHunter [33]
and JointDet [34], to help pedestrian detection by additional detection of the visible part
for each pedestrian, which promotes further progress of pedestrian detectors. Most of the
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above methods still follow the bounding box representation and set it as the regression
target as with generic object detection.

With the popularity of anchor-free methods, other representations of pedestrians have
emerged. CSP [35] simplifies pedestrian detection into a straightforward center/scale
prediction task. Based on CSP, APD [36] introduces four branches to explicitly model the
pedestrians’ four semantic attributes, i.e., center, scale, offset and pedestrian-oriented at-
tributes, in a high-level feature detection fashion, as well as an NMS strategy to distinguish
pedestrians from highly overlapping groups. TLL+MRF [37] performs pedestrian detection
as key-point detections and their associations. It devises an FCN-based network to locate
the topological somatic line with a postprocessing scheme based on Markov Random Field
(MRF) for multiscale pedestrian detection. In this work, we propose to detect a pedestrian
by regressing the axis-line, which is defined by the position of the center point and its
height. It is simpler than TLL+MRF and gets rid of the additional computations as well as
pairing errors brought by key-point association.

3. Proposed Method

To obtain purer and recognizable features, and to simplify network learning at the
same time, we propose a detection pattern that uses the axis-line as the object representation
and regression target, denoted by ALR. The ALR can be applied to anchor-free and anchor-
based methods, so we integrate it into both types of method with slight differences in
implementation. In the following, we describe how we introduce the ALR pattern to the
anchor-free framework RPDet, and the extra changes we made to help the network perform
better. Then we describe how we introduce the ALR pattern to the classic anchor-based
framework, Faster R-CNN.

3.1. Introducing ALR into the Anchor-Free Method

Following the RPDet [14], we use the center point as the initial representation for
each object, then a set of sampling points is determined in two steps. In the first step, the
position of sampling points is obtained by learning a set of offsets from the center point,
which can be denoted as offset 1. In the second step, the network learns another set of
offsets with the help of a deformable convolutional module, denoted by offset 2, then it
refines the positions of sampling points based on offset 1. Besides, a parallel branch is
constructed to judge whether a set of points expresses a pedestrian or not.

To introduce our proposed ALR pattern into the RPDet, we made three main designs:
the axis-line representation and regression, the deformable convolutional module with base-
offset initialization strategy and a line-box transformation method. The overall architecture
of the proposed RPDet+ALR is shown in Figure 1.
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scale of FPN feature maps. All of our modifications are in bold.
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3.1.1. Axis-Line Representation and Regression

As previously discussed, the 4-d detection patterns (e.g., CornerNet [10]) cannot
accurately locate a pedestrian or eliminate the effects of irrelevant information (e.g., Faster
R-CNN [12]). Our ALR pattern only needs to learn three parameters to represent an
axis-line located at the internal central area of a pedestrian with pure and semantically
significant features, which improves the quality of distinctive features extraction and help
the detector to distinguish different pedestrians. The specific implementation is as follows.

Following the RPDet, we first model a set of adaptive sample points in initial and
refine step as Ri and Rr:

Ri = {(xk, yk)}n
k=1 (1)

Rr = {(xk +4xk, yk +4yk)}n
k=1 (2)

where n is the total number of sample points and it is set to 9 by default.
Define Rx and Ry as the set of xk and yk values of all n elements in a sample point set

R, respectively. Then we can define the axis-line l as:

l = (xcenter, ytop, ybottom) (3)

where

xcenter =
1
n

n

∑
k=1

xk ∈ Rx (4)

ytop = minyk ∈ Ry (5)

ybottom = maxyk ∈ Ry (6)

where in initial and refine steps, R refers to Ri and Rr respectively. ytop equals the minimum
of yk because we set the top-left corner of the input image as the origin of the coordinate
system, and so does ybottom.

In this way, we obtain an axis-line for each pedestrian based on its corresponding
adaptive sample point sets. Now the network does not need to explicitly learn n sets of
offsets for each object, but only needs to learn three parameters related to the axis-line,
which simplifies the network learning target. During training, we transform each ground
truth (GT) box G = {(xtl , ytl), (xbr, ybr)} to GT line and denote it by g as:

g = (
xtl + xbr

2
, ytl , ybr) (7)

where (xtl , ytl) and (xbr, ybr) are the top-left corner and bottom-right corner of each GT
box respectively.

Then the network is forced to regress the axis-line supervised by loss function
Lreg(l, g) = SmoothL1(l − g), in which SmoothL1 Loss [38] is a widely used robust loss
function for regression in object detection networks.

The total training loss is:

L({pi}, {li}, {lr}) =
µ1

Ncls

Ncls

∑
j=1

Lcls(pj
i , cj) +

µ2

Np

Np

∑
j=1

cjLreg_i(l
j
i , gj) +

µ3

Np

Np

∑
j=1

cjLreg_r(l
j
r, gj) (8)

where Lcls is the Focal Loss [19] for classification, Lreg_i and Lreg_r are the regression loss
functions for the initial step and refine step, respectively, Ncls is the total number of
sample point sets, Np is the number of positive sample point sets, pj

i is the classification
confidence of sample j during the initial step and cj is the associated GT label of sample
j. We only compute regression loss for positive sample pointsets by judging whether the
GT label cj = 1 or not. If cj = 1, sample j is positive, otherwise it is a negative sample.
The coefficients µ1, µ2 and µ3 are the weights of different parts of the total loss. In our
experiments, µ1 = 1.0, µ2 = 0.5 and µ3 = 1.0 by default.
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3.1.2. Deformable Convolution Base-Offset Initialization Strategy

The receptive field of the standard convolution kernel is square, but its effective
receptive is not necessarily square because the object may be deformed, so deformable
convolution [15] is proposed to overcome the above limitation. The deformable convolution
module adds an offset to each sample point generated from the center point, which achieves
random sampling near the current position instead of being limited to the standard regular
grid points, and makes the effective receptive field more flexible. As shown in Figure 2,
the base-offset λ is 1 in standard deformable convolution. In fact, pedestrians are mostly
like slim rectangles in road scenes that are not aligned with the initial shape of deformable
convolution. Thus, distances between the initial position and the target position for each
sample point of the same kernel may vary a lot, making it difficult for the network to
properly update the position of all the sample points in one back-propagation, which
increases the difficulty in learning.
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base-offset λ = 1; (b) base-offset initialization with λ > 1.

In this work, we propose a deformable convolution initialization strategy to stretch the
kernel into a slim rectangle by changing its base-offset λ = dy/dx, where dx = 1, because
we only change the base-offset in y-direction. In our experiments, we achieved the best
detection performance when λ was set to 4.

3.1.3. Line-Box Transformation Method

To evaluate the performance of our detector by using the benchmark dataset Caltech-
USA [16] and CityPersons [8], we needed to transform the axis-line to a bounding box,
consistent with the form of annotations. In this work, we analyzed the proportion of
pedestrian samples with different aspect ratios in the Caltech-USA dataset. It can be seen
from Figure 3 that the aspect ratio of most pedestrian samples is close to 0.4, which is
consistent with the statement in [16] that the average aspect ratio r of pedestrians is close
to 0.41. What’s more, the aspect ratio of pedestrian full-body annotations is fixed to 0.41 in
the CityPersons dataset.

Thereby, we can simply transform the line representation to the bounding box repre-
sentation BBox as:

BBox = (xcenter −
w
2

, ytop, w, |ytop − ybottom|) (9)

where
w = r · h = r·

∣∣ytop − ybottom
∣∣ (10)
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3.2. Introducing ALR into the Anchor-Based Method

For the anchor-based method, we chose Faster R-CNN [12] as our baseline. In this
work, we introduce the proposed ALR pattern to Faster R-CNN by replacing the bounding
box regression in both the RPN and detection head with the axis-line encoding/decoding
method, as well as its corresponding loss calculation manner.

Figure 4 shows the overall architecture of our FRCNN+ALR. In the subnetwork RPN,
a series of anchors are laid out and classified to determine whether they belong to the
foreground or the background. Another branch is used to adjust the location and scale
of these foreground anchors through axis-line regression to form line proposals, which
are transformed to box-shape proposals by axis-line decoder. Then, the network uses RoI
Align [39] to obtain fixed-size proposal feature maps from proposals based on the shared
feature map. Finally, the detection head determines the specific category of each proposal
and performs the axis-line regression again towards a more accurate location and scale of
the object.
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Figure 4. The overall architecture of the proposed FRCNN+ALR.

3.2.1. Axis-Line Encoder and Decoder

In our FRCNN+ALR framework, an axis-line is determined by its center point and
height, represented as l = (xcenter, ycenter, h). To encode the axis-line for regression, we
must learn a set of offsets between a predicted axis-line and the associated GT axis-line
l∗ = (x∗, y∗, h∗). Following [12], we parameterize the offset set t in terms of three
dimensions tx, ty and th, defined as Equation (11). tx and ty specify the offsets from the
center of the predicted axis-line, while th specifies the log-space offset from the height of
the predicted axis-line. Similarly, we can parameterize the offset set from the axis-line of an
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anchor to the axis-line of its associated GT by t∗ defined in Equation (12). During training,
our goal is to minimize the difference between t and t∗.

tx = (x− xa)/wa, ty = (y− ya)/ha, th = log(h/ha) (11)

t∗x = (x∗ − xa)/wa, t∗y = (y∗ − ya)/ha, t∗h = log(h∗/ha) (12)

where x, y and h denote the predicted center coordinates and height of the axis-line.
Variable xa, ya and ha are for the anchors’ axis-lines. Variables x∗, y∗ and h∗ are for the GTs’
axis-lines.

To decode the axis-line back to the bounding box for feature extraction and eval-
uation on the benchmark datasets, we base on the fact that the average aspect ratio r
of the pedestrian is about 0.41 (note that r = w/h). We define the bounding box as
bbox = (xb, yb, wb, hb) by its center point position, width and height. We can infer bbox
through the inverse computation of the offset set t, with Equations as follows:

xb = xa + r · ha · tx, yb = ya + ha · ty (13)

wb = r · ha · exp(th), hb = ha · exp(th) (14)

3.2.2. Loss Calculation Manner

With the above definitions, our total training loss is defined as follows:

L({si}, {ti}) =
α

Ncls

Ncls

∑
i=1

Lcls(si, c∗i ) +
β

Np

Np

∑
i=1

c∗i Lreg(ti, t∗i ) (15)

where i is the index of samples and Ncls is the total number of samples. Np is the number
of positive samples, si is the predicted confidence of sample i being a pedestrian and
c∗i is the associated GT label of sample i. Notably, we only compute regression loss for
positive samples by judging whether the GT label c∗i = 1 or not. If c∗i = 1, sample i is
positive, otherwise it is a negative sample. ti is a 3-d vector representing the parameterized
coordinates of the predicted axis-line, and t∗i is that of the GT. The classification loss Lcls is
the cross-entropy loss over two classes (pedestrian vs. not pedestrian). For the regression
loss Lreg, we use the L1 loss function. α and β are the balanced weights for Lreg. In our
experiments, α and β are set to 1 by default.

4. Experiments

We evaluate our approach on two pedestrian detection benchmark datasets: Caltech-
USA [16] and CityPersons [8].

4.1. Datasets and Evaluation Metric
4.1.1. Caltech-USA Dataset

The Caltech-USA pedestrian dataset includes 250,000 frames with a total of 350,000 ex-
tensively labeled bounding boxes around 2300 unique pedestrians. It groups pedestrians
by their height in pixels into three scales: near (80 or more pixels), medium (between
30–80 pixels), and far (30 pixels or less). Occluded pedestrians are annotated with two
bounding boxes that denote the visible and full pedestrian extent respectively, then subdi-
vided into bare (no occlusion), partial occlusion (1–35% area occluded) and heavy occlusion
(35–80% occluded). The fraction of occlusion is computed as one minus the visible pedes-
trian area divided by the full pedestrian area.

The Reasonable subset is the most widely used subset for evaluating pedestrian
detection approaches, and includes pedestrians over 50 pixels under no or partial occlu-
sion. For network training, we used the Caltech 10× training set [40] as commonly done
in [8,9,28,30,37,41], which provides annotations of higher quality compared to the original
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annotations. We tested and evaluated our models in the standard testing set using new
annotations provided by [40].

4.1.2. CityPersons Dataset

The CityPersons dataset includes about 20,000 identical pedestrian, and over 20% of
pedestrian samples overlap with another pedestrian whose IoU is above 0.3. For subset
division, it sets up the Reasonable subset by including pedestrians with heights of 50 or
more pixels and occlusion ratios between 0% and 35%. The small, middle and large subsets
include pedestrians with heights of [50, 75), [75, 100) and [100, ∞) respectively. The partial
subset and heavy subset include pedestrians with occlusion ratio in interval [0.1, 0.65) and
[0.65, 1), respectively.

For fair comparison, we trained the models on the standard training set with 2975 im-
ages and tested on the validation set with 500 images as commonly done in other works
such as [8,28,37].

4.1.3. Evaluation Metric

In our experiments we used the standard log-average miss rate (MR) official evaluation
metric of the Caltech-USA and CityPersons datasets. The MR−2 is averaged over the false
positive per image (FPPI) between 10−2 and 102 in log space. Lower is better.

4.2. Implementation Details

We implemented the proposed method in MMDetection (OpenMMLab detection
toolbox and benchmark). We adopted ResNet-50 pretrained on the ImageNet [42] dataset
as the backbone and a five-layer FPN as the neck in both RPDet+ALR and FRCNN+ALR.
For experiments based on FRCNN, the initial anchor ratio was set to 2.44, and RoI Align was
also used for better feature extraction. We optimized both FRCNN-based and RPDet-based
detectors using Stochastic Gradient Descent (SGD) with 0.9 momentum and 0.0001 weight
decay on Caltech-USA and CityPersons datasets. Specifically, for the Caltech-USA dataset,
a mini-batch contained 16 images with 8 GPU (GTX 1080Ti). The initial learning rate was
0.02 for both RPDet-based and FRCNN-based experiments. For the CityPersons dataset, a
mini-batch contained four images with four GPU, the learning rate was set as 0.002 and 0.02
for RPDet-based and FRCNN-based experiments, respectively. Unless otherwise specified,
we divided the learning rate by 10 at 8 and 11 epochs with a total of 12 epochs.

4.3. Detection Results of RPDet-Based Models
4.3.1. Overall Performance

To verify the effectiveness of the proposed ALR pattern, we compared the proposed
RPDet+ALR with the vanilla RPDet (baseline) on the Caltech-USA and CityPersons
datasets. Table 1 shows the detection results on the Caltech-USA dataset. ‘+T’ means
using the line-box transformation method, ‘+A’ means using the axis-line representation
and regression, ‘+λ’ means using the deformable convolution base-offset initialization
strategy. The base-offset λ was set to 4 here for best performance, which will be explained
in Section 4.3.3. The scores are log average miss rate (MR−2), and all models were trained
and tested using new annotations. We can see that the RPDet+ALR outperformed the
baseline method RPDet in MR−2 by 3.6%, 2.5%, 2.9%, and 2.7% in the Reasonable, all,
medium, and heavy subsets, respectively. Qualitative results are shown in Figure 5, where
we can see that our method was able to detect occluded or missed pedestrians, and reduced
false positives compared to the baseline method.
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Table 1. Results of RPDet-based models on the Caltech-USA testing set (MR−2/%).

Method +T +A +λ Reasonable All Near Medium Bare Partial Heavy

RPDet 13.0 65.7 2.2 47.7 10.3 34.4 59.1√ 12.2 64.6 4.6 47.6 10.0 34.9 57.3
√ 11.9 64.0 4.3 46.4 9.9 41.5 59.4

√ √ 10.2 64.9 3.7 48.1 8.7 35.7 56.5
RPDet+ALR (ours) √ √ √ 9.4 (+3.6) 63.2 (+2.5) 1.8 (+0.4) 44.8 (+2.9) 7.1 (+3.2) 33.9 (+0.5) 56.4 (+2.7)
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Table 2 shows the detailed results across all the subsets of the CityPersons dataset.
Compared with the baseline method RPDet, introducing our ALR pattern led to a sig-
nificant improvement in each subset. Notably, it improved the MR−2 by 4.6% on the
Reasonable subset and achieved a huge boost of 7.9%/4.3% on the challenging small and
heavy subsets, respectively. The above results demonstrate the effectiveness of the pro-
posed ALR pedestrian detection pattern and show its potential of improving the detector’s
ability to handle small-size and occluded pedestrians to some extent. Qualitative results
are shown in Figure 6, where we can see that our method achieved more accurate detection
and overcame some false positives compared to the baseline method.

Table 2. Comparison of RPDet+ALR with baseline across each subset of the CityPersons validation set (MR−2/%).

Method Reasonable All Large Middle Small Bare Partial Heavy

RPDet 22.1 53.2 13.2 13.8 32.6 13.6 24.8 73.8
RPDet+ALR (ours) 17.5 (+4.6) 49.7 (+3.5) 10.9 (+2.3) 7.5 (+6.3) 24.7 (+7.9) 9.3 (+4.3) 18.1 (+6.7) 69.5 (+4.3)
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4.3.2. Ablation Study

As described in Section 3, we made three improvements to the original RPDet. Here,
we performed ablation experiments on the Caltech-USA dataset. The results are shown
in Table 2. As we can see, introducing ‘T’ without ‘A’ could still improve the MR−2 by
0.8%, which indicates that ‘T’ is also applicable to the original RPDet and its effect is better
than the original transformation method ‘moment’. Specifically, it is more proper to find
the mean value of each point’s coordinate in the x-direction and the minimum/maximum
in the y-direction, then infer the scale and position of the bounding box according to the
pedestrian aspect ratio prior, because it increases fault tolerance during the regression
process of each sample point. Since ‘T’ is the prerequisite for ‘A’ to work, we did not
conduct the experiment that only used ‘A’. Besides, we can see that introducing ‘T’ and
‘A’ together improved the MR−2 by 2.8%, which verifies the effectiveness of our idea of
predicting the axis-line for pedestrians. Besides, ‘+λ’ also led to a gain of 1.1% in MR−2 on
the Reasonable subset, which was set to 4 according to the following exploration results
in Table 3. Finally, we introduced ‘T’, ‘A’, and ‘λ’ into the baseline at the same time and
reported the best results with an improvement of 3.6% in MR−2 on the Reasonable subset.

Table 3. Results of RPDet+ALR with varying λ on the Caltech-USA testing test (MR−2/%).

Method λ K-Ratio Reasonable All Near Medium Bare Partial Heavy

RPDet+ALR
(ours)

1 1.0 10.2 64.9 3.7 48.1 8.7 35.7 56.5
2 0.6 9.8 64.6 2.8 48.0 8.2 38.4 58.3
3 0.42 9.7 64.3 2.1 47.1 7.9 37.8 57.3
4 0.33 9.4 63.2 1.8 44.8 7.1 33.9 56.4
5 0.27 11.7 65.0 3.9 48.9 10.4 33.9 58.3
6 0.23 12.5 65.8 3.7 49.6 10.6 36.8 61.8

4.3.3. Influence of Deformable Convolution Base-Offset

To explore the influence of the deformable convolution base-offset on network perfor-
mance, we changed the base-offset λ from 1 to 6 in the RPDet+ALR framework. It is worth
noting that the base-offset here refers to its y-component. Intuitively, it is like stretching
the square kernel (λ = 1) longitudinally. Table 3 shows the detailed results across subsets
of the Caltech-USA dataset using new annotations, where K-ratio means the aspect ratio
of the deformable convolution kernel. It can be observed that when the value of λ was
increased from 1 to 4, the MR−2 on the Reasonable subset gradually decreased to 9.4% and
achieved the best result.
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However, the MR−2 rose to 11.7% and 12.5% when λ increased to 5 and 6, respectively.
It indicates that we may find the optimum when the K-ratio falls into the interval [0.33, 0.42],
and the extreme K-ratios (e.g., 1.0, 0.27, and 0.23) bring down the detection performance.
We think the reason is that the K-ratio is close to the average pedestrian aspect ratio (0.41)
when it falls into the interval (0.33, 0.42), so the initial shape of the receptive field is more
aligned with the pedestrians, which helps to obtain better performance. Thereby, to further
improve the detection accuracy, we set the base-offset of deformable convolutions to 4 in
our initialization strategy according to the best results in Table 3 currently.

4.4. Detection Results of FRCNN-Based Models
4.4.1. Overall Performance

For the anchor-based method, we choose the Faster RCNN [12] as our baseline method,
which is denoted as FRCNN in the following. The results of FRCNN+ALR on the Caltech-
USA dataset are shown in Table 4. We can see that it outperformed the baseline across all
the subsets, i.e., improvement of 2.1% MR−2 on the Reasonable subset, 2.5% MR−2 on the
bare subset, and particularly, 8.1%/5.9% MR−2 on the challenging partial/heavy subsets
respectively, which indicates that the proposed ALR was able to improve performance of
the detector toward better robustness in occlusion cases. Qualitative results are shown in
Figure 7, which shows that our FRCNN+ALR was more robust than the baseline method.

Table 4. Comparison of FRCNN+ALR with baseline across each subset of the Caltech-USA test set (MR−2/%).

Method Reasonable All Near Medium Bare Partial Heavy

FRCNN 8.6 63.9 1.9 47.2 8.2 28.1 62.1
FRCNN+ALR (ours) 6.5 (+2.1) 62.4 (+1.5) 1.8 (+0.1) 46.1 (+1.1) 5.7 (+2.5) 20.0 (+8.1) 56.2 (+5.9)
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We also evaluated the proposed FRCNN+ALR on the validation set of the CityPersons
dataset. As shown in Table 5, the proposed ALR pattern led to a gain of 1.4% in MR−2

on the basis of FRCNN. Besides, it is worth noting that the ALR pattern improved the
MR−2 by 4.1% on the small subset, which demonstrates that ALR can help the FRCNN
to deal with pedestrians of small-scale much better, because pedestrians of small-scale
have a lower resolution, making it is easy for the detector to make mistakes. While in
the proposed ALR pattern, we first learn the axis-line of a pedestrian to obtain its height
in pixels, then infer its width based on the uniform pedestrian aspect ratio prior. This
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alleviates the negative influence of low resolution because we no longer need to learn the
precise 4-d coordinates of the bounding box. Qualitative results are shown in Figure 8,
where there are no redundant detection boxes of abnormal shape, whereas they appear in
the results of the baseline method. This is due to the fact that we convert the axis-lines of
pedestrians into bounding boxes according to a uniform aspect ratio.

Table 5. Comparison of FRCNN+ALR with baseline across each subset of the CityPersons validation set (MR−2/%).
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4.4.2. Comparison with Other Methods

We compared the proposed FRCNN+ALR pedestrian detection framework with
some representative methods on the Caltech-USA testing set, including DeepParts [43],
MS-CNN [13], CompACT-Deep [44], ATT-part [28], F-DNN+SS [45], SA-FRCNN [29],
RPN+BF [9] and Repulsion Loss [46]. The results are shown in Table 6. It can be seen that the
proposed FRCNN+ALR achieved an MR−2 of 6.5% on the Reasonable subset, which proves
that the ALR pattern and FRCNN are well adapted to each other and comparable to, or even
better, than some listed methods. However, the result of the FRCNN+ALR had a gap (2.5%
in MR−2) with the Repulsion Loss method on the Reasonable subset. One possible reason is
that the backbone used in Repulsion Loss was ResNet-101, which was deeper and stronger
than our backbone ResNet-50. Another reason is that it used the CityPersons dataset as the
pretraining data source with much bigger input images (i.e., ×1.5 scale), which helped to
further boost the detection performance, while our FRCNN+ALR framework was directly
trained on the Caltech-USA dataset from the beginning without any pretraining. In terms
of space complexity, the proposed method had a slight decrease compared with the baseline
method because it learned a 3-d axis-line as an alternative to a 4-d bounding box. In terms
of inference speed, the baseline method (14.4 fps) and the proposed method (14.1 fps)
showed similar results with one GPU.
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Table 6. Comparisons of the proposed FRCNN+ALR framework with other methods on the standard
test set of the Caltech-USA dataset using new annotations (MR−2/%).

Method Backbone Reasonable

DeepParts AlexNet 12.9
MS-CNN VGG16 9.5

CompACT-Deep VGG16 9.2
FRCNN (baseline) ResNet50 8.6

ATT-part VGG16 8.1
F-DNN+SS VGG16 7.6
SA-FRCNN VGG16 7.5

RPN+BF VGG16 7.3
Repulsion Loss ResNet101 4.0

FRCNN+ALR (ours) ResNet50 6.5

As shown in Table 7, we also compared the FRCNN+ALR with several state-of-the-
art methods on the validation set of the CityPersons dataset, including ATT+vbb [28],
Adapted FRCNN [8], TLL+MRF [37], Repulsion Loss [46] and OR-CNN [47]. The results
show that our FRCNN+ALR improved the MR−2 to 12.5% on the Reasonable subset by
introducing simple modification into the FRCNN, which outperformed other methods
without any tricks. Notably, the TLL-MRF aimed to detect the topological line of pedestrians
by predicting key points of the human body and linking them up with MRF, which is
somewhat similar to our idea of detecting the axis-line for each pedestrian. However,
our ALR pattern is totally different from TLL in object representation, feature extraction,
regression strategy and implementations. Actually, our method is simpler than TLL+MRF
because we do not need complicated postprocessing as key points matching by MRF.

Table 7. Comparisons of the proposed FRCNN+ALR framework with other methods on the valida-
tion set of the CityPersons dataset (MR−2/%).

Method Backbone Reasonable

ATT-vbb VGG16 16.4
Adapted FRCNN VGG16 15.4

TLL+MRF ResNet50 14.4
FRCNN (baseline) ResNet50 13.9

Repulsion Loss ResNet101 13.7
OR-CNN VGG16 12.8

FRCNN+ALR (ours) ResNet50 12.5

5. Conclusions

In this paper, we propose a detection pattern called ALR for promoting pedestrian
detection in road scenes. To achieve this, we designed an axis-line representation for
the pedestrian and set it as the regression target of the network. We also introduced a
line-box transformation method to keep consistency with annotations of the datasets for
evaluation. Besides, a base offset initialization strategy is proposed for the deformable
convolutional to get a better receptive field and more balanced learning process, which can
further promote detection accuracy. Our ALR pedestrian detection pattern is demonstrated
to be capable of improving performance for both anchor-based and anchor-free methods
on the Caltech-USA and CityPersons datasets.
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