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ABSTRACT

Approximately 50-75% of patients with serous ovarian carcinoma (SOC) 
experience recurrence within 18 months after first-line treatment. Current clinical 
indicators are inadequate for predicting the risk of recurrence. In this study, we 
used 7 publicly available microarray datasets to identify gene signatures related to 
recurrence in optimally debulked SOC patients, and validated their expressions in 
an independent clinic cohort of 127 patients using immunohistochemistry (IHC). We 
identified a two-gene signature including KCNN4 and S100A14 which was related 
to recurrence in optimally debulked SOC patients. Their mRNA expression levels 
were positively correlated and regulated by DNA copy number alterations (CNA) 
(KCNN4: p=1.918e-05) and DNA promotermethylation (KCNN4: p=0.0179; S100A14: 
p=2.787e-13). Recurrence prediction models built in the TCGA dataset based on KCNN4 
and S100A14 individually and in combination showed good prediction performance 
in the other 6 datasets (AUC:0.5442-0.9524). The independent cohort supported the 
expression difference between SOC recurrences. Also, a KCNN4 and S100A14-centered 
protein interaction subnetwork was built from the STRING database, and the shortest 
regulation path between them, called the KCNN4-UBA52-KLF4-S100A14 axis, was 
identified. This discovery might facilitate individualized treatment of SOC.

INTRODUCTION

Epithelial ovarian cancer (EOC) is the fifth leading 
cause of cancer-related death among women in the United 
States, with approximately 21,290 new patients and 14,180 
deaths in 2015 [1]. Serous ovarian cancer (SOC) is the 
most common histological subtype of EOC, accounting 
for 87% of advanced stage cases and 78% of total cases 
[2]. To date, the gold standard treatment for ovarian cancer 
involves cytoreductive surgery followed by platinum- and 
paclitaxel-based chemotherapy. Although a substantial 
proportion of individuals achieve a complete clinical 
response [3, 4], 50-75% of the patients suffer relapse 
within 18 months after first-line treatment [3], which 
means that SOC are scarcely ever curable, and generally 
have short-term progression-free survival [5]. In brief, 

recurrence is the first critical clinical episode that has a 
significant impact on prognosis. Recurrence under the 
premise of optimal debulking reflects the essence of tumor 
heterogeneity more than external factors. Nevertheless, 
with only clinical indicators, such as patient age, tumor 
stage, tumor grade and so on, it is difficult to predict 
which SOC patients will develop recurrence after optimal 
debulking surgery and standard first-line chemotherapy.

The development of high-throughput techniques, 
such as microarray and sequencing, will be helpful to 
gain insight into the molecular profiles of tumor cells in 
the context of recurrence. For the past few years, several 
studies have applied gene expression profiling to ovarian 
cancer [6–11]. However, only a small number of genes 
were shared among these gene profiles identified in 
separate studies [12]. No robust prediction models on 
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recurrence or overall survival have been established. It is 
urgent to establish novel and pragmatic gene signatures 
robustly applicable in multiple datasets with a large 
number of cases.

In this study, we strived to excavate novel gene 
signatures for recurrence in patients with SOC under the 
premise of optimal debulking surgery. We discovered 
2 candidate gene markers, KCNN4 and S100A14, 
relevant for recurrence from 7 publicly available 
microarray datasets. Recurrence forecasting models 
based on the 2 genes performed well. Consistent with 
our study, prior studies demonstrated that S100A14 
was overexpressed in SOC at both mRNA and protein 
levels [13]. To our knowledge, there is little valuable 
information on the role of KCNN4 in ovarian cancer or 
other cancers [14, 15]. This is the first report indicating 
that the KCNN4 gene acts as an independent predictor 
for recurrence in SOC patients and also may be a 
very attractive therapeutic target. Also, the KCNN4-
UBA52-KLF4-S100A14 axis we constructed may be 
the potential regulatory pathway between KCNN4 and 
S100A14 proteins, representing a novel regulatory 
mode impacting the early prognosis of SOC. Finally, 
we examined the protein expressions of KCNN4 and 
S100A14 in an independent clinical cohort of 127 SOC 
patients, which also supported the conclusion drawn 
from these 7 public datasets that these genes could 
be independent prognostic factors for recurrence in 
optimally debulked SOC patients.

RESULTS

Dataset characteristics and the identification of 
genes associated with an increased incidence of 
recurrence

After rigorous screening, 7 datasets (TCGA [16], 
TCGA.RNASeqV2 [16], GSE17260 [17], GSE26193 
[18], GSE30161 [19], GSE49997 [20], and GSE9891 
[21]) were obtained from the curatedOvarianData package 
according to the screening criteria detailed in Methods. 
In these 7 datasets, 305, 156, 37, 77, 17, 120, and 126 
samples, respectively, met the inclusion criteria for our 
analysis. The general characteristics of the 7 datasets are 
listed in Table 1 . In these datasets, patients who received 
optimal debulking surgery and relapsed after more than 
90 days from the termination of first-line treatments were 
classified into two groups according to their recurrence 
status (recurrence versus no recurrence). The top 2000 
genes were selected with a signal-to-noise ratio (SNR) 
criteria for the 7 datasets, and the common genes obtained 
via intersection were exactly KCNN4 and S100A14.

Correlation analysis of KCNN4 and S100A14

Through linear regression analysis, we preliminarily 
explored the linear relationship between the expression 
of KCNN4 and S100A14 in SOC, and the mRNA 
expressions of KCNN4 and S100A14 were significantly 

Table 1: general information of involved 7 public datasets

Datasets Platform Sample 
number

Screened 
Samples*

Age 
(year)# 
median 
(range)

Recurrence status# Days to 
recurrence# 

median 
(range)

Vital status# Days to 
death# 

Median 
(range)

no 
recurrence

recurrence deceased living

TCGA hthgu133a 481 305 57 (30 - 
84) 131 174 453 (92 - 

3378) 156 149 981 (92 - 
4623)

TCGA 
RNASeq RNASeqV2 242 156 56 (34 - 

84) 68 88 423 (92 - 
2648) 83 73 913 (92 - 

4623)

GSE17260 hgug4112a 84 37 - 19 18 690 (120 - 
2250) 10 27 990 (270 - 

2250)

GSE26193 hgu133plus2 79 77 - 16 61 595 (121 – 
7386) 58 19 1136 (194 

- 7386)

GSE30161 hgu133plus2 45 17 55 (47 - 
75) 3 14 566 (162 - 

4208) 9 8 1846 (377 
- 4208)

GSE49997 ABI 171 120 56 (27 - 
85) 51 69 533 (122 - 

1461) 30 90 776 (122 - 
1491)

GSE9891 hgu133plus2 239 126 59.5 (39 
- 80) 42 84 540 (120 - 

3060) 50 76 900 (180 - 
6420)

* Samples screened according to the criteria mentioned in the method section: optimal debulking and days_to_tumor_
recurrence > 90d.
# summarized according to screened samples.
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positively correlated in 6 datasets (p<0.05) except in 
the GSE26193 dataset (p=0.7694) (Figure 1A). The 
expression distributions of KCNN4 and S100A14 are 
shown based on recurrence status with dot and density 
plots in the 7 datasets (Supplementary Figure S1). Nearly 
half (42.9% (6/14)) of these expression distributions 
showed significant differences between the recurrence 
statuses (p=0.00473~0.4195). Furthermore, for detecting 
possible regulation mechanisms associated with the 
KCNN4 and S100A14 expression values, we measured the 
correlations of the mRNA expression values of KCNN4 
and S100A14 with their respective copy number alterations 
(CNA) as well as DNA methylation (Figure 1B). The copy 
number aberrations had 5 distinct statuses: homozygous 
deletion (-2), hemizygous deletion (-1), neutral (no 
change, 0), gain (+1), and high level amplification (+2). 
CNA status was significantly positively correlated with 

mRNA expression values of KCNN4 (p=1.918e-05). 
Moreover, we found a significant expression difference 
between the hemizygous deletion (-1) and neutral (0) 
(p=0.00003) statuses, as well as between the hemizygous 
deletion (-1) and gain (+1) (p=0.0024) statuses. However, 
no statistical significance was observed between the CNA 
status and the mRNA expression values of S100A14 
(p=0.4349). Both KCNN4 and S100A14 had significant 
negative correlations between their mRNA expression 
values and DNA methylation values (p=0.0179 and 
2.787e-13, respectively).

KCNN4 and S100A14 act as independent 
predictors of recurrence

We determined the expression cut-off points 
of KCNN4 and S100A14 in The Cancer Genome 

Figure 1: A. The correlation of gene expression between KCNN4 and S100A14 in 7 public datasets. In each dataset, recurrent samples and 
norecurrent samples were marked in red and blue, respectively. Some statistical results are also listed. The black solid line represents the 
linear regression; B. the correlation of the expression profiles of KCNN4 and S100A14 with CNA status as well as methylation values. For 
CNA status, -2 = homozygous deletion, -1 = hemizygous deletion, 0 = neutral/no change, 1 = gain, and 2 = high level amplification. The 
total significance was estimated from the null distribution constructed by the asymptotic K-sample permutation test. If significant, pairwise 
comparisons were then performed via TukeyHSD test, and the p values were adjusted with the BH method. The p values are also labeled. For 
methylation status, the red lines represent the linear regression between the expression values and methylation values.
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Atlas (TCGA) dataset as described in Methods, and 
their expression levels were classified as “low”(-) 
and “high”(+) accordingly. The KCNN4 expression 
status, S100A14 expression status, and their crossed 
combination status were significantly correlated with 
recurrence status in 7 datasets, and their odds ratios 
(ORs), 95% confidence indexes (CI), and p values 
are listed (Table 2). Higher mRNA expressions of 
KCNN4 or S100A14 were significantly correlated 
with higher recurrence rates of optimal debulked SOC 
patients in all datasets. Nevertheless, more significant 
expression difference were obtained by combining 
their expression statuses to form 4 crossed groups, 
namely, KCNN4(-)S100A14(-), KCNN4(+)S100A14(-), 
KCNN4(-)S100A14(+), and KCNN4(+)S100A14(+). The 
expression difference according to the 4 crossed groups 
seemed to be more significant than those of 2 combined 
groups in which KCNN4(-)S100A14(-) was compared 
with the other 3 statuses. Furthermore, statistical 
analysis of the relationships of the various clinical 
factors and their mRNA expression levels/statuses was 
systematically performed for the 7 datasets, and there 
were no obviously significant relationships among them 
except for recurrence status (Supplementary Table S1). 
According to our statistical outcomes, the KCNN4 
expression status were significantly correlated with 
recurrence in 5 datasets (TCGA, TCGA.RNASeqV2, 
GSE17260, GES26193 and GSE30161), and the 
KCNN4 expression values were significantly correlated 
with recurrence in 2 datasets (TCGA.RNASeqV2 and 

GSE30161). Both of the S100A14 expression status 
and the S100A14 expression values were correlated 
with recurrence in the same 4 datasets (TCGA, TCGA.
RNASeqV2, GSE26193, and GSE30161). As shown 
in Figure 2A-2C, the Kaplan-Meier curves and log-
rank tests emphasized the classification abilities on 
recurrence of the univariate expression statuses and 
combined expression status. It is noteworthy that, 
because they were initially screened according to 
differential expression on recurrence status, we could 
classify overall survival based on them in some 
datasets, but the results were not as robust as observed 
upon recurrence (Supplementary Figure S2). Moreover, 
according to the univariate and multivariate Cox 
regression analyses, the S100A14 and KCNN4 mRNA 
expression levels tended to be independently correlated 
with recurrence in the majority of datasets, while the 
KCNN4 mRNA expression level might serve as an 
independent prognostic factor for overall survival in 
the TCGA and GSE17260 datasets, as well as S100A14 
expression levels in the GSE26193 and GSE49997 
datasets (Supplementary Table S2).These results suggest 
that there were significant expression differences in 
early prognosis rather than late prognosis between the 
mRNA expression statuses of KCNN4 and S100A14. 
Thus, these genes could be employed as recurrence 
predictors and were not suitable for the prediction of 
overall survival. Prediction models were built in the 
TCGA dataset on the basis of KCNN4 and S100A14 
mRNA expression values, as well as their combination, 

Table 2: Expression difference of KCNN4 and S100A14 on SOC recurrence

Dataset KCNN4 S100A14 KCNN4+S100A14

OR 95%CI P OR 95%CI P OR 95%CI Pa Pb

TCGA 1.79 1.08 – 
2.98 0.0206 2.12 1.13 – 

4.13 0.0146 1.87 1.11 – 
3.18 0.0161 0.0117

TCGA 
RNASeq 3.18 1.52 – 

6.79 0.0011 2.91 1.33 - 
6.68 0.0051 4.13 1.87 - 

9.51 0.0001 0.0005

GSE17260 14.23 1.58 – 
705.97 0.0078 3.28 0.59 – 

24.07 0.151 3.28 0.59 – 
24.07 0.151 0.0165

GSE26193 5.34 1.17 – 
24.84 0.0142 9.18 1.86 – 

90.23 0.0016 1.53 0.44 – 
5.41 0.5704 0.0004

GSE30161 Inf 1.98 – 
Inf 0.0059 Inf 1.98 – 

Inf 0.0059 Inf 1.98 – 
Inf 0.0059 0.0059

GSE49997 4.11 0.82 – 
40.35 0.0691 7.28 0.78 – 

353.95 0.0821 Inf 0.02 - Inf 1 0.0068

GSE9891 1.82 0.76 – 
4.58 0.1689 6.28 0.49 – 

338.42 0.1075 2.06 0.85 – 
5.35 0.111 0.0878

a. This comparison were done between KCNN4(-)S100A14(-) and KCNN4(+)S100A14(+)/KCNN(+)S100A14(-)/KCNN(-)
S100A14(+)
b. Comparisons among 4 groups such as KCNN4(-)S100A14(-), KCNN4(+)S100A14(+), KCNN(+)S100A14(-) and 
KCNN(-)S100A14(+)
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using linear kernel SVM (svmLinear) to explore their 
prediction power for recurrence (Figure 2D). The area 
under ROC curve(AUC) and 95% confidence intervals 
(CI) of these 3 models showed good performance 
in the other 6 datasets (the highest AUC: 0.9524, 
95%CI: 0.848-1; the lowest AUC: 0.5442, 95%CI: 
0.4364-0.652). Additional 9 models were built by 3 
other machine learning algorithms: random forest 
(rf), radial kernel SVM (svmRadial), and the artificial 

neural network (nnet), and the AUC and 95%CIs 
of these models are also presented (Supplementary 
Figure S3). Basically, these models had prediction 
abilities consistent with the 3 models built by linear 
SVM, which means that the mRNA expression levels 
of KCNN4 and S100A14 had a stable prediction power 
for recurrence, regardless of which machine learning 
algorithm was adopted. From the above results, we 
can conclude that the mRNA expressions of KCNN4 

Figure 2: A. The KM plot of recurrence with different KCNN4 expression states. (-) means lower expression and (+) means higher 
expression; B. The KM plot of recurrence with different S100A14 expression states; C. The KM plot of recurrence with combined KCNN4 
and S100A14 states; D. The prediction power of the recurrence prediction model built with TCGA dataset in the other 6 datasets. The model 
was built with linear kernel SVM via 5-repeats of 10-fold cross validation, coupled with internal parameter selection procedures. For each 
dataset, the AUCs and 95%CIs are also listed.
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and S100A14 are independent prognostic indicators for 
recurrence in optimal debulked SOC patients.

A KCNN4- and S100A14-centered interaction 
subnetwork

To further interpret the interaction relationship 
between KCNN4 and S100A14, we built the minimal 

KCNN4 and S100A14-centered undirected interaction 
subnetwork from the high quality STRING protein 
interaction database (combined score ≥ 600) with k nearest 
neighbors (k=1) (Figure 3A). The shortest path between 
KCNN4 and S100A14, namely, the KCNN4-UBA52-
KLF4-S100A14 axis, was determined. We first speculated 
the most probable regulation directions using Bayesian 
network inference based on the hill-climbing algorithm 

Figure 3: A. The KCNN4 and S100A14 centered interaction subnetwork. The minimum network connected KCNN4 and S100A14 
constructed from a high quality STRING database (combined score >= 600) when restricted to 1-NN of KCNN4 and S100A14. Four 
communities were detected using fast greedy searching and are colored differently. The node sizes are proportional to the degrees of 
each gene; B. The regulation frameworks of the KCNN4-UBA52-KLF4-S100A14 axis determined by the Bayesian network based on 
hill-climbing scoring. The arrows are the regulation directions; C. Pairwise correlations of expression profiles of 4 genes in the TCGA 
dataset. The upper triangle showed the paired expression in all TCGA samples and the red lines represent the linear regression results. The 
lower triangle illustrated the pairwise Pearson’s correlation coefficients; D. Hypothesized regulation modes of the KCNN4-UBA52-KLF4-
S100A14 axis. The frames were colored according to the colors of the communities to which they belong. The arrows mean stimulation and 
the blocked arrow means inhibition. To the right is the proof for the regulation hypothesis; E. Word cloud representation of enriched GO 
and pathway terms on genes in the subnetwork (adjusted p<0.05). Their significance are illustrated with different font size and gray scale.
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and evaluated their performance with Akaike information 
criterion (AIC). Intriguingly, the regulatory directions were 
also almost consistent in the 7 datasets, and S100A14 was 
always regulated by KCNN4 (Figure 3B). We then measured 
the pairwise expression correlations of these 4 genes in the 
7 datasets (Figure 3C; Supplementary Figure S4), and some 
consistent negative/positive correlations were identified. 
Combining the above results, the final hypothetical 
regulation mode of this axis is shown as well as the relevant 
proofs (Figure 3D). Because the pairwise interactions were 
derived from convincing benchwork results and we had 
confirmed the consistent positive correlations of KCNN4 
and S100A14 in all 7 datasets, we speculated that this 
axis might represent the most direct regulatory pathway 
between KCNN4 and S100A14 in SOC. In detail, in the 
axis, the regulation directions tended to flow from KCNN4 
to S100A14. The directions between KCNN4 and UBA52, 
and between UBA52 and KLF4, could not be determined 
by Bayesian network inference and had no solid support 
from other traceable resources. The regulation direction 
between KLF4 and S100A14 was also demonstrated in 
breast cancer [22], as was the inference from our Bayesian 
network. The promotion of S100A14 on KCNN4 and 
UBA52 stimulation, as well as the inhibition of KLF4 by 
UBA52, was supported by Bayesian network inference. 
The stimulation and inhibition causality were confirmed by 
pairwise expression correlations throughout all 7 datasets. 
Therefore, with the support of Bayesian network inference, 
pairwise expression correlations, and previous research 
conclusions, we gained sufficient confidence about the 
reliability of the hypothetical regulation mode of this 
axis. Furthermore, we detected the KCNN4 and S100A14 
centered subnetwork in the community with a fast greedy 
algorithm [23], and 4 distinct communities were detected 
and colored accordingly. We found that these 4 axis genes 
belonged to 3 communities, that KCNN4, UBA52 and 
S100A14 were hub genes in their own communities, and 
that KLF4 was a key connector between UBA25 and 
S100A14. GO and pathway enrichment analysis of the 
minimal subnetwork showed that it was primarily involved 
in potassium ion transport (Figure 3E).

KCNN4 and S100A14 protein expression in SOC 
assessed by IHC

We examined the protein expression of KCNN4 
and S100A14 in an independent SOC cohort using 
immunohistochemistry (IHC) staining. KCNN4-
positive staining was predominantly localized in the 
nucleus and cytoplasm of cancer cells. S100A14-
positive staining was mainly localized to the cytoplasm 
and cytomembrane in cancer cells. Representative IHC 
KCNN4 and S100A14 staining shapes are shown in 
Figure 4. The main clinicopathologic parameters of 
127 SOC patients in our independent cohort underwent 
optimal debulking surgery, and their relationships with 

the IHC expression of KCNN4 and S100A14 are shown 
(Table 3). Significant differences in both the KCNN4 and 
S100A14 IHC expressions were found between recurrent 
cases and norecurrent cases (p=0.02301 and p=0.002346, 
respectively). As for the recurrence distribution between 
the KCNN4 and S100A14 combined groups, higher 
significance was achieved (p=3.607e-06). Additionally, 
high KCNN4 IHC expression was associated with FIGO 
stage (p=0.002668), and high S100A14 IHC expression 
was significantly associated with positive lymph node 
metastasis (p=0.02569). According to the univariate 
and multivariate Cox regression analyses, both KCNN4 
and S100A14 IHC expressions were correlated with 
recurrence, so KCNN4 and S100A14 could also be 
established as independent predictors for SOC recurrence 
within our cohort (Table 4). Kaplan-Meier curves were 
also plotted, and log-rank tests were performed to 
compare the recurrence predictions of singular KCNN4 
and S100A14 IHC expression in our cohort. In all 
situations, there were significant differences among the 
different IHC expression levels, and their combined IHC 
groups seemed to have better prediction abilities than 
the single genes, as illustrated in the above public SOC 
datasets (KCNN4: p=0.02016; S100A14: p=0.03589; 
KCNN4 and S100A14: p=0.00436) (Figure 5).

DISCUSSION

During the development of ovarian cancer, 
recurrence is the first critical clinical episode that has 
significant influence on late prognosis. The identification 
of patients who may experience recurrence before first-
line treatment would greatly benefit clinical management. 
Clinical factors have poor predictive power for recurrence. 
Until now, transcription profiling has been used to derive 
molecular signatures associated with the prognosis of 
ovarian cancer [6–11]. However, the gene signatures 
identified in these studies shared only a small number of 
genes [12]. The vast majority of previous researches had 
focused overall survival rather than initial recurrence. 
Nevertheless, the limited independent cohort datasets and 
small sample sizes in some studies raised doubts about 
the generalizability and creditability of these results. 
Furthermore, multigene signatures are not very convenient 
to apply in clinical routines, whether as clinical predicting 
indicators or as therapeutic targets. In our work, we 
identified that the high expression of KCNN4 and S100A14 
was associated with a high incidence of recurrence in 
optimally debulked SOC patients on both the mRNA 
and protein levels. To our knowledge, this is the first 
report about the relationship between KCNN4 and SOC. 
We established this 2-gene signature as an independent 
predictor for recurrence on optimally debulked SOC 
patients, robustly applicable in both multiple public 
datasets and our cohort data, and at both the mRNA and 
protein levels.
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Figure 4: Representative patterns of KCNN4 and S100A14 IHC staining in the SOC cohort. A. KCNN4 staining in SOCs 
with recurrence (R); B. KCNN4 staining in SOCs with norecurrence (NR); C. S100A14 staining in SOCs with recurrence (R); D. S100A14 
staining in SOCs with norecurrence (NR). Original magnification: ×200 and ×400. Scale bars, 100 μm, 50 μm.
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The KCNN4 gene encodes a KCa3.1 channel. The 
KCa3.1 channel is an intermediate conductance Ca2+-
activated potassium channel that is sensitive to changes 
in intracellular Ca2+ and is voltage-independent. It had 
been found to be related to tumor grade, cell proliferation, 
metastatic spread, and cell cycle progression in several 
cancer types including prostate, pancreas, and breast 
cancer [14, 24–27], melanoma [28], endometrial cancer 
[29], as well as non-small cell lung cancer (NSCLC) [30], 
but no reports can be seen on SOC. The KCa3.1 channel-
specific inhibitor, senicapoc, has been shown to prevent 
NSCLC proliferation [30].

S100A14 protein is a type of EF-hand calcium-
binding protein that can function both intracellularly and 
extracellularly. It is reported to be upregulated in some 
cancer types, including ovarian, lung, breast, uterine, 

and cervical cancer [31], but downregulated in others, 
for instance, kidney, colon, rectal, and esophageal cancer 
[32]. The overexpression of S100A14 is related with poor 
prognoses in breast cancer, liver cancer, cervical cancer 
and ovarian cancer [13, 31, 33–36] but is associated with 
favorable outcomes in colorectal and small intestinal 
cancers [37, 38]. Specifically for ovarian cancer, the 
prior studies of S100A14 on SOC demonstrated that 
S100A14 was overexpressed in transformed cells on 
both the RNA and protein levels, which is consistent 
with our results. They found that S100A14 expression 
is associated with advanced stage (p< 0.001) and poor 
tumor grade (p< 0.001), but this conclusion was neither 
universal in all public datasets nor could it be replicated 
with our cohort data. Their assertion that S100A14 
overexpression was an independent prognostic factor for 

Table 3: Relationship of KCNN4 and S100A14 expression with clinicopathological characteristics in SOC cohort

clinicopathological 
characteristics

No. KCNN4 S100A14

high(+) χ2 p value high(+) χ2 p value

Age(years)

 ≥60 36 25(69.4%)
0.7655 0.3816

31(86.1%)
0.0110 0.9166

 <60 91 70(76.9%) 79(86.8%)

Stage

 I~II 37 21(56.8%)
9.0215 0.002668

33(89.2%)
0.2986 0.5848

 III~IV 90 74(82.2%) 77(85.6%)

Grade

 Grade1 8 5(62.5%)

0.692 0.7075

7(87.5%)

4.6933 0.0957 Grade2 24 18(75.0%) 24(100%)

 Grade3 95 72(75.8%) 79(83.2%)

CA125(U/ml)

 ≥35 32 25(78.1%)
0.2505 0.6168

24(75.0%)
4.9771 0.02569

 <35 95 70(73.7%) 86(90.5%)

Ascites

 Positive 77 54(70.1%)
2.2662 0.1322

67(95.7%)
0.02683 0.8699

 Negative 50 41(82.0%) 43(86.0%)

Tumor size(cm)

 ≥5 87 66(75.9%)
0.1643 0.6852

72(82.8%)
0.9981 0.3178

 <5 40 29(72.5%) 38(95.0%)

Lymph node metastasis

 Positive 26 19(73.1%)
0.0517 0.8202

19(73.1%)
5.1675 0.02301

 Negative 101 76(75.2%) 91(90.1%)

Recurrence status

 Positive 73 62(84.9%)
9.3443 0.002237

69(94.5%)
9.2566 0.002346

 Negative 54 33(61.1%) 41(75.9%)
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overall survival (HR=4.53, p=0.029) could be partially 
supported by the enrolled public datasets and our data. 
Based on their results, we found that S100A14 could also 
be an independent prognosis predictor for recurrence and 
achieved higher prediction power when combined with 
KCNN4.

Moreover, we discussed their positive correlations 
of gene expression, and genomic regulations, with 
promoter methylation and CNV. We also sponsored a 
KCNN4 and S100A14-centered subnetwork and extracted 
the shortest regulation path between them, which was 
called the KCNN4-UBA52-KLF4-S100A14 axis, and 
speculated convincible regulation modes among them 
with the aid of Bayesian network inference, pairwise 
expression correlations and prior study conclusions. GO 
and pathway analyses of this subnetwork show that it is 
primarily involved in potassium ion transport, and the axis 
may play a central role. Previous studies have also noted 
that potassium ion channels are related to the proliferation, 
apoptosis and drug resistance of ovarian cancer cells 

[39–44]. Because S100A14 is an EF-hand calcium-
binding protein that has been reported to be involved in 
the progression of SOC, and KCa3.1 channel is a Ca2+-
dependent potassium channel, we assumed there was some 
type of regulatory causality between these two genes in 
SOC. More daringly, we speculated that the recurrence of 
SOC is associated with potassium ion transport. Our future 
work will further validate the prognostic value of KCNN4 
and S100A14, as well as the regulation hypothesis of the 
axis, in additional to multicenter prospective studies of 
optimal debulked SOC patients.

MATERIALS AND METHODS

Public datasets for exploratory studies

All statistical analyses and data mining procedures 
in this work were carried out with R (version: 3.2.2). The 
source codes are available upon request. Bioconductor 
package curatedOvarianData (version: 1.0.5) introduced a 

Table 4: Univariate and multivariate Cox regression on recurrence in SOC cohort

Clinical factors Univariate analysis Multivariate analysis

OR 95%CI Pr(>|z|) OR 95%CI Pr(>|z|)

Age(≥60y/<60y) 0.9994 0.7791 - 1.282 0.996 1.0227 0.7903 – 1.3234 0.8646

Stage(I-II/III-IV) 1.279 0.7905 - 2.068 0.316 1.1443 0.6615 – 1.9792 0.6298

Grade(I/II/III) 0.8208 0.5856 - 1.15 0.252 0.7624 0.5155 – 1.1276 0.1743

CA125(≥35/<35U/ml) 1.081 0.8237 - 1.42 0.573 0.9872 0.7233 – 1.3473 0.9345

Ascites(+/-) 0.9758 0.7704 - 1.236 0.839 1.0479 0.8181 – 1.3423 0.7109

Tumor size(≥5/<5cm) 0.9477 0.745 - 1.206 0.662 0.8903 0.6716 – 1.1802 0.4192

Lymph node 
metastasis(+/-) 1.188 0.9086 - 1.553 0.208 1.1910 0.8922 – 1.5900 0.2356

KCNN4(low/high) 0.4711 0.2461 - 0.9018 0.0231 0.4807 0.2402 – 0.9623 0.0386

S100A14(low/high) 0.3551 0.1292 - 0.9755 0.0446 0.2955 0.1020 – 0.8566 0.0248

Figure 5: The KM plot of SOC recurrence with KCNN4 and S100A14 expression status in our cohort. The p values from 
log-rank tests are also presented.
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manually curated data collection for gene expression meta-
analysis of patients with ovarian cancer and software for 
reproducible preparation of similar databases, providing a 
comprehensive and flexible resource for clinically oriented 
investigation of the ovarian cancer transcriptome [45]. We 
employed an R script called createEsetList which was 
provided in this package to filter datasets and samples. The 
screening procedure was based on the following criteria: 
a. only keep optimal debulked SOC cases; b. should have 
recurrence related clinical data such as “recurrence status” 
and “time to tumor recurrence”; c. exclude cases with 
recurrence time less than 90 days form the termination of 
first-line therapies in order to avoid ambiguous outcomes; 
d. only keep common genes in all datasets; e. removed low 
correlation samples and duplicated samples. According to 
above criteria, 7 datasets were kept for further analysis. 
Finally, expression values in all datasets were normalized 
as standard Z-score. The clinical data of 7 datasets were 
listed in Table 1.

Cohort specimens for IHC

Paraffin-embedded cancer tissue samples were 
obtained from 127 SOC patients who underwent optimal 
debulking surgery at Tongji Hospital from February 2007 
to May 2014. Optimal debulking surgery was defined 
as residual disease ≤1 cm after initial cytoreductive 
procedure. Postoperative Platinum and Taxol based 
chemotherapies commonly carried out for 4-8 cycles. 
The study was approved by the Ethical Committee of 
the Medical Faculty of Tongji Medical College, and 
written informed consents were obtained from all patients 
included. Individuals with preoperative chemotherapy 
or radiotherapy upon recurrence were excluded from 
this study. Ultimately, a cohort of 127 patients, who 
meet standards all above, was selected for our study. 
The stage of tumors were evaluated based on the 
InternationalFederation of Gynecology and Obstetrics 
(FIGO) criteria, while tumor grade were determined 
according to World Health Organization (WHO) standards. 
All subjects were reconfirmed for diagnosis by two 
independent pathologists in a blind manner. The original 
clinical data were obtained from clinical records database, 
including age at surgery, tumor stage and grade, serum 
CA-125 level, tumor size, ascites, lymph node metastasis, 
recurrence status and so on. Detailed characteristics 
of all cases are summarized in Table 3 . The follow-up 
period was calculated from the termination date of the 
first-line therapy to the date of last follow-up evaluation or 
recurrence. The duration of follow-up time ranged from 3 
to 89 months, the median time was 14 months. 73 (57.4%) 
of these cases relapsed during the follow-up period.

Recurrence related genes screening

We selected recurrence related genes by signal-to-
noise (SNR) ratio between 2 recurrence status, that is, 

recurrence and norecurrence, in all these 7 ovarian cancer 
datasets. SNR is defined as |(μ1-μ2)/(σ1+σ2)|, in which μ1 
and μ2 are mean values in two recurrence status, and σ1and 
σ2 are standard deviations in each group. Top 2000 genes 
which had high SNR in each dataset were selected and 
2 intersected genes finally obtained, which were KCNN4 
and S100A14.

Expression correlation between KCNN4 and 
S100A14

To explore the mRNA expression correlation 
between KCNN4 and S100A14, we made linear 
regressions between their expression in all 7 datasets. 
Their expression levels and distributions in all 7 datasets 
were also explored. To uncover the relationships of their 
mRNA expression with copy number alterations (CNA) 
and methylation, we extracted matched TCGA mRNA 
expression data, CNA data and methylation data of 
KCNN4 and S100A14 from cBioportal via cgdsr package 
[46, 47]. We estimated mRNA expression difference of 
KCNN4 and S100A14 among different CNA levels from 
a null distribution which was respectively constructed by 
asymptotic K-sample permutation test [48]. TukeyHSD 
tests were performed to detect pairwise significance, and 
all pairwise p values were adjusted with the method of 
Benjamini and Hochberg (BH). The linear regression 
of mRNA expression and methylation values were also 
performed.

Survival analysis of KCNN4 and S100A14

Since we screened these 2 targets from intersected 
recurrence status related genes, we wondered if they have 
prediction powers in early and late prognosis according 
to their mRNA expression levels. We decided their 
expression cutpoints in TCGA dataset to define binary 
expression status according to MinPvalue criterion from 
OptimalCutpoints package which aimed to minimize 
p value generated from χ2 test when measuring the 
association between the binary results obtained on using 
the cutpoint [49]. KCNN4 and S100A14 expression status 
were finally classified into “low” and “high” according 
to the comparisons between expression values with 
established cut-offs. The odds ratio (OR), 95% confidence 
index (CI), and p values of correlations between 
recurrence status and KCNN4, S100A14 expression status 
as well as their combination were determined via Fisher’s 
exact tests. Kaplan-Meier curves were drawn in univariate 
expression status as well as crossed expression status on 
recurrence, and log-rank tests were performed to check 
their significance. In order to check their classification 
abilities on late prognosis, we also performed log-rank 
tests on overall survival. We also explored the correlation 
of either KCNN4, S100A14 expression values or status 
with various clinical factors such as stage, grade, age, 
and so on. According to different data types and statistical 
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purposes, different statistical methods were adopted, 
which were labeled as table legends. At last, univariate and 
multivariate Cox regressions concerning clinical factors 
and KCNN4 and S100A14 expression status both in all 7 
datasets and our cohort were performed.

Recurrence prediction models construction and 
validation

To explore the prediction powers of KCNN4 
and S100A14 expression on binary recurrence status, 
we constructed prediction models on TCGA dataset 
with 4 different machine learning algorithms, that is, 
random forest (rf), linear kernel support vector machine 
(svmLinear), radial kernel support vector machine 
(svmRadial), artificial neural network (nnet) using caret 
package [50]. The training models were built upon 
KCNN4, S100A14 and both of them respectively. These 
training models were built via 5-repeats of 10-fold cross 
validations based on above algorithms and coupled with 
internal parameter selection procedures. The prediction 
performance were judged with ROC and kappa values 
originated from cross validation processes and the best 
models confirmed. These models were then validated in 
other 6 datasets.

KCNN4 and S100A14 centered interaction 
subnetwork

To further investigate the regulation modes between 
KCNN4 and S100A14, we constructed KCNN4 and 
S100A14 centered interaction subnetwork from high 
quality STRING protein interaction database (combined 
score ≥ 600) [51]. We built the minimal undirected 
interaction subnetwork that could connect KCNN4 and 
S100A14 with k nearest neighbors (k=1). We found 
KCNN4 and S100A14 were connected by other 2 genes, 
UBA52 and KLF4. We called the shortest path between 
them as KCNN4-UBA52-KLF4-S100A14 axis which 
may represent the most potential and effective regulatory 
path. In order to investigate the potential regulation modes 
in this axis, we should confirm the positive or negative 
regulation modes and upstream or downstream regulation 
directions. To achieve these purposes, we further 
calculated pairwise correlation of expression values of 
axis genes. Then we determined the most appropriate 
regulation directions among axis genes by constructing 
Bayesian networks on axis genes in all 7 datasets with 
hill climbing method, which is a score-based learning 
algorithm and its conditional independent test is based 
on AIC [52], then their prediction results were combined. 
We employed fast greedy searching community detection 
algorithm on KCNN4 and S100A14 centered interaction 
subnetwork to find functional modules, and put the axis 
forward as a regulation hypothesis. Enrichment analysis 
of all genes involved in KCNN4 and S100A14 centered 
interaction subnetwork was performed by hypergeometric 

tests on GO and pathway database such as KEGG and 
REACTOME, and the significant enriched terms (adjusted 
p<0.05) were illustrated in word clouds [53].

Immunohistochemistry analysis

IHC analysis was performed as described previously 
[54]. The treated tissue sections were incubated with 
rabbit anti-KCNN4 antibody (ABclonal, 1:50) and rabbit 
anti-S100A14 antibody (Proteintech, 1:100). IHC was 
performed via the G1210 kit (Wu hanGoodbio technology 
CO., LTD, Wuhan, China) according to manufacturer’s 
instructions. Antibody binding was visualized by using 3, 
3’-diaminobenzidine (DAB). The nuclei were counterstained 
with haematoxylin. Human tonsil and colon cancer tissues 
were selected as positive-control samples according to the 
manufacturers’ instructions and included in each batch. 
Negative-control samples were processed as per the standard 
protocol but with the IgG antibody.All slides were scanned 
by OLYMPUS (DP73) scanning system. IHC staining of 
KCNN4 or S100A14 was semi-quantitatively score don 
the basis of positively stained area and staining intensity by 
two independent pathologists in a blinded manner. Staining 
intensity was scored as follows: 0 (negative), 1 (weak), 2 
(moderate) and 3 (strong). While the percentage of positive 
cells wasalso scored as follows, 1(0-25%), 2(26-50%), 3(51-
75%), 4 (76-100%). The levels of KCNN4 and S100A14 
staining were assessed by immunoreactive score, which is 
the product of the intensity and percentage scores. KCNN4 
and S100A14 staining pattern was defined as low (0–6) and 
high (8–12). The relationships of KCNN4 and S100A14 
expression with clinicopathological characteristics were 
estimated by Chi-square tests estimated from resampled 
null distributions. We performed univariate and multivariate 
Cox regression on recurrence in our cohort to validate their 
independent prediction powers for recurrence. KM curves 
were plotted to explore their expression status in different 
recurrence status, and log-rank tests performed to validate 
their significance.

CONFLICTS OF INTEREST

The authors indicate no potential conflicts of 
interest.

FUNDING

This study is supported by the National 
Basic Research Program of China (973 Program, 
2015CB553903), the National High Technology 
Research and National Development Program of China 
(863 program, 2012AA02A507), the National Science-
technology Support Plan Projects (2015BAI13B05) and 
Nature and Science Foundation of China (81272859, 
30801340, 81230038, 81202061, 81502258, 81501530, 
81402163, 81402164, G30973184).



Oncotarget43936www.impactjournals.com/oncotarget

REFERENCES

1. Siegel RL, Miller KD and Jemal A. Cancer statistics, 2015. 
CA Cancer J Clin. 2015; 65:5-29.

2. Seidman JD, Horkayne-Szakaly I, Haiba M, Boice CR, 
Kurman RJ and Ronnett BM. The histologic type and stage 
distribution of ovarian carcinomas of surface epithelial 
origin. Int J Gynecol Pathol. 2004; 23:41-44.

3. McGuire WP, Hoskins WJ, Brady MF, Kucera PR, Partridge 
EE, Look KY, Clarke-Pearson DL and Davidson M. 
Cyclophosphamide and cisplatin compared with paclitaxel 
and cisplatin in patients with stage III and stage IV ovarian 
cancer. The New England journal of medicine. 1996; 
334:1-6.

4. Ozols RF, Bundy BN, Greer BE, Fowler JM, Clarke-
Pearson D, Burger RA, Mannel RS, DeGeest K, Hartenbach 
EM, Baergen R and Gynecologic Oncology G. Phase III 
trial of carboplatin and paclitaxel compared with cisplatin 
and paclitaxel in patients with optimally resected stage 
III ovarian cancer: a Gynecologic Oncology Group study. 
Journal of clinical oncology: official journal of the American 
Society of Clinical Oncology. 2003; 21:3194-3200.

5. Salani R, Backes FJ, Fung MF, Holschneider CH, Parker 
LP, Bristow RE and Goff BA. Posttreatment surveillance 
and diagnosis of recurrence in women with gynecologic 
malignancies: Society of Gynecologic Oncologists 
recommendations. American journal of obstetrics and 
gynecology. 2011; 204:466-478.

6. Berchuck A, Iversen ES, Lancaster JM, Dressman 
HK, West M, Nevins JR and Marks JR. Prediction of 
optimal versus suboptimal cytoreduction of advanced-
stage serous ovarian cancer with the use of microarrays. 
American journal of obstetrics and gynecology. 2004; 
190:910-925.

7. Berchuck A, Iversen ES, Lancaster JM, Pittman J, Luo 
J, Lee P, Murphy S, Dressman HK, Febbo PG, West M, 
Nevins JR and Marks JR. Patterns of gene expression that 
characterize long-term survival in advanced stage serous 
ovarian cancers. Clin Cancer Res. 2005; 11:3686-3696.

8. Hartmann LC, Lu KH, Linette GP, Cliby WA, Kalli KR, 
Gershenson D, Bast RC, Stec J, Iartchouk N, Smith 
DI, Ross JS, Hoersch S, Shridhar V, Lillie J, Kaufmann 
SH, Clark EA, et al. Gene expression profiles predict 
early relapse in ovarian cancer after platinum-paclitaxel 
chemotherapy. Clin Cancer Res. 2005; 11:2149-2155.

9. Lancaster JM, Dressman HK, Whitaker RS, Havrilesky 
L, Gray J, Marks JR, Nevins JR and Berchuck A. Gene 
expression patterns that characterize advanced stage serous 
ovarian cancers. Journal of the Society for Gynecologic 
Investigation. 2004; 11:51-59.

10. Spentzos D, Levine DA, Ramoni MF, Joseph M, Gu X, 
Boyd J, Libermann TA and Cannistra SA. Gene expression 
signature with independent prognostic significance in 
epithelial ovarian cancer. J Clin Oncol. 2004; 22:4700-4710.

11. Dressman HK, Berchuck A, Chan G, Zhai J, Bild A, 
Sayer R, Cragun J, Clarke J, Whitaker RS, Li L, Gray J, 
Marks J, Ginsburg GS, Potti A, West M, Nevins JR, et al. 
An integrated genomic-based approach to individualized 
treatment of patients with advanced-stage ovarian cancer. 
J Clin Oncol. 2007; 25:517-525.

12. Konstantinopoulos PA, Spentzos D and Cannistra SA. 
Gene-expression profiling in epithelial ovarian cancer. 
Nature clinical practice Oncology. 2008; 5:577-587.

13. Cho H, Shin HY, Kim S, Kim JS, Chung JY, Chung EJ, 
Chun KH, Hewitt SM and Kim JH. The role of S100A14 in 
epithelial ovarian tumors. Oncotarget. 2014; 5:3482-3496. 
doi: 10.18632/oncotarget.1947.

14. Lallet-Daher H, Roudbaraki M, Bavencoffe A, Mariot 
P, Gackiere F, Bidaux G, Urbain R, Gosset P, Delcourt 
P, Fleurisse L, Slomianny C, Dewailly E, Mauroy B, 
Bonnal JL, Skryma R and Prevarskaya N. Intermediate-
conductance Ca2+-activated K+ channels (IKCa1) regulate 
human prostate cancer cell proliferation through a close 
control of calcium entry. Oncogene. 2009; 28:1792-1806.

15. De Marchi U, Sassi N, Fioretti B, Catacuzzeno L, Cereghetti 
GM, Szabo I and Zoratti M. Intermediate conductance 
Ca2+-activated potassium channel (KCa3.1) in the inner 
mitochondrial membrane of human colon cancer cells. Cell 
calcium. 2009; 45:509-516.

16. Cancer Genome Atlas Research N. Integrated genomic 
analyses of ovarian carcinoma. Nature. 2011; 474:609-615.

17. Yoshihara K, Tajima A, Yahata T, Kodama S, Fujiwara 
H, Suzuki M, Onishi Y, Hatae M, Sueyoshi K, Fujiwara 
H, Kudo Y, Kotera K, Masuzaki H, Tashiro H, Katabuchi 
H, Inoue I, et al. Gene expression profile for predicting 
survival in advanced-stage serous ovarian cancer across two 
independent datasets. PloS one. 2010; 5:e9615.

18. Mateescu B, Batista L, Cardon M, Gruosso T, de Feraudy 
Y, Mariani O, Nicolas A, Meyniel JP, Cottu P, Sastre-Garau 
X and Mechta-Grigoriou F. miR-141 and miR-200a act 
on ovarian tumorigenesis by controlling oxidative stress 
response. Nature medicine. 2011; 17:1627-1635.

19. Ferriss JS, Kim Y, Duska L, Birrer M, Levine DA, 
Moskaluk C, Theodorescu D and Lee JK. Multi-gene 
expression predictors of single drug responses to adjuvant 
chemotherapy in ovarian carcinoma: predicting platinum 
resistance. PloS one. 2012; 7:e30550.

20. Pils D, Hager G, Tong D, Aust S, Heinze G, Kohl M, 
Schuster E, Wolf A, Sehouli J, Braicu I, Vergote I, Cadron 
I, Mahner S, Hofstetter G, Speiser P and Zeillinger R. 
Validating the impact of a molecular subtype in ovarian 
cancer on outcomes: a study of the OVCAD Consortium. 
Cancer science. 2012; 103:1334-1341.

21. Tothill RW, Tinker AV, George J, Brown R, Fox SB, Lade S, 
Johnson DS, Trivett MK, Etemadmoghadam D, Locandro 
B, Traficante N, Fereday S, Hung JA, Chiew YE, Haviv I, 
Australian Ovarian Cancer Study G, et al. Novel molecular 



Oncotarget43937www.impactjournals.com/oncotarget

subtypes of serous and endometrioid ovarian cancer linked 
to clinical outcome. Clin Cancer Res. 2008; 14:5198-5208.

22. He H, Li S, Chen H, Li L, Xu C, Ding F, Zhan Y, Ma J, Zhang 
S, Shi Y, Qu C and Liu Z. 12-O-tetradecanoylphorbol-13-
acetate promotes breast cancer cell motility by increasing 
S100A14 level in a Kruppel-like transcription factor 4 
(KLF4)-dependent manner. The Journal of biological 
chemistry. 2014; 289:9089-9099.

23. Clauset A, Newman ME and Moore C. Finding community 
structure in very large networks. Phys Rev E Stat Nonlin 
Soft Matter Phys. 2004; 70:066111.

24. Ohya S, Kimura K, Niwa S, Ohno A, Kojima Y, Sasaki S, 
Kohri K and Imaizumi Y. Malignancy grade-dependent 
expression of K+-channel subtypes in human prostate 
cancer. Journal of pharmacological sciences. 2009; 
109:148-151.

25. Jager H, Dreker T, Buck A, Giehl K, Gress T and Grissmer 
S. Blockage of intermediate-conductance Ca2+-activated 
K+ channels inhibit human pancreatic cancer cell growth in 
vitro. Molecular pharmacology. 2004; 65:630-638.

26. Haren N, Khorsi H, Faouzi M, Ahidouch A, Sevestre H 
and Ouadid-Ahidouch H. Intermediate conductance Ca2+ 
activated K+ channels are expressed and functional in 
breast adenocarcinomas: correlation with tumour grade 
and metastasis status. Histology and histopathology. 2010; 
25:1247-1255.

27. Ouadid-Ahidouch H, Roudbaraki M, Delcourt P, Ahidouch 
A, Joury N and Prevarskaya N. Functional and molecular 
identification of intermediate-conductance Ca(2+)-activated 
K(+) channels in breast cancer cells: association with cell 
cycle progression. American journal of physiology Cell 
physiology. 2004; 287:C125-134.

28. Tajima N, Schonherr K, Niedling S, Kaatz M, Kanno H, 
Schonherr R and Heinemann SH. Ca2+-activated K+ 
channels in human melanoma cells are up-regulated by 
hypoxia involving hypoxia-inducible factor-1alpha and 
the von Hippel-Lindau protein. The Journal of physiology. 
2006; 571:349-359.

29. Wang ZH, Shen B, Yao HL, Jia YC, Ren J, Feng YJ and 
Wang YZ. Blockage of intermediate-conductance-Ca(2+) 
-activated K(+) channels inhibits progression of human 
endometrial cancer. Oncogene. 2007; 26:5107-5114.

30. Bulk E, Ay AS, Hammadi M, Ouadid-Ahidouch H, 
Schelhaas S, Hascher A, Rohde C, Thoennissen NH, 
Wiewrodt R, Schmidt E, Marra A, Hillejan L, Jacobs 
AH, Klein HU, Dugas M, Berdel WE, et al. Epigenetic 
dysregulation of K 3.1 channels induces poor prognosis in 
lung cancer. International journal of cancer. 2015.

31. Wang X, Yang J, Qian J, Liu Z, Chen H and Cui Z. 
S100A14, a mediator of epithelial-mesenchymal transition, 
regulates proliferation, migration and invasion of human 
cervical cancer cells. American journal of cancer research. 
2015; 5:1484-1495.

32. Pietas A, Schluns K, Marenholz I, Schafer BW, Heizmann 
CW and Petersen I. Molecular cloning and characterization 

of the human S100A14 gene encoding a novel member of 
the S100 family. Genomics. 2002; 79:513-522.

33. McKiernan E, McDermott EW, Evoy D, Crown J and Duffy 
MJ. The role of S100 genes in breast cancer progression. 
Tumour Biol. 2011; 32:441-450.

34. Ehmsen S, Hansen LT, Bak M, Brasch-Andersen C, Ditzel 
HJ and Leth-Larsen R. S100A14 is a novel independent 
prognostic biomarker in the triple-negative breast cancer 
subtype. International journal of cancer. 2015.

35. Xu C, Chen H, Wang X, Gao J, Che Y, Li Y, Ding F, Luo 
A, Zhang S and Liu Z. S100A14, a member of the EF-hand 
calcium-binding proteins, is overexpressed in breast cancer 
and acts as a modulator of HER2 signaling. The Journal of 
biological chemistry. 2014; 289:827-837.

36. Zhao FT, Jia ZS, Yang Q, Song L and Jiang XJ. S100A14 
promotes the growth and metastasis of hepatocellular 
carcinoma. Asian Pac J Cancer Prev. 2013; 14:3831-3836.

37. Wang HY, Zhang JY, Cui JT, Tan XH, Li WM, Gu J and Lu 
YY. Expression status of S100A14 and S100A4 correlates 
with metastatic potential and clinical outcome in colorectal 
cancer after surgery. Oncology reports. 2010; 23:45-52.

38. Kim G, Chung JY, Jun SY, Eom DW, Bae YK, Jang KT, 
Kim J, Yu E and Hong SM. Loss of S100A14 expression is 
associated with the progression of adenocarcinomas of the 
small intestine. Pathobiology. 2013; 80:95-101.

39. Innamaa A, Jackson L, Asher V, Van Shalkwyk G, Warren 
A, Hay D, Bali A, Sowter H and Khan R. Expression and 
prognostic significance of the oncogenic K2P potassium 
channel KCNK9 (TASK-3) in ovarian carcinoma. 
Anticancer research. 2013; 33:1401-1408.

40. Han X, Xi L, Wang H, Huang X, Ma X, Han Z, Wu P, Ma 
X, Lu Y, Wang G, Zhou J and Ma D. The potassium ion 
channel opener NS1619 inhibits proliferation and induces 
apoptosis in A2780 ovarian cancer cells. Biochemical and 
biophysical research communications. 2008; 375:205-209.

41. Innamaa A, Jackson L, Asher V, van Schalkwyk G, Warren 
A, Keightley A, Hay D, Bali A, Sowter H and Khan R. 
Expression and effects of modulation of the K2P potassium 
channels TREK-1 (KCNK2) and TREK-2 (KCNK10) in 
the normal human ovary and epithelial ovarian cancer. Clin 
Transl Oncol. 2013; 15:910-918.

42. Zhanping W, Xiaoyu P, Na C, Shenglan W and Bo W. 
Voltage-gated K+ channels are associated with cell 
proliferation and cell cycle of ovarian cancer cell. 
Gynecologic oncology. 2007; 104:455-460.

43. Shen MR, Lin AC, Hsu YM, Chang TJ, Tang MJ, Alper 
SL, Ellory JC and Chou CY. Insulin-like growth factor 1 
stimulates KCl cotransport, which is necessary for invasion 
and proliferation of cervical cancer and ovarian cancer cells. 
The Journal of biological chemistry. 2004; 279:40017-40025.

44. Samuel P, Pink RC, Caley DP, Currie JM, Brooks SA and 
Carter DR. Over-expression of miR-31 or loss of KCNMA1 
leads to increased cisplatin resistance in ovarian cancer 
cells. Tumour Biol. 2015.



Oncotarget43938www.impactjournals.com/oncotarget

45. Ganzfried BF, Riester M, Haibe-Kains B, Risch T, Tyekucheva 
S, Jazic I, Wang XV, Ahmadifar M, Birrer MJ and Parmigiani 
G. curatedOvarianData: clinically annotated data for the 
ovarian cancer transcriptome. Database. 2013; 2013:bat013.

46. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, 
Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML and Larsson 
E. The cBio cancer genomics portal: an open platform for 
exploring multidimensional cancer genomics data. Cancer 
discovery. 2012; 2:401-404.

47. Jacobsen A. cgdsr: R-Based API for Accessing the MSKCC 
Cancer Genomics Data Server (CGDS). R package version 
125. 2015; http://CRAN.R-project.org/package=cgdsr.

48. Zeileis A, Wiel MA, Hornik K and Hothorn T. Implementing 
a class of permutation tests: The coin package. Journal of 
statistical software. 2008; 28:1-23.

49. Lopez-Raton M, Rodriguez-Alvarez MX, Cadarso-Suárez 
C and Gude-Sampedro F. OptimalCutpoints: An R Package 
for Selecting Optimal Cutpoints in Diagnostic Tests. Journal 
of statistical software. 2014; 61:1-36.

50. Core MKCfJWaSWaAWaCKaAEaTCaZMaBKatR. caret: 
Classification and Regression Training. R package version 
60-58. 2015; http://CRAN.R-project.org/package=caret.

51. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth 
A, Minguez P, Doerks T, Stark M, Muller J and Bork P. The 
STRING database in 2011: functional interaction networks 
of proteins, globally integrated and scored. Nucleic acids 
research. 2011; 39:D561-D568.

52. Scutari M. Learning Bayesian networks with the bnlearn R 
package. arXiv preprint arXiv:09083817. 2009.

53. Kolde R. GOsummaries: Word cloud summaries of GO 
enrichment analysis. R package version 220. 2014; https://
github.com/raivokolde/GOsummaries.

54. Li J, Cheng Y, Tai D, Martinka M, Welch DR and Li G. 
Prognostic significance of BRMS1 expression in human 
melanoma and its role in tumor angiogenesis. Oncogene. 
2011; 30:896-906.


