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Abstract: Transplantation of various types of stem cells as a possible therapy for stroke has been tested
for years, and the results are promising. Recent investigations have shown that the administration
of the conditioned media obtained after stem cell cultivation can also be effective in the therapy
of the central nervous system pathology (hypothesis of their paracrine action). The aim of this
study was to evaluate the therapeutic effects of the conditioned medium of hiPSC-derived glial
and neuronal progenitor cells in the rat middle cerebral artery occlusion model of the ischemic
stroke. Secretory activity of the cultured neuronal and glial progenitor cells was evaluated by
proteomic and immunosorbent-based approaches. Therapeutic effects were assessed by overall
survival, neurologic deficit and infarct volume dynamics, as well as by the end-point values of the
apoptosis- and inflammation-related gene expression levels, the extent of microglia/macrophage
infiltration and the numbers of formed blood vessels in the affected area of the brain. As a result, 31%
of the protein species discovered in glial progenitor cells-conditioned medium and 45% in neuronal
progenitor cells-conditioned medium were cell type specific. The glial progenitor cell-conditioned
media showed a higher content of neurotrophins (BDNF, GDNF, CNTF and NGF). We showed that
intra-arterial administration of glial progenitor cells-conditioned medium promoted a faster decrease
in neurological deficit compared to the control group, reduced microglia/macrophage infiltration,
reduced expression of pro-apoptotic gene Bax and pro-inflammatory cytokine gene Tnf, increased
expression of anti-inflammatory cytokine genes (Il4, Il10, Il13) and promoted the formation of blood
vessels within the damaged area. None of these effects were exerted by the neuronal progenitor
cell-conditioned media. The results indicate pronounced cytoprotective, anti-inflammatory and
angiogenic properties of soluble factors secreted by glial progenitor cells.

Keywords: ischemic stroke; MCAO; glial progenitor cells; neuronal progenitor cells; induced pluripo-
tent stem cells (iPSCs); conditioned medium
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1. Introduction

Deterioration of brain function in ischemic stroke is overwhelming. The acute ischemic
damage to brain tissue causes focal and generalized neuronal death with diverse neuro-
logical sequelae [1]. The efficacy of treatment and rehabilitation of the patients after acute
cerebrovascular episodes remains extremely low. In the absence of etiological treatment in
the subacute and chronic phases of the disease, it is important to boost the rehabilitation of
patients by stimulating nervous tissue repair [2]. New efficient maintenance therapies for
cerebrovascular diseases are in great demand.

Stem cells represent an effective tool of regenerative medicine. The efficiency of cell
therapies is based on two fundamental properties of transplanted cells—the ability to
replace the destroyed differentiated cells (the replacement mechanism) and the ability to
secrete regulatory molecules participating in the processes of inflammation, angiogenesis
and regeneration (the paracrine mechanism) [3,4]. The paracrine concept of cell therapies is
currently taking the lead [5,6]. Accordingly, the conditioned culture media attract increasing
interest as a source of biologically active molecules. Neurotrophins, cytokines and other
regulatory molecules accumulated in the cell culture media can exert complex positive
effects in various pathological conditions. The great potentiality of stem cell-conditioned
media in the treatment of neurodegenerative and vascular diseases has been demonstrated
in a number of studies [7–9].

Neuronal and glial progenitor cells (respectively, NPCs and GPCs) can be derived
from human induced pluripotent stem cells (hiPSCs). Though positive effects of their
conditioned medium on the damaged nervous tissue appear quite plausible, they have
not been studied yet, and no substantive information on this subject can be found in
the literature.

Here, we report the results of comparative assessment of the therapeutic effects of
the conditioned medium of hiPSC-derived NPCs and GPCs. The efficacy of the NPC- and
GPC-conditioned medium was evaluated in vivo by using the rat middle cerebral artery
occlusion (MCAO) model of ischemic stroke.

2. Results
2.1. Characterization of Obtained Cell Cultures

The obtained hiPSCs were morphologically similar to human embryonic stem cells;
displayed a high nuclear-cytoplasmic ratio; expressed pluripotency marker genes OCT4,
NANOG and SOX2; and were immunopositive for OCT4 and NANOG transcription factors
and SSEA4 and TRA-1-81 proteoglycans (Figure 1a). The cells also showed the capacity of
spontaneous differentiation into the derivatives of all three germ layers (ectoderm, endoderm
and mesoderm), confirming their pluripotency at the functional level (Figure 1b). The ad-
dition of the appropriate inducers caused differentiation of hiPSCs into neural stem cells
(NSCs)—small, densely growing cells prone to the formation of 3D rosette-like structures.
The NSC phenotype was confirmed immunocytochemically and by a PCR assay. NSCs
expressed molecular markers of neural differentiation (PAX6, SOX2 and NESTIN) and were
immunopositive for the corresponding proteins. The differentiation efficiency (evaluated
by flow cytometry as the fraction of PAX6-positive cells) constituted 98 ± 1.8% (Figure 1c).
Upon stimulation with glial inducers, NSCs acquired spindle-shaped morphology with an
uneven outline and large oval nuclei. Stimulation of NSCs with neuronal inducers promoted
the outgrowth of neurites up to three cell diameters long. Glial progenitor cells (GPCs),
unlike the hiPSCs, expressed S100B and GFAP, and 97 ± 2.8% of them were S100B protein
positive. Neuronal progenitor cells (NPCs) had smaller nuclei, unlike the hiPSCs, expressed
neuronal marker genes TUBB3, MAP2 and ENO2, and 96 ± 3.4% of them were βIII tubulin
positive (Figure 1d).
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Characterization of hiPSCs: phase−contrast microscopy, immunocytochemistry for the pluripotency markers (SSEA4, 
TRA−1−81, OCT4, NANOG), relative gene expression levels for OCT4, SOX2 and NANOG were calculated based on the 
housekeeping genes GAPDH and ACTB, and then normalized to dermal fibroblasts. (b) Functional assay of pluripotency: 
phase−contrast microscopy of the embryoid bodies and immunocytochemistry of spontaneously differentiated hiPSC de-
rivatives with ectoderm−, mesoderm− and endoderm− specific antibodies (anti−pan−cytokeratin, anti−desmin and 
anti−α−fetoprotein, respectively). (c) Characterization of NSCs: phase−contrast microscopy, immunocytochemistry, flow 
cytometry for PAX6+ cells and relative gene expression levels for neural markers (PAX6, NESTIN, SOX2), which were 
calculated based on the housekeeping genes GAPDH and ACTB, and then normalized to hiPSC. (d) Characterization of 
GPCs and NPCs: phase−contrast microscopy, immunocytochemistry for S100B (glial marker) and βIII tubulin (TUBB3, 
neuronal marker), flow cytometry for S100B+ and TUBB3+ cells and relative gene expression levels for glial and neuronal 
markers, which were calculated based on the housekeeping genes GAPDH and ACTB, and then normalized to hiPSC. The 
results are shown for the GPCs and NPCs derived from a single hiPSC line.  

Figure 1. Morphology and characterization of the cultures differentiating towards neuronal and glial phenotypes. (a) Charac-
terization of hiPSCs: phase−contrast microscopy, immunocytochemistry for the pluripotency markers (SSEA4, TRA−1−81,
OCT4, NANOG), relative gene expression levels for OCT4, SOX2 and NANOG were calculated based on the house-
keeping genes GAPDH and ACTB, and then normalized to dermal fibroblasts. (b) Functional assay of pluripotency:
phase−contrast microscopy of the embryoid bodies and immunocytochemistry of spontaneously differentiated hiPSC
derivatives with ectoderm−, mesoderm− and endoderm− specific antibodies (anti−pan−cytokeratin, anti−desmin and
anti−α−fetoprotein, respectively). (c) Characterization of NSCs: phase−contrast microscopy, immunocytochemistry, flow
cytometry for PAX6+ cells and relative gene expression levels for neural markers (PAX6, NESTIN, SOX2), which were
calculated based on the housekeeping genes GAPDH and ACTB, and then normalized to hiPSC. (d) Characterization of
GPCs and NPCs: phase−contrast microscopy, immunocytochemistry for S100B (glial marker) and βIII tubulin (TUBB3,
neuronal marker), flow cytometry for S100B+ and TUBB3+ cells and relative gene expression levels for glial and neuronal
markers, which were calculated based on the housekeeping genes GAPDH and ACTB, and then normalized to hiPSC. The
results are shown for the GPCs and NPCs derived from a single hiPSC line.

2.2. Comparative Study of GPC- and NPC-Conditioned Medium

All secreted proteins by NPCs and GPCs are presented in supplementary Table S1,
and cell type-specific biomolecules are presented in Table 1. The NPC-conditioned medium
(NPC-CM) contained more protein species than GPC-conditioned medium (GPC-CM).
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In total, 136 (45%) out of 304 protein species identified in NPC-CM could not be found
in GPC-CM (Figure 2a). A considerable number of NPC-specific peptides reportedly
possess neuroprotective properties (e.g., tissue inhibitor of metalloproteinases 2, Wnt
family member 5A, neuropilin-1, secretogranin-2, platelet-derived growth factor D) [10].
NPC secretomes also comprised apolipoprotein A1, which is known to attenuate the activity
of neutrophils [11] and the osteopontin-a chemotactic protein involved in the activation of
immune cells and cytokine production [12,13]. Moreover, NPC secreted factors lactadherin
and glypican-1 that promote angiogenesis [14,15] (Table 1).

Table 1. Secreted proteins of the hiPSC-derived neuronal and glial progenitor cells identified by a proteomic approach.

Biological Processes Neuronal Progenitor Cells (NPCs) Glial Progenitor Cells (GPCs)

regulation of apoptosis and
cell survival

tissue inhibitor of metalloproteinases 2 (TIMP2) heat shock 70 kDa protein 4 (HSPA4)
secretogranin-2 (chromogranin C, SCG2) heat shock protein 105 kDa (HSPH1)

Wnt family member 5a (WNT5A) Hsc70-interacting protein (ST13)
neuropilin-1 (NRP1) leukemia inhibitory factor (LIF)

Ras homolog family member A (RHOA) growth arrest-specific protein 6 (GAS6)
platelet-derived growth factor D (PDGFD) gremlin 1 (GREM1)

tetranectin (TETN)

influence on immune cells

annexin A1 (ANXA1) collectin subfamily member 12 (COLEC12)
nectin 2 (NECTIN2) vitamin D binding protein (VTDB)

meteorin-like protein (METRNL) importin subunit beta 1 (KPNB1)
moesin (MSN) Toll-interacting protein (TOLLIP)

apolipoprotein A1 (APOA1) S100-A11 protein (S100A11)
osteopontin (SPP1) growth and differentiation factor 15 (GDF15)

28 kDa heat- and acid-stable
phosphoprotein (PDAP1)

SH3 domain-binding glutamic acid-rich-like
protein 3 (SH3BGRL3)

Ras-related protein Rap-1b (RAP1B)

angiogenesis
lactadherin (MFGE8) myeloid-derived growth factor (MYDGF)

secretogranin 3 (SCG3) transforming growth factor-β2 (TGFB2)
glypican-1 (GPC1)

Of the 243 protein species identified in GPC-CM, 75 (31%) were specific to it, i.e., not
found in NPC-CM (Figure 2a). The list of the GPC-CM-specific proteins included important
regulators of cell survival (growth arrest-specific protein 6, heat shock 70 kDa protein
4, heat shock protein 105 kDa, leukemia inhibitory factor, gremlin 1, Hsc70-interacting
protein) [16–18]. GPC secretomes also comprised growth and differentiation factor 15 and
SH3 domain-binding glutamic acid-rich-like protein 3, which is known to exert pronounced
anti-inflammatory effects [19,20]. Proteins involved in angiogenesis were also found such
as myeloid-derived growth factor and transforming growth factor-β2 [21,22] (Table 1).

Comparative analysis of GPC- and NPC-CM also revealed differences in the content
of certain functional classes of proteins. For instance, the levels of transfer/carrier proteins
(PC00219) and membrane traffic proteins (PC00150) in the GPC-CM were, respectively, 2.8
times and 5 times higher than in the NPC-CM (Figure 2b).

Neurotrophins are secretory proteins maintaining the viability of neurons and stimu-
lating their development and activity. In this study, the neurotrophins remained undetected
by the proteomic analysis, apparently because of their low concentrations in CM; however,
those concentrations were within the sensitivity limit of ELISA. Neurotrophin concen-
trations in the undiluted GPC-CM and NPC-CM were in the pg/mL range, which is
lower than required for therapeutic activity. At the same time, concentrations of BDNF
(brain-derived neurotrophic factor), NGF (nerve growth factor), CNTF (ciliary neurotrophic
factor) and GDNF(glial cell-derived neurotrophic factor) in the GPC-CM were, respectively,
19-, 12-, 18- and 3 times higher than in the NPC-CM (Figure 2c). It should be noted that
neurotrophin genes were expressed by both cultures, and the expression levels of BDNF,
CNTF and NGF were higher in GPCs compared to NPCs (Figure 2d). GPCs showed
high expression levels of GREM1 (gremlin 1), GAS6 (growth arrest-specific protein 6), LIF
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(leukemia inhibitory factor), TWF2 (twinfilin 2), SNX3 (sorting nexin 3), MYDGF (myeloid-
derived growth factor), TGFB2 (transforming growth factor beta 2), and GDF15 (growth
and differentiation factor 15) genes (Figure 2d). In NPCs, expression of these genes was low
or undetectable. A number of genes, including FGF8 (fibroblast growth factor 8), NTN1
(netrin 1), NPTX2 (neuronal pentraxin 2), EFBN1 (ephrin B1), SERPINI1 (neuroserpin 1)
and VGF (neuro-endocrine specific protein VGF), were expressed specifically by NPC
cultures (Figure 2d).
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Figure 2. Comparative analysis of the secretory activity and transcription profiles of the hiPSC-derived NPC and GPC
cultures. (a) Proportions of unique and common proteins in NPC and GPC secretomes. In total, 136 (45%) proteins in
NPC-CM and 75 (31%) proteins in GPC-CM were specific. (b) PANTHER protein class charts for NPC and GPC secretomes.
(c) Secretion of neurotrophins by NPC and GPC (ELISA). The highest concentrations of BDNF, NGF, CNTF and GDNF
contain GPC-CM. (d) Expression levels of NPC and GPC markers (PCR assay). The data are presented as mean ± SD.
Asterisks (*) indicate significant differences (p ≤ 0.05). These results are shown for the GPCs and NPCs derived from a
single hiPSC line.

2.3. Therapeutic Effects of the Intra-Arterial Infusion of NPC-CM and GPC-CM in the
Experimental Ischemic Stroke

Kaplan–Meier survival curves for three groups (NPC-CM-treated, GPC-CM-treated
and the non-conditioned media-treated control) are shown in Figure 3a. All deaths occurred
within 3 days after the stroke and were associated with vasogenic cerebral edema. CM
infusions had no effect on survival.
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Figure 3. Therapeutic effects of NPC-CM and GPC-CM assessed by the overall survival dynamics, the stroke volume
(evaluated by MRI), the dynamics of the neurological deficit (evaluated by mNSS for rodents) and relative gene expression
levels of pro- and anti-inflammatory cytokines and apoptosis regulator (Bax, Bcl2). In this experiment, the following number
of animals were used: NPC-CM group (n = 12), GPC-CM group (n = 12) and the non-conditioned media-treated control
(n = 10). (a) Kaplan–Meier survival curves for three groups. Note that animals in both groups died mostly within the first
3 days after MCAO, presumably because of the formation of vasogenic edema. No significant difference between the two
groups was found. (b) mNSS dynamics (normalized by day 1 values). IA administration of GPC-CM enhanced functional
recovery of the ischemic brain. The graph demonstrates the reduction of the neurological deficit in the GPC-CM group
compared to the control group on the 14th and 30th day. (c) Infarct volume dynamics (normalized by day 1 values). IA
administration of NPC-CM and GPC-CM had no significant effect on the rate of the reduction of the infarct zone volume.
(d) T2-weighted brain images (T2-WI) for three groups (NPC-CM-treated, GPC-CM-treated and the non-conditioned
media-treated control). (e) Relative gene expression levels of Bax, Bcl2 and their ratio; pro- and anti-inflammatory cytokines.
IA administration of GPC-CM reduced expression of Bax, Tnfa and increased expression of Il4, Il10 and Il13 genes. The
data are presented as mean ± SD with asterisks (*) indicating significant differences with the control (p ≤ 0.05). Hashes (#)
indicate significant differences (p ≤ 0.05) between GPC-CM- and NPC-CM-treated animals.



Int. J. Mol. Sci. 2021, 22, 4694 7 of 19

The neurological deficit was assessed using modified neurological severity scores
(mNSS) for rats [23]. MNSS is one of the most reliable and commonly used neurological
functional scales that includes motor, sensory, reflex and coordination tests. The score is
ranged from 0 to 18 points and can be used to assess the severity of stroke in rodents: the
higher the score, the more impaired the rat is. In the present study, mNSS were recorded in
dynamics at the following time points: immediately before the infusion (day 1), and on
days 7, 14 and 30 post-infusion (p/i). Neurological deficit reached its maximum by 24 h
after the acute focal ischemia modeling in all groups; its progression was associated with
the cerebral infarct development. After that, the neurological deficit underwent regression
in all groups; the highest rates of functional recovery were observed during the initial
2 weeks of the experiment. The scores for the GPC-CM group on days 14 and 30 p/i
were, respectively, 1.5-times and 1.6-times lower as compared with the control group; these
differences were significant (Figure 3b). By contrast, no significant differences in mNSS
between the NPC-CM group and the control group were observed during the experiment.
The data indicate enhanced functional recovery of brain function in response to the infusion
of GPC-CM during the acute period of ischemic stroke.

The stroke volume was evaluated by MRI, with T2-weighted brain magnetic resonance
images acquired at the same time points used for the evaluation of the effects of the CM
infusion. The reduction of the infarct volume was pronounced in all groups; no significant
differences between the groups were revealed over the 30 day period (Figure 3c,d).

To understand the CM-mediated therapeutic effects at the molecular level, expression
of apoptosis- and inflammation-related molecular markers in brain tissues was studied
by a PCR-based assay (Figure 3e). The GPC-CM group showed significantly reduced
expression of the pro-apoptotic gene Bax compared with the control group. By contrast,
expression levels of Bax in the ischemized tissue of the NPC-CM group were 2.4-times
higher as compared with the intact brain tissue in the contralateral cerebral hemisphere
(IH) and the GPC-CM group; these differences were also significant. At the same time, no
significant differences in Bcl2 expression were observed between the groups (Figure 3e).
The intracellular ratio of Bax/Bcl2 expression can profoundly influence the ability of a cell
to respond to an apoptotic signal. According to this concept, a cell with a high Bax/Bcl2
ratio will be more sensitive to a given apoptotic signal when compared to a similar cell
type with a low Bax/Bcl2 ratio [24]. By comparing the expression level of these genes on
day 30 p/i, we found that in the GPC-CM and IH groups, there was a decreased Bax/Bc-2
ratio, but not in the NPC-CM group. Infusion of NPC-CM enhanced the Bax/Bcl2 ratio
compared with the GPC-CM (Figure 3e).

Vascular necrosis causes secondary damage to brain parenchyma due to the contin-
uous inflammatory reaction accompanied by the elevated expression of the Tnfa gene.
Infusion of GPC-CM specifically reduced Tnfa expression in the affected brain parenchyma;
the difference with the control was statistically significant. In addition, expression levels of
the anti-inflammatory cytokine genes Il4, Il10 and Il13 were significantly elevated in the
ischemized brain tissues of GPC-CM-treated animals compared with the control group.
By contrast, expression levels of Tnfa, Il4, Il10 and Il13 in the ischemized brain tissues of
NPC-CM-treated animals were comparable with the control group (Figure 3e).

To investigate the effects of CMs on apoptosis after stroke, we analyzed apoptotic
TUNEL-positive cells. The number of apoptotic cells in the GPC-CM-injected group was
lower than that in the control and NPC-CM groups (Figure 4a,b).
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Figure 4. Post-ischemic repair-related effects of the conditioned media. In this experiment, the following number of animals
were used: NPC-CM group (n = 12), GPC-CM group (n = 12) and the non-conditioned media-treated control (n = 10).
(a) Representative routine histology images (H&E), immunohistochemistry with anti-CD34 antibodies and TUNEL-labelled
cell death (the nuclei counterstained with DAPI). Scale bar, 200 and 500 µm. (b) Counts of blood vessels CD34+ and
TUNEL-positive cells per sq mm of the damaged brain tissue section area. The graph demonstrates the increment of number
blood vessels and reduction of the number of TUNEL-positive cells in the case of GPC-CM administration. The data are
presented as mean ± SD. Asterisks (*) indicate significant differences (p ≤ 0.05) with the controls. Hashes (#) indicate
significant differences (p ≤ 0.05) between GPC-CM- and NPC-CM-treated animals.

As demonstrated by the histological study, the infusion of GPC-CM supported an-
giogenesis. The counts of formed perfused blood vessels (CD34+ cells) in the ischemized
brain tissues of GPC-CM-treated animals were the highest; the difference with the control
group was significant (p ≤ 0.05, Figure 4a,b).

CD68 is a cell surface glycoprotein highly expressed on phagocytic cells of the resident
microglia and infiltrating monocytic macrophages. CD11b is expressed on the surface
of cells involved in the innate immune system, including monocytes, macrophages and
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microglia. An accumulation of CD68+ and CD11b+ cells in the ischemized brain area was
detected at the autopsy on day 30 p/i in all groups. However, this effect was significantly
alleviated in GPC-CM-treated animals, as the numbers of accumulated CD68+ and CD11b+
cells were lower compared with other groups. No such alleviation was observed in the
NPC-CM group where the counts of CD68+ and CD11b+ cells in the damaged area were
significantly higher compared with the GPC-CM group (Figure 5a,b).
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Figure 5. Post-ischemic inflammation-related effects of the conditioned media. Assessment of total M1 and M2
macrophages/microglia. In this experiment, the following number of animals were used: NPC-CM group (n = 12),
GPC-CM group (n = 12) and the non-conditioned media-treated control (n = 10). (a) Immunohistochemistry with anti-CD68,
anti-CD11b, anti-CD86 (M1) and anti-CD20 (M2) antibodies (the nuclei counterstained with DAPI). Scale bar, 100 and 200 µm.
(b) Counts of macrophages/microglia CD68+, CD11b+, CD86+ and CD206+ cells per sq mm of the brain tissue section area.
The graph demonstrates the reduction of the total number of macrophages/microglia (CD68+ and CD11b+ cells) and M1
macrophages in the case of GPC-CM administration. There were no significant differences in the number of M2 macrophages
between the groups. The data are presented as mean ± SD. Asterisks (*) indicate significant differences (p ≤ 0.05) with the
controls. Hashes (#) indicate significant differences (p ≤ 0.05) between GPC-CM- and NPC-CM-treated animals.

Single cells immunopositive to the marker of macrophages of the M2 phenotype-
CD206 (mannose receptor) were observed on day 30 p/i of the experiment in the damaged
area of brain. Moreover, there are no statistically significant differences in the number of
CD206+ cells in all of the groups. However, the administration of GPC-CM significantly
reduced M1 macrophages (CD86+ cells) compared with the control group, which was not
noticed in the GPC-CM infusion (Figure 5a,b).
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3. Discussion

hiPSC-derived NPCs and GPCs produce and secrete numerous regulatory proteins
and peptides. NPC-CM and GPC-CM partially overlap, but large proportions of proteins
in their secretomes are highly specific. Although no straightforwardly matching data are
available from the literature, the obtained results can be indirectly compared with other
studies. For instance, the obtained NPC secretory profiles show 71% overlap with the results
of Mendes-Pinheiro et al., who applied a proteomic approach to the primary cultures of
human neuronal progenitors and identified 538 secreted proteins [25]. Significant overlaps
of the obtained GPC secretory profiles with the corresponding data for primary cultures of
human astrocytes should also be noted [26–31]. Both NPC and GPC cultures secreted low
amounts of neurotrophins (BDNF, CNTF, NGF and GDNF). However, at the mRNA level,
GPC cultures showed higher expression of BDNF, CNTF and NGF, which is consistent
with higher rates of neurotrophin secretion by GPC cultures reported elsewhere [32–34].

Intra-arterial infusion of GPC-CM during the recovery after the experimental is-
chemic stroke in the rat model was advantageous. Compared with NPC-CM and the
non-conditioned media, GPC-CM accelerated functional recovery of the brain: it reduced
the neurological deficit and downregulated the expression of pro-apoptotic gene Bax.
Besides, we have shown the significant decrease in the ratio of Bax/Bcl-2 expression in
the GPC-CM group. These data were confirmed by the data of the TUNEL analysis that
demonstrated a reduction in the number of apoptotic cells. Although the GPC-CM admin-
istration had no significant effects on the infarct volume dynamics, its anti-inflammatory
and pro-angiogenic effects were pronounced. These effects included decreased counts of
phagocytic cells (microglia/macrophages), elevated expression levels of anti-inflammatory
cytokine genes (Il4, Il10, Il13), a reduced expression level of Tnfa and an increased number
of formed blood vessels. Despite the fact that we found differences between the GPC-CM
and NPC-CM groups in the increased numbers of formed blood vessels and the reduction
of phagocytic cell numbers, we did not reveal significant differences in the neurological
deficit between these two groups within 30 days. It is likely that these effects may appear
later and that a longer observation period is required. Interestingly, the injection of both
CM does not influence the number of macrophages M2 phenotype, but administration of
GPC-CM reduced the number of macrophages M1 phenotype. We suggested that GPC-CM
might have an effect on macrophage cells by changing their phenotype.

Intra-arterial infusion of NPC-CM had no pronounced functional effects. Moreover, ex-
pression levels of Bax, Bax/Bcl2 ratio and the counts of CD68+, CD11b+ and TUNEL-positive
cells within the affected brain area of the NPC-CM-treated animals were significantly higher
than for the GPC-CM-treated group. We did not observe a significant difference between
the two groups in Tnfa gene expression. However, we noticed a certain tendency of in-
creased expression of this gene in the NPC-CM group, and in the case of a larger number
of animals in a future experiment, this difference could probably be identified.

Thus, the obtained results indicate pronounced neuroprotective, anti-inflammatory
and pro-angiogenic properties of GPC-CM as compared with NPC-CM. The difference is
apparently related to the unique secretory profiles of the GPCs. The obtained results are
consistent with previous reports demonstrating the efficiency of stem and progenitor cell-
conditioned media in vivo. For instance, administration of NSC-conditioned medium to
the rats with an experimental ischemic stroke promoted alleviation of neurological deficits
and reduction in the infarct volume compared with the control group [35]. Intravenous
infusion of the bone marrow mesenchymal stem cell-conditioned medium to the rats with
an experimental ischemic stroke significantly enhanced functional recovery and alleviated
the microglial/macrophage infiltration of brain tissue [9]. As demonstrated by Hicks et al.,
the transplanted primary NSCs actively produce angiopoietin 1 (Ang1), which promotes
an increase in the amount of microvessels in the ischemic area of the brain [36]. However,
the effects of CM of the hiPSC-derived NPCs and GPCs on the recovery of the brain tissue
after an experimental ischemic stroke are reported here for the first time.
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According to the results of this pilot study, the hiPSC-derived GPC-CM represent
a promising candidate for clinical studies, as it can be obtained in virtually unlimited
numbers from the patient’s own cells (e.g., dermal fibroblasts) and used as autologous
transplants. However, for the potential translation of this technology to the clinic, it is
reasonable to clarify a number of issues. Currently, it has not been established whether
there are differences in the therapeutic efficacy of CM derived from different hiPSC lines.
Moreover, further research is needed to determine the optimal dose of CM, the time
“window” for intra-arterial administration and the cellular/molecular mechanisms that
promote the recovery after stroke.

4. Materials and Methods
4.1. Animals

The animal studies were approved by the local Ethical Committee of the Pirogov
Russian National Research Medical University (Protocol number 13/2020 from October 8,
2020) and were carried out in accordance with EU Directive 2010/63/EU. All animal studies
were reported according to ARRIVE guidelines. Animals were obtained from AlCondi, Ltd.
Moscow, Russia. Adult male Wistar rats of 250–300 g body weight (n = 34) were used in the
experiments. Males were chosen to avoid the potential neuroprotective effects of estrogen
on stroke formation [37]. The rats were housed in plastic cages (4–5 per cage) under a 12/12
h light/dark cycle with maintenance of a temperature of 24–26 ◦C and humidity of 40–70%.
During the experiments, laboratory rats were kept in comfort facilities and were given ad
libitum access to drinking water and food (standard rodent chow). All efforts were made
to minimize the number of animals and to exclude pain and other unpleasant effects for
the animals. All surgical procedures and MRIs were conducted under isoflurane inhalation
anesthesia (Aerrane, Baxter HealthCare Corporation, Deerfield, IL, USA) supplied by
the animal anesthesia system (E-Z-7000 Classic System, E-Z-Anesthesia Systems, USA):
3.5–4% isoflurane mix with atmospheric air for the induction of anesthesia and 2–2.5%
isoflurane/air mix for its maintenance. For euthanasia at the end of the experiment, the
animals were placed in an induction chamber (E-Z-7000 Classic System, E-Z-Anesthesia
Systems, Palmer, PA, USA) and inhalation anesthesia was performed with a lethal dose
of isoflurane. Afterwards, animals were additionally injected with a lethal dose of Zoletil
(Virbac, Carros, France).

4.2. Experimental Design

The main goal of this study was to assess the primary therapeutic efficacy of GPC-CM
or NPC-CM after a stroke in rats. For this, an experimental ischemic stroke was modeled
in all male Wistar rats by a temporary 90 min occlusion of the right middle cerebral
artery. At 24 h after stroke modeling, the animals (n = 34) were randomly attributed
to 1 of the following 3 groups: the control group (n = 10), which received intra-arterial
infusions of the non-conditioned DMEM/F12-based medium; one group of CM recipients
(n = 12), which received intra-arterial infusions of GPC-CM (50 µg/mL of total protein);
and another group of CM recipients (n = 12), which received intra-arterial infusions of
NPC-CM (50 µg/mL of total protein). The doses of GPC-CM and NPC-CM were chosen
according to the literature data [38,39]. It is worth noting that the optimal “time window”
for intra-arterial transplantation of stem/progenitor cells or their conditioned medium has
not been firmly established yet [40,41]. In the current study, the “time window” was chosen
on the basis of several points: (1) the literature data [42–44]; (2) the increased permeability
of the blood–brain barrier within 6–48 h after stroke onset [45]; (3) the duration of the
therapeutic window for clinical reperfusion methods, that does not exceed 24 h [46]; (4)
the results of our previous study, where we demonstrated significant therapeutic efficacy
after intra-arterial transplantation of neural precursor cells 24 h after MCAO modeling
in rats [47]. In the current study, the assessment of the therapeutic effects of GPC-CM or
NPC-CM was carried out immediately before the infusion (day 1) and on days 7, 14 and 30
post-infusion (p/i) and included the following parameters: animal survival, neurological
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deficit and stroke volume. All animal tests were conducted by observers blinded with
regard to the treatment groups. All animals were sacrificed at day 30 p/i for histological
and PCR analysis. After euthanasia, the animals were decapitated, the brains were removed
from the skull and the ischemic portions of the brain tissue were dissected into 3 fragments.
One fragment was fixed in 10% formalin for the preparation of the paraffin sections, the
other preserved in liquid nitrogen for preparing cryosections and the third preserved in the
RNAlater reagent for PCR analysis. Corresponding brain tissue segments of the unaffected
contralateral hemisphere were dissected in the same way to be used as a control.

4.3. Cell Culture and Conditioned Media Preparation

hiPSCs were derived from human dermal fibroblasts using a CTS CytoTune-iPS 2.1
Sendai Reprogramming Kit (Invitrogen, Carlsbad, CA, USA). Taking a skin biopsy from
the donor was approved by the Institutional Ethics Committee of the Research Centre
for Medical Genetics (Protocol No. 2019-2/3 from 13 October 2020). To obtain neural
stem cells (NSCs) for subsequent differentiation into neuronal and glial lineages, hiPSCs
were cultured in DMEM/F12 (Gibco, Waltham, MA, USA) supplemented with N-2 (to
1X, Gibco, Waltham, MA, USA), 2 mM L-glutamine (PanEco, Moscow, Russia), 100 mg/L
penicillin-streptomycin (PanEco, Moscow, Russia), 10 µM SB431542 (Stemcell Technologies,
Vancouver, BC, Canada), 2 µM dorsomorphin (Stemcell Technologies, Vancouver, BC,
Canada) and 200 nM LDN193189 (Sigma-Aldrich, St. Louis, MO, USA) [48]. To obtain
NPCs, NSCs were cultured for 2 weeks in DMEM/F12 (PanEco, Moscow, Russia) sup-
plemented with B-27 (to 1X, Gibco, Waltham, MA, USA), 2 mM L-glutamine, 100 mg/L
penicillin-streptomycin, 10 ng/mL FGF-2 (ProSpec, Ness-Ziona, Israel) and 1 µM purmor-
phamine (Stemcell Technologies, Vancouver, BC, Canada) [49]. To obtain GPCs, NSCs
were cultured in a DMEM/F12-based growth medium supplemented with N-2, 2 mM L-
glutamine, 100 mg/L penicillin-streptomycin and 1% fetal bovine serum (PanEco, Moscow,
Russia). The induction process was completed in 3 stages, with each stage being conducted
over a period of 3 days. At the first stage, the growth medium was additionally supple-
mented with 10 ng/mL FGF-2 and 20 ng/mL EGF (ProSpec, Ness-Ziona, Israel). At the
second stage, the growth medium was additionally supplemented with 10 ng/mL FGF-2,
20 ng/mL EGF and 20 ng/mL CNTF (PeproTech, Cranbury, NJ, USA). At the third stage,
the growth medium was additionally supplemented with 20 ng/mL EGF and 20 ng/mL
CNTF [50,51]. To obtain the conditioned media (CM), NPC and GPC cultures from the
single donor were washed twice with PBS and incubated in DMEM/F12 (PanEco, Moscow,
Russia) for 12 h. The medium was collected from several T175 flasks with cell confluence
80–90% and centrifuged for 5 min at 3000 rpm. The supernatant was passed through a
0.2 µm syringe filter (PanEco, Moscow, Russia) and used in the experiments.

4.4. Immunocytochemistry

The cells were fixed in 4% paraformaldehyde solution (PanEco, Moscow, Russia)
for 10 min at room temperature; washed with PBS; pre-incubated in 0.25% Triton X-100
and 1% BSA in PBS for 30 min; and incubated with primary antibodies to βIII tubulin
(ab7751, Abcam, Cambridge, UK), S100b (ab52642, Abcam, Cambridge, UK), NANOG,
SSEA4, OCT4, TRA-1-81, SOX2 (StemLight Pluripotency Antibody Kit, Cell Signaling
Technology, Beverly, MA, USA), pancytokeratin (ab7753, Abcam, Cambridge, UK), desmin
(ab32362, Abcam, Cambridge, UK), α-fetoprotein (ab3980, Abcam, Cambridge, UK), Nestin
(ab105389, Abcam, Cambridge, UK) or PAX6 (ab5790, Abcam, Cambridge, UK) at +4 ◦C
overnight. Secondary antibodies (Alexa Fluor 555 or Alexa Fluor 488 conjugated, Invitrogen,
Carlsbad, CA, USA) were applied for 60 min in the dark. The nuclei were counterstained
with DAPI (Sigma-Aldrich, St. Louis, MO, USA) solution (1 µg/mL in PBS). The signals
were observed, and images were recorded with an Axio Observer.D1 inverted fluorescence
microscope equipped with AxioCam HRc camera (Carl Zeiss, Oberkochen, Germany).
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4.5. Flow Cytometry

The cells were detached with Versene solution (PanEco, Moscow, Russia) and pelleted
by centrifugation at 1800 rpm for 5 min, then washed with HBSS (PanEco, Moscow, Russia),
fixed in 4% paraformaldehyde for 10 min, washed with PBS, permeabilized with 70%
methanol on ice for 10 min, washed twice with PBS and collected by centrifugation at
1800 pm for 5 min. Fixed cells were incubated with primary antibodies to PAX6 (ab5790,
Abcam, Cambridge, UK), glial marker S100b (ab52642, Abcam, Cambridge, UK) or neuronal
marker βIII tubulin (ab182070, Abcam, Cambridge, UK) at +4 ◦C for 12 h; washed with
PBS; collected by centrifugation at 1800 rpm for 5 min; and incubated with secondary
antibodies (Alexa Fluor 488 conjugated, Invitrogen, Carlsbad, CA, USA) for 60 min in the
dark. Fixed cells exposed to secondary antibodies were only used as a negative control
for the flow cytometry-based quantification. Stained cells were analyzed on a CyFlow ML
flow cytometer using the FloMax software (Partec, Goerlitz, Germany). For evaluation of
the number of immunopositive cells, the experiment was repeated at least 3 times.

4.6. Protein Quantification

To quantify the protein concentration in CM, the Bradford Protein Assay Kit (Bio-rad,
Hercules, CA, USA) was used according to the manufacturer’s instructions. Accordingly, 5
µL of each standard or unknown sample was added into a 96 well-plate and then 250 µL of
Coomassie reagent was loaded into each well. The plate was then incubated for 5 min at
room temperature and the absorbance measured at 595 nm in a plate reader (PerkinElmer,
Waltham, MA, USA).

4.7. Proteomic Analysis

UltiMate 3000 RSLCnano HPLC system (Thermo Scientific, Waltham, MA, USA)
connected to Q-exactive HF mass spectrometer (Thermo Scientific, Waltham, MA, USA)
was used for the analysis. Mass spectra were recorded in the ion-positive mode with
nanoelectrospray ionization. The identification of proteins was carried out utilizing the
SearchGUI v.3.3.16 interface and X!Tandem, OMSSA and MS-GF+ algorithms [52]. The
alignments were made with Uniprot database (‘human’-filtered). The structuring of the
data by classes and functions of the proteins was carried out using Uniprot and PANTHER
databases [53]. For evaluation of the protein composition, the experiment was repeated at
least 3 times.

4.8. Enzyme-Linked Immunosorbent Assay (ELISA)

The concentrations of GDNF, BDNF, NGF and CNTF in CM were measured by ELISA
(RnD systems, Minneapolis, MN, USA) in accordance with the manufacturer’s protocol.
The collected CM samples were concentrated 24-fold with 3 kDa Amicon Ultra filter units
(Sigma-Aldrich, St. Louis, MO, USA) to 0.5 mg/mL total protein concentrations prior to
the analysis. Optical densities (absorbance at 450 nm) were measured in a plate reader
(PerkinElmer, Waltham, MA, USA). For evaluation of the concentrations of neurotrophins,
the experiment was repeated at least 3 times.

4.9. PCR Assay

For the reverse transcription polymerase chain reaction (RT-PCR) assay, cells or tissues
were collected in RNAlater reagent (Thermo Fisher Scientific, Waltham, MA, USA) for the
preservation of RNA molecules during storage. The total RNA from the collected cell or
tissue samples was isolated with the RNeasy Mini Kit (Qiagen, Limburg, Netherlands)
according to the manufacturer’s protocols. cDNA synthesis was carried out with the
RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher Scientific, Waltham, MA, USA)
according to the manufacturer’s protocol. The real-time PCR mixtures were set up with
qPCRmix-HS SYBR (Evrogen, Moscow, Russia); the reactions were carried out in a Bio-Rad
iQ thermal cycler as follows: primary denaturation 95 ◦C for 5 min followed by 40 cycles
of denaturation at 95 ◦C for 20 s, annealing at 55–63 ◦C for 20 s and elongation at 72 ◦C for
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20 s. Raw data for the genes of interest were normalized against constitutively expressed
reference genes GAPDH (Gapdh, glyceraldehyde-3-phosphate dehydrogenase) and ACTB
(Actb, beta-actin). Expression levels were calculated using the 2−∆∆C(T) approach. The
oligonucleotide sequences are given in Table 2. For evaluation of the mRNA lever of genes
in cell cultures, the experiment was repeated at least 3 times. The investigation of the
mRNA lever of genes in brain tissue included the animals from the control group (n = 10)
and the CM recipients (n = 12 each).

Table 2. Sequences and annealing temperatures of PCR primers.

Target Sequence (5′ to 3′) Annealing Temperature, ◦C

Bax for TTGTGGCTGGAGTCCTCACT
rev TTTCCCCGTTCCCCATTCATC 63

Bcl2 for GGGGCTACGAGTGGGATACT
rev GACGGTAGCGACGAGAGAAG 62.5

Tnf for CCACCACGCTCTTCTGTCTA
rev GCTACGGGCTTGTCACTCG 60.1

Il4 for ATGTAACGACAGCCCTCTGA
rev AGCACGGAGGTACATCACG 56.6

Il10 for GCCCAGAAATCAAGGAGCAT
rev TGAGTGTCACGTAGGCTTCTA

58.5

Il13 for CCAGAAGACTTCCCTGTGCA
rev CCCTCAGTGGCCATAGCG

62.3

Gapdh for GAGATTACTGCCCTGGCTCC
rev GCTCAGTAACAGTCCGCCTA

56.6

Actb for GCGAGATCCCGCTAACATCA
rev CCCTTCCACGATGCCAAAGT

55

GDNF for GAAAAGGTCGGAGAGGCCAG
rev AGCCGCTGCAGTACCTAAAA

63

BDNF for CCAGGTGAGAAGAGTGATGACC
rev CCTTGTCCTCGGATGTTTGC

62.6

CNTF for GTAAACCCAGCTGACTTGTTTCC
rev CAGCGGTGAATGCTCTGTGA

55.5

NGF for ACCCGCAACATTACTGTGGACC
rev GACCTCGAAGTCCAGATCCTGA

55

MAP2 for CTCAGCACCGCTAACAGAGG
rev CATTGGCGCTTCGGACAAG

62

TUBB3 for GCCAGACGCGCCCAGTATGAGG
rev GGTTCCGGGTTCCAGGTCCAC

62

S100B for AGCTTTCCAGCCGTGTTGTA
rev ACGGTGCACGCTTTATCACT

60.1

ENO2 forAGCCTCTACGGGCATCTATGA
rev TTCTCAGTCCCATCCAACTCC

62

GFAP for CTGCGGCTCGATCAACTCA
rev TCCAGCGACTCAATCTTCCTC

61

GREM1 for GTGACGGAGCGCAAATACCT
rev GGTTGATGATGGTGCGACTG

56.7

GAS6 for ATCCTCCTCTTTGCCGGAGG
rev CGACACCGTTGTAGCGCAG

59.1

GDF15 for CACCTGCGTATCTCTCGGGC
rev TCACGTCCCACGACCTTGAC

59.7

LIF for GAGCTGTACCGCATAGTCGT
rev CACAGCACGTTGCTAAGGAG

56.7

MYDGF for CCACGACGGTGGCGTTTG
rev CCCGGGCCCACGTTATGG

60

TGFb2 for ACATTGGCAAAACACCCAAGA
rev GTGTCTGAACTAGTACCGCCTTT

55.6

TWF2 for TAGAGCGGGAAACCATTGAG
rev TCATGGGTGTGCTTGTAGAG

54.5
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Table 2. Cont.

Target Sequence (5′ to 3′) Annealing Temperature, ◦C
SNX3 for GGCAGCAGCTACAGCGAAATG

rev GTCATTCAGGTTCTGCGGCTT
58.0

NPTX2 for TTGGACAAGAGCAGGACACC rev
GAGCAGTTGGCGATGTTGAC

57.0

FGF8 for GCTGCAGAATGCCAAGTACGA
rev TCATGAAGTGGACCTCACGCT

58.1

EFNB1 for GTTGGGCAAGATCCCAATGC
rev GGCCACTCTTCTCTTCCTGG

57.0

NTN1 for CTTCCTCACCGACCTCAACAA
rev CGAACTTCTTGCCGAGGGAC

57.6

VGF for TGAGCATAAAGAGCCGGTAGC
rev GGAAAAGCTCTCCCTCGTCCT

58.1

SERPINI1 for TGGTAACTGCTAAAGAGAGCCA
rev TGGCCACGGCTACATTTTGA

56.5

GAPDH for GAAGGTGAAGGTCGGAGTCA
rev TTCACACCCATGACGAACAT

56.6

ACTB for CCTGGCACCCAGCACAAT
rev GGGCCGGACTCGTCATAC

58.2

R. norvegicus and H. sapiens gene-specific oligonucleotides.

4.10. Modeling of Ischemic Stroke

Transient 90 min occlusion of the middle cerebral artery in rats was performed by
the standard method originally developed by Koizumi [54] and modified by Longa [55],
and with MRI guiding as described previously [56]. The animals were anesthetized with
a 3.5–4% isoflurane (Aerrane, Baxter HealthCare Corporation, Deerfield, IL, USA) mix
with atmospheric air for the induction and 2–2.5% isoflurane/air mix for its maintenance.
The right middle cerebral artery was temporary occluded with a silicone rubber-coated
monofilament (diameter 0.19 mm, length 30 mm, diameter with coating 0.37 ± 0.02 mm,
coating length 3–4 mm; Doccol, Sharon, MA, USA) for 90 min. During the operation and
until the emergence from anesthesia, the body temperature was maintained at 37 ◦C with a
warming pad.

4.11. Intra-Arterial Administration

Intra-arterial infusion was performed 24 h after MCAO for all experimental groups.
Under isoflurane inhalation anesthesia, as described above, the right common carotid
artery (CCA), the external carotid artery (ECA) stump and the internal carotid artery
(ICA) were exposed, and the pterygopalatine artery was ligated by a 5 ± 0 silk suture. A
microcatheter (rodent tail vein catheter with diameter 1F, Braintree Scientific, Inc., Braintree,
MA, USA) filled with saline to prevent air bubbles was inserted into the stump of the ECA
and advanced into the ICA for 5–6 mm from the bifurcation of the CCA. The catheter
external diameter was small enough to allow blood flow around it during the infusion.
The catheter was then connected to a 1 mL syringe placed in the microinjector, and 1 mL
of concentrated GPC-CM (50 µg/mL of total protein) or NPC-CM (50 µg/mL of total
protein), or 1 mL of non-conditioned DMEM/F12-based medium for the control group was
delivered into the ICA with the infusion velocity 100 µL/1 min with the maintenance of
blood flow in ICA. After intra-arterial administration, the catheter was removed, the ECA
stump was electrocoagulated and the incision was closed with a 5 ± 0 silk suture.

4.12. Assessment of the Neurological Deficit and Functional Recovery

Therapeutic effects of CM administration were estimated immediately before the
infusion (day 1) and on days 7, 14 and 30 p/i by the assessment of the survival rates, infarct
volume evaluated by MRI and neurological deficits evaluated by the modified neurological
severity score (mNSS) for rodents [23].
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4.13. Magnetic Resonance Imaging (MRI)

The imaging was accomplished in a 7T ClinScan small animal MRI system (Bruker
BioSpin, Billerica, MA, USA). During the procedure, rats were maintained under isoflurane
inhalation anesthesia as described above. For MRI evaluation of the in vivo dynamics of the
stroke volume, axial plane T2-weighted brain images (T2-WI) were acquired immediately
before the infusion (day 0) and on days 7, 14 and 30 p/i. Quantitative reconstruction
of the infarct volume on the basis of T2-WI was accomplished by the ImageJ software
(Wayne Rasband, National Institute of Mental Health, Bethesda, MD, USA) by calculating
V = (S1 + . . . + Sn) × (h + d), where S values correspond to the infarct area measured in
individual sections, h is slice thickness, and d is the spacing between the slices.

4.14. Histology and Immunohistochemistry

The formalin-fixed tissues were dehydrated and embedded in paraffin and cut on a
microtome. The 5–7 µm thick sections were positioned on gelatin-coated slides and dried
at 37 ◦C for 24 h. The sections were deparaffinized in xylene and rehydrated in 100–70◦

ethanol series, stained with H&E, dehydrated and mounted.
For immunohistochemistry, the tissues were cryosectioned at a 4–5 µm thickness.

The sections were pre-blocked in PBS with 0.3% Triton X-100 and 2% BSA for 1 h; in-
cubated with primary antibodies anti-CD68 (ab125212, Abcam, Cambridge, UK), anti-
CD86 (ab213044, Abcam, Cambridge, UK), anti-CD206 (ab64693, Abcam, Cambridge, UK),
anti-CD34 (ab185732, Abcam, Cambridge, UK) and anti-CD11b (sc-53086, Santa Cruz
Biotechnology, Dallas, TX, USA) at +4 ◦C overnight; washed and incubated with secondary
antibodies (Alexa Fluor 488 conjugated, Invitrogen, and Alexa Fluor 555 conjugated, In-
vitrogen, Carlsbad, CA, USA) for 60 min in the dark. The nuclei were counterstained
with DAPI solution (1 µg/mL in PBS). The images were recorded with Axio Observer.D1
inverted fluorescence microscope equipped with an AxioCam HRc camera (Carl Zeiss,
Oberkochen, Germany). Areas in and around the site of injury were randomly selected
from 7–10 locations for each animal (control group n = 10 and CM recipients n = 12 for
each group) to obtain positively stained cells or blood vessels. The total counts of CD68+,
CD11b+, CD86+ and CD206+ cells and the formation of blood vessels (anti-CD34 stained
histological sections) were determined with ImageJ software by counting the positively
stained cells or blood vessels at x200 magnification on days 30 p/i, which were then
normalized to per sq mm of the section.

4.15. TUNEL Assay

The TUNEL assay was carried out on cryosections according to the manufacturer’s
instructions (Click-iT TUNEL Alexa Fluor Imaging Assay, Invitrogen, Carlsbad, CA, USA).
Finally, all sections were washed with PBS and nuclei were counterstained with DAPI
(Sigma-Aldrich, St. Louis, MO, USA) solution (1 µg/mL in PBS). The sections were ob-
served with Axio Observer.D1 inverted fluorescence microscope equipped with AxioCam
HRc camera (Carl Zeiss, Oberkochen, Germany). TUNEL-positive cells were counted using
ImageJ analysis software at x400 magnification on days 30 p/i. Areas in and around the
damage tissue were randomly selected from 7–10 locations for each animal (control group
n = 10 and CM recipients n = 12 for each group) to obtain counts of positively stained cells,
which were then normalized to per sq mm of the section.

4.16. Statistical Analysis

The data were processed in SigmaPlot 12.5 software. Results were expressed as the
mean with standard deviation (SD). Differences at p ≤ 0.05 were considered significant.
Animal survival was assessed by the Kaplan–Meier method using a log-rank test. For
estimation of mNSS, infarct volume, PCR and morphometric analysis data were carried out
by t-test in the case of normal distribution or Mann–Whitney test in the case of non-normal
distribution for pairwise comparisons between groups. For multiple comparisons, one-way
ANOVA with the Holm–Sidak method was used for the cases of normal distribution,



Int. J. Mol. Sci. 2021, 22, 4694 17 of 19

whereas ANOVA on ranks with Dunn’s test was used for the cases of non-normal distri-
bution. The values of mNSS score and infarct volume were normalized based on the data
captured on day 1 for better assessment of the dynamics of changes.
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