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Abstract

The analysis of microbiome data has several technical challenges. In particular, count
matrices contain a large proportion of zeros, some of which are biological, whereas
others are technical. Furthermore, the measurements suffer from unequal sequencing
depth, overdispersion, and data redundancy. These nuisance factors introduce
substantial noise. We propose an accurate and robust method, mbDenoise, for
denoising microbiome data. Assuming a zero-inflated probabilistic PCA (ZIPPCA)
model, mbDenoise uses variational approximation to learn the latent structure and
recovers the true abundance levels using the posterior, borrowing information across
samples and taxa. mbDenoise outperforms state-of-the-art methods to extract the
signal for downstream analyses.

Keywords: Biological zeros, Differential abundance, Diversity, Negative binomial,
Normalization

Background
Advances in DNA sequencing technologies have revolutionized the study of microbial
communities inmany diverse environments, and in particular have enabled researchers to
better understand the implications of microbiome variation in human health and disease.
These developments have led to a rapidly growing number of microbiome studies and
unprecedented volumes of sequencing count data. Despite improvements in experimental
methods and protocols, the analysis and interpretation of these data are complicated by
nuisance factors such as uneven sequencing depth, overdispersion, data redundancy, and
especially data sparsity [1]. These characteristics lead to substantial noise in microbiome
data, making it difficult to distinguish between technical and biological variation, and
thus, if not addressed, can obstruct high-level analyses, such as unconstrained ordination,
alpha and beta diversity calculation, and differential abundance testing [2].
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First, the total number of reads per sample (observed sequencing depth or library size)
is strongly affected by the sequencing platform used and the number of samples that
are multiplexed per run, and can vary by orders of magnitude across samples. Conse-
quently, unequal sequencing depth represents the deficiency of the sequencing process
instead of the real biological variation. Second, sampling is another obvious source of
technical variation due to limited sequencing depth, and it is known that there is overdis-
persion in sequencing data, which refers to the fact that read counts are more variable
than what is expected according to a Poisson distribution. These variations can usually be
accounted for using a discrete probability model, and many existing approaches use the
negative binomial distribution as a means of controlling for overdispersion [3, 4]. Third,
the microbiome is functionally redundant, that is, some taxa perform similar functions in
communities and ecosystems, and redundant taxa may therefore be substitutable with lit-
tle impact on ecosystem processes [5]. As a result of the correlations between microbes,
the intrinsic dimension of abundance data is typically smaller than the ambient dimension
of feature space. This data redundancy can be addressed by a low-rank approximation
[6], which can potentially eliminate the problem of overfitting and improve prediction
accuracy, especially when the sample-size to feature-dimension ratio is small.
Microbiome data are often extremely sparse, that is, the count matrices contain a large

proportion of zero values. This sparsity can arise for two reasons. First, microbes are
present in the environment but not detected due to low sequencing depth and sam-
pling variation. We refer to these zeros as technical zeros. Second, it is possible that
some microbes are incapable of living in the environment and truly never represented. It
could also be that an intrinsic stochasticity in the biochemical process inhibits our abil-
ity to detect these microbes [7]. We call the resulting zeros biological zeros. For accurate
analysis of microbiome data, biological signal should be separated from technical noise,
and choosing a method that adequately addresses variability in sequencing depth, data
sparsity and overdispersion, and data redundancy has been the subject of active research.
A line of study distinguishes technical zeros from biological zeros, and replaces or

imputes technical zeros by nonzero values. Jiang et al. [8] proposed the first method,
mbImpute, for microbiome data. It is a two-stage procedure. First, taxa abundance val-
ues are fitted by a gamma-normal mixture model, and those that need imputation are
identified. Second, data imputation is performed by penalized linear regressions that
combines the predictive power of similar taxa, similar samples, and sample covariates.
A related approach, called scImpute [9], was developed specifically for single-cell RNA-
seq (scRNA-seq) data. Expression values of genes in a cell affected by dropout events
are determined by the gamma-normal mixture model, and they are imputed using non-
negative least squares that borrows information of the same gene in other similar cells.
These two methods divide every count in a sample by the sequencing depth of that
sample, and log-transform the relative abundance data. Another method for use on
scRNA-seq data, ALRA [10], computes a low-rank approximation by singular vector
decomposition to recover true nonzero expression values, and selectively preserves bio-
logical zeros at zero expression levels. It utilizes the non-negativity and redundancy of
expression matrices, and is motivated by the observation that the nonzero values incor-
rectly assigned to biological zeros are symmetrically distributed around zero. A major
drawback of the above methods is that a threshold needs to be specified so as to decide
which zeros do not require imputation.
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A different thread directly extracts biological signal buried in technical noise. Huang
et al. [11] proposed SAVER to restore scRNA-seq expression data. SAVER assumes a
Poisson-gamma mixture model for unique molecule index-based counts, estimates the
parameters using penalized Poisson regressions that take advantage of gene-to-gene rela-
tionships, and then uses posterior means to recover the expression level of each gene
in each cell. A size factor is included in the Poisson model to account for differences
in sequencing depth across cells. Unlike scImpute and ALRA, however, SAVER treats
all zeros equally, and the authors recommend removing extremely low-abundance genes
at the beginning. To account for the distinction between technical and biological zeros,
Eraslan et al. [12] proposed a deep learning based autoencoder, DCA, to remove technical
noise while retaining biological variation in scRNA-seq data. DCA carries out a likelihood
ratio test between the negative binomial (NB) and zero-inflated negative binomial (ZINB)
to specify the noise model. The inferredmeanmatrix of the negative binomial component
represents reconstructed gene expression values. Another deep learning method, known
as scVI [13], also makes use of autoencoders with a ZINB distribution for embedding
scRNA-seq data. scVI assumes a fully Bayesian model and explicitly corrects sequencing
depth and batch effect biases. It uses variational inference to approximate the distribu-
tions that underlie observed expression values. The key advantages of DCA and scVI are
their flexibility and scalability, namely, they can capture nonlinear gene-gene dependen-
cies and scale almost linearly with the number of cells. Although deep learning methods
are popular in recent years for analyzing scRNA-seq data, they may not provide useful
solutions in the analysis of microbiome data. This is because neural networks have many
hidden units and layers that make them prone to overfitting in problems that involve
substantial amount of noise and limited data. Unfortunately, the number of samples in
microbiome studies is usually in the order of tens or hundreds and much smaller than
that of cells in scRNA-seq datasets. The extraction of biologically meaningful information
from microbiome data thus requires the development of specialized denoising methods.
We develop mbDenoise, a latent variable modeling approach for denoising microbiome

data. mbDenoise borrows information across samples and taxa to decouple biological
signal from technical variation. mbDenoise is based on a noise model that extends prob-
abilistic PCA to address the nuisance factors in microbiome data (Fig. 1). The observed
count of a taxon in a sample is generated from a ZINB model. The NB component
accounts for the presence of overdispersion in count data, and the second component, a
point mass at zero, deals with the data sparsity problem and distinguishes between tech-
nical and biological zeros. Unobserved sample-specific effects are included in the linear
predictor of the NB component to remove technical bias due to differences in sequencing
depth. The low-rank representation, that is, the linear combinations of latent factors in
the linear predictor, takes advantage of the redundancy in microbiome data and reflects
the remaining variation. We call the generative model for mbDenoise zero-inflated prob-
abilistic PCA (ZIPPCA). Environmental variables, if available, can be easily adjusted for in
this framework. mbDenoise denoises microbiome data by learning the latent features and
then recovering the true abundance levels using the posterior mean. See the “Methods”
section for details. Using simulated and real datasets, we extensively investigate the per-
formance of mbDenoise by carrying out downstream statistical analyses on the denoised
data, including dimension reduction and ordination analysis, alpha and beta diversity
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Fig. 1 Overview of mbDenoise and the noise model. ambDenoise distinguishes biological zeros from
technical zeros, and assumes that the true nonzero abundance data lie on a low-dimensional latent space
embedded in the high-dimensional feature space, reflecting the observed redundancy in microbiome data.
mbDenoise recovers the true abundance levels, that is, the latent signal matrix, by fitting a zero-inflated
probabilistic PCA (ZIPPCA) model. The ZIPPCA framework takes into account uneven library size,
overdispersion, and sparsity using a mixture model that consists of a negative binomial count distribution and
a point mass at zero. b Input data (that is, observed count matrix) are assumed to be samples from this mixture
model, and the posterior mean estimate of the latent signal matrix by variational approximation represents
the denoised output. The denoised abundance can be used for multiple downstream analysis tasks

analysis, and differential abundance analysis. We also compare mbDenoise to mbImpute
and other state-of-the-art methods.

Results
Simulation experiments

We used six simulated examples (M1-M6), each with two different combinations of sam-
ple size n and number of taxa p, to examine the performance of mbDenoise. Below is a
brief description of each example. More detailed information can be seen in Additional
file 1: Table S1.1.
In example M1, data were generated from the zero-inflated negative binomial model

in the “Methods” section. Examples M2 and M3 replaced negative binomial by Poisson
and logistic normal multinomial distributions, respectively. Example M4 assumed a zero-
inflated log normal distribution, whose positive part generated continuous data instead of
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counts. These models are extensions of probabilistic PCA or factor analysis models and
belong to the general class of generalized latent variable models.
In addition to zero-inflatedmodels, data in exampleM5, borrowed fromNiku et al. [14],

were generated from a negative binomial latent variable model, where latent variables
followed a mixture of Gaussians, rather than a standard normal distribution as inM1-M4.
Example M6 adopted the simulation setting of Cao et al. [15], in which data were drawn
from a multinomial distribution with nonrandom factors.
To illustrate how our method can be used in finding overall patterns in microbiome

variation and detecting differentially abundant (DA) taxa in the comparison groups of
interest, we first assessed the accuracy of estimation and prediction. Then, we examined
the performance in terms of composition estimation. Finally, we evaluated the effective-
ness of data recovery and its impact on DA analysis. In each case, examples were chosen
from M1–M6, and in each example, both n < p and n > p were considered, and the
results were averaged over 100 data replications. For ease of exposition, results for settings
with n > p were put in the supplementary.
The above simulation scenarios are all model-based, and there may be concerns about

the extent to which such set-ups capture the structure of real microbiome data. Some
recently developed simulation approaches, such as SparseDOSSA 2 [16], may generate
more realistic data. We also applied sparseDOSSA 2 to simulate data for DA analysis. We
used the built-in vaginal samples as real source data for sparseDOSSA 2, and set the sam-
ple size for each group n = 100 and the number of taxa p was by default 109. The fraction
of DA features was 40%. Four values of the effect size (1, 2, 5, and 10) were explored.

mbDenoise ensures the accuracy of estimation and prediction

To gain preliminary insight into the operating characteristics of mbDenoise, we used
simulated examples M1–M5 to evaluate its performance in terms of both estimation
of unknown parameters and prediction of latent factors, using two criteria for measur-
ing the dissimilarity between the true and estimated or predicted values: the symmetric
Procrustes error [17] and the orthogonal projection distance [18]. For comparison pur-
pose, we included the results of existing methods. These methods can be roughly divided
into two categories: (1) algorithm-based methods including PCA, which is linear, and
t-distributed stochastic neighbor embedding (t-SNE) [19], which is nonlinear and pop-
ular in the machine learning community; and (2) latent variable model-based methods,
including negative binomial probabilistic PCA (PPCA-NB) [14, 20], zero-inflated factor
analysis (ZIFA) [21], and our methodmbDenoise-zinb and its variant mbDenoise-zip.We
note that inputs were log2(1+counts) for PCA, t-SNE, and ZIFA and were raw counts for
others.
The results for settings with n < p are shown in Fig. 2, and those for settings

with n > p in Additional file 1: Fig. S2.1. Some observations can be made as follows.
First, algorithm-based methods were outperformed by model-based methods, especially
in examples M1–M4, highlighting the importance of considering data characteristics.
Second, methods based on the negative binomial distribution (mbDenoise-zinb and
PPCA-NB) were superior to and more robust than those based on Poisson or log nor-
mal (mbDenoise-zip and ZIFA), which makes clear the crucial role of overdispersion.
As expected, model-based methods were more time-consuming than algorithm-based
methods.
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Fig. 2 Boxplots of error measures of estimation and prediction for mbDenoise and other methods. F1 and F2
denote the orthogonal projection distance and symmetric Procrustes error for predicting f i , B1 and B2
represent those for estimating β j , all averaged over 100 data replications, and time is the average
computation time in seconds on the log base 10 scale. Absence of results for t-SNE in B1 and B2 was due to
no estimation of β j in t-SNE

mbDenoise-zinb and PPCA-NB can be extended to handle the regression problem in
which there are one or more covariates, denoted by mbDenoise-zinb-cov and PPCA-NB-
cov. In the supplementary, we carried out additional simulations to compare them with
other methods. From Additional file 1: Fig. S2.2 and S2.3 we see that the performance
of mbDenoise-zinb-cov and PPCA-NB-cov were similar and among the best. To sum
up, in terms of estimation and prediction, mbDenoise-zinb and mbDenoise-zinb-cov
performed well.

mbDenoise produces more reliable estimation of compositions than other methods

To measure the difference between estimated and true underlying compositions, we
used Frobenius norm error, average Kullback–Leibler divergence, Shannon’s index mean
squared error, and Simpson’s index mean squared error. We considered the examplesM1-
M3 and M6, and compared the performance of mbDenoise to that of six methods: (1)
zero replacement (zr) that replaces zeros with 0.5 and then renormalizes each sample
to sum one [22]. zr is simple and widely used, but ad hoc with no theoretical guaran-
tee; (2) a version of matrix denoising known as singular value thresholding (svt) [23]; (3)
Poisson-multinomial regularization (pmr) [15], which is a variant of low-rank Possion
matrix recovery; (4) a Bayesian method based on Dirichlet multinomial mixtures (dmm)
[24]; (5) PPCA-NB, for which compositions were constructed in the same way as they
were for mbDenoise-zinb; and (6) SAVER followed by zr (SAVER_zr).
Simulation results for settings with n < p are shown in Fig. 3, and those for settings

with n > p in Additional file 1: Fig. S2.4. On average, mbDenoise-zinb and PPCA-NB
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Fig. 3 Boxplots for error measures of composition estimation for mbDenoise and other methods. C1-C4
denote the Frobenius norm error, Kullback–Leibler divergence, Shannon’s index mean squared error, and
Simpson’s index mean squared error, and time stands for computation time in seconds, all averaged over 100
data replications and on the log base 10 scale

performed the best in estimating the compositions in examples M1-M3, and performed
well compared to the best that was done in M6. As expected, pmr performed well in the
multinomial example M6 without zero-inflation. Moreover, dmm and SAVER_zr tended
to behave similarly with pmr, showed superior performance in example M6, but were
adversely affected by zero-inflation in examples M1–M3. Though zr and svt had the
poorest performance, they were computationally much cheaper.
In the supplementary, we conducted a small simulation study in which there was

an environmental factor. We compared mbDenoise-zinb-cov, mbDenoise-zip-cov, and
PPCA-NB-cov with zr, svt, pmr, dmm, and SAVER_zr. Additional file 1: Fig. S2.5 and S2.6
show that the performance of mbDenoise-zinb-cov was again among the best.

mbDenoise outperforms other methods in recovering data and empowers DA analysis

Next, we compared mbDenoise with mbImpute and SAVER, in terms of how they recov-
ered the true abundance levels, by generating simulation data from examples M1–M5. To
measure the difference between the imputed/denoised matrix and the signal matrix, we
used three metrics: mean squared error between the log of denoised matrix and the log of
signal matrix, mean of taxon-wise Pearson correlation between the denoised matrix and
the signal matrix, and Wasserstein distance between the mean community composition
of denoised data and that of true abundance data.
Figure 4 and Additional file 1: Fig. S2.7 show the results for settings with n < p

and n > p, respectively. Somewhat surprisingly, mbImpute failed badly and performed
substantially worse than no imputation, suggesting that it under- or over-imputed the
data. SAVER had similar behavior to mbImpute. The performance of PPCA-NB and
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Fig. 4 Boxplots for error measures of data recovery for mbDenoise and other methods. MSE and Wasserstein:
mean squared error and Wasserstein distance between the denoised matrix and the signal matrix, averaged
over 100 data replications and on the log base 10 scale. Pearson: average of Pearson correlation between the
denoised and true abundance data. time: average of computation time in seconds on the log base 10 scale

mbDenoise-zip was mixed. PPCA-NB was outperformed by mbDenoise-zinb in exam-
ples M1–M4, and mbDenoise-zip showed inferior performance to mbDenoise-zinb in
M1, M2, and M5. Overall, mbDenoise-zinb achieved the best performance, suggesting
the benefit of introducing zero-inflation and overdispersion. Similar to mbDenoise-zinb,
mbDenoise-zinb-cov showed superior performance in the presence of an environmental
factor; see additional simulations in the supplementary.
We can view imputation/denoising as a way of normalizing the data. By removing biases

introduced in sample collection, library preparation, and sequencing, the normalized data
can reflect the underlying biology. In order to evaluate whether imputation/denoising has
effectively removed such biases, we extended examples M1–M3 to M7–M9 in the sup-
plementary, and examined DA testing between two groups by simply applying Welch’s t
test to the log-transformed imputed/denoised data.We also examined the performance of
existing DA analysis methods, including two negative binomial based tests for RNA-seq
data, DESeq2 and edgeR, and a zero-inflated Gaussian based test for use on micro-
biome data, metagenomeSeq.We used the built-in normalization and default parameters.
Finally, t test without normalization was also provided here for comparison.
For settings with n < p, the precision, recall, and F1 score for various methods are

shown in Fig. 5. Several points are worth noting about the results. First, without any nor-
malization, t test had dramatically low recall and so was not recommended, which makes
it clear that some sort of normalization was needed. Second, the recall for DESeq2 and
edgeR was higher than t-test, but the precision was alarmingly low. It has been reported
in the literature that DESeq2 and edgeR both have unexpectedly high false discovery rates
for detecting differentially abundant taxa [1] and for identifying differentially expressed
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Fig. 5 Recall, precision, and F1 score for various testing methods across different effect sizes, each averaged
over 100 data replications. We used a FDR threshold of 0.05. Full details of the data generation are given in
the supplementary

genes [25]. This is likely due to each method’s built-in normalization process. Studies
have shown that methods developed specifically for RNA-seq data are not suitable for
microbiome data [1]. Third, the recall for mbImpute and SAVER was higher than t-test
in most cases, but the precision decreased as the effect size increased. This suggests
that improper denoising/imputation could lead to false discoveries and we should pro-
ceed with caution. In particular, SAVER treats all zeros equally and removes extremely
low-abundance features at the beginning, and hence it fails to distinguish technical zeros
from biological zeros, leading to inaccurate abundance/expression estimates. Fourth,
mbDenoise-zinb-cov maintained high recall and high precision and achieved the best
F1 score. In contrast, the precision of PPCA-NB-cov was the lowest under most condi-
tions. Failure to account for zero-inflation was the main reason for the poor performance
of PPCA-NB-cov. On the other hand, the superior performance of mbDenoise-zinb-
cov over the other two methods based on zero-inflated models, metagenomeSeq and
mbDenoise-zip-cov, demonstrates the beneficial effect of addressing overdispersion. To
summarize, normalization by mbDenoise-zinb-cov improved the performance of DA
testing.
We further compared our denoising method with two popular normalization methods,

cumulative-sum scaling (CSS, Paulson et al. [26]) and trimmed mean ofM values (TMM,
Robinson et al. [27]), using simulated data from examples M7–M9 with the same setup
as in Fig. 5. For the sake of fairness, we applied Welch’s t test to the log-transformed
normalized data. We also examined ANCOM [28] and the method of applying the zero-
inflated negative binomial model (denoted by ZINB, Zeileis et al. [29]). Additional file 1:
Fig. S2.10 shows that the proposed method mbDenoise-zinb-cov outperformed ZINB,
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ANCOM, CSS and TMM. Finally, Additional file 1: Table S2.1 shows that, when data were
generated by SparseDOSSA 2, mbDenoise-zinb-cov performed well compared to the best
that was done in each case.

Study on stool microbiomes across geographical locations

In recent years, large-scale human microbiome projects have revealed the variability of
intestinal microbial compositions in healthy individuals caused by geography, lifestyle,
and other factors [30–32]. India has the second largest population in the world, whose
population spread across multiple geographical locations. Different regions are typically
accompanied with different dietary habits. For example, diet of Bhopal, a city of North-
Central India, is mainly vegetarian or plant-based that consists of carbohydrate-rich food,
while that of Kerala in Southern India is omnivorous or animal-based, consisting of
protein-rich food like fish, meat, and rice.
Consider the first dataset in Table 1 comprising of two locations, Bhopal and Kerala.

The data, which was a subset of the microbiome survey carried out by Dhakan et al. [33],
represented subjects with normal weight by body mass index (BMI, 18.5–24.9 kg/m2).
Ordination and beta diversity analysis in Fig. 6a shows evidence of community dissimi-
larity between Bhopal and Kerala, which is what we expected. We also see that applying
PCA and t-SNE to log-transformed denoised matrix from mbDenoise-zinb (mbDenoise-
zinb_pca and mbDenoise-zinb_tsne) performed better than both intrinsic ordination in
mbDenoise-zinb, and PCA and t-SNE with log-transformed count data. In other words,
beta diversity analysis benefited greatly from noise reduction by mbDenoise. In contrast,
the denoising by PPCA-NB and SAVER had only a negligible effect for this dataset.
Figure 6b shows that, for most methods for composition estimation, alpha diversity

differed significantly by location, using both Shannon’s index and Simpson’s index. Inter-
estingly enough, the empirical Bayesian estimates from mbDenoise-zinb and PPCA-NB
showed the opposite result that alpha diversity of Bhopal (carbohydrate-rich diet) samples
was higher than that of Kerala (protein-rich diet) samples, which seems more reasonable
and is consistent with previous observations [34, 35].
In addition to the overall patterns in microbiome variation, we also assessed differential

abundance using existing testing methods and methods that applied t test to imputed
or denoised data. The number of species identified by mbDenoise-zinb-cov ranked the
fourth (Fig. 6c). Note that Prevotella copri (blue marked), which has been acknowledged

Table 1 Summary of microbiome datasets used in empirical analysis

Dataset Author Publish
year

Site Level No. of
samples

No. of
features

Group

Dataset 1 [33] Dhakan et al. 2019 Stool Species 57 235 Bhopal and
Kerala

Dataset 2 [58] Galimanas et al. 2014 Subg, supra,
and tongue

Species 72 70 CP and
control; site

Dataset 3 [66] Zeller et al. 2014 Stool Species 64 498 CRC and
control

Dataset 4 [67] Feng et al. 2015 Stool Species 35 422 CRC and
control

Dataset 5 [68] Yu et al. 2015 Stool Species 128 533 CRC and
control

Dataset 6 [69] Vogtmann et al. 2016 Stool Species 56 444 CRC and
control
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Fig. 6 Analysis of stool microbiomes of two locations, Bhopal and Kerala, in India. a Data ordination through
algorithm-based (PCA and t-SNE), model-based (ZIFA, PPCA-NB, mbDenoise-zinb), and denoising methods
(PPCA-NB, mbDenoise-zinb and SAVER) by applying PCA and t-SNE to the denoised data. Inputs of PCA and
t-SNE were log-transformed. Beta diversity was assessed using permutational multivariate analysis of variance
(PERMANOVA). b Alpha diversity analysis. Included methods for composition estimation were zr, svt, pmr,
dmm, empirical Bayes estimate by PPCA-NB and by mbDenoise-zinb, and zr using the denoised data from
SAVER (SAVER_zr). Significance was calculated using the Wilcoxon test. c Visualization of sets of differentially
abundant (DA) species between Bhopal and Kerala. Shown are sets detected by t test, DEseq2, edgeR,
metagenomeSeq, and t-test applied to imputed/denoised data (mbImpute, SAVER, and
mbDenoise-zinb-cov). We used a FDR threshold of 0.05

as a potential biomarker for diet [36, 37], was not identified by t test, SAVER, and edgeR.
We extracted the corresponding function pathway data from Dhakan et al. [33], trans-

formed the data into relative abundances using the zero replacement method, and carried
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out linear discriminant analysis effect size (LEfSe) to detect differential pathways between
Bhopal and Kerala. The correlation heatmap between the top twenty differential pathways
and the DA species identified by our method is shown in Fig. 7a. Using a cutoff of 0.5,
Prevotella copri, Lactobacillus ruminis, and Veillonella unclassified were the three most
correlated. Note that Prevotella copri was highly correlated with the majority of path-
ways. We then calculated the correlation of these three species with other DA species
(Fig. 7b). We see that Haemophilus parainfluenzae had the highest correlation with both
Lactobacillus ruminis and Veillonella unclassified.
Lactobacillus ruminiswas identified to be a potential biomarker of diet [37]. In addition,

significant enrichment of Lactobacillus ruminis was found in high Interleukin-6 (IL-6)
producers [38]. IL-6 is a pro-inflammatory cytokine, which is associated with diabetes

Fig. 7 Biological function analysis of stool microbiomes of Bhopal and Kerala. a Heatmap of Spearman rank
correlation between DA species identified by mbDenoise-zinb-cov and top twenty differential pathways
found by LEfSe. k583: PWY-1269:CMP-3-deoxy-D-manno-octulosonate biosynthesis I; k709:
PRPP-PWY:superpathway of histidine, purine, and pyrimidine biosynthesis; k660:
GLUCONEO-PWY:gluconeogenesis I; k792: PWY-5918:superpathay of heme biosynthesis from glutamate; k60:
PWY-6700:queuosine biosynthesis|g_Prevotella.s_Prevotella_copri; k71: PWY-7221:guanosine
ribonucleotides de novo biosynthesis|g_Prevotella.s_Prevotella_copri; k128: PWY-2942:L-lysine biosynthesis
III|g_Prevotella.s_Prevotella_copri; k97: PWY-6151:S-adenosyl-L-methionine cycle
I|g_Prevotella.s_Prevotella_copri; k4: UNINTEGRATED|g_Prevotella.s_Prevotella_copri; k35:
PWY-7219:adenosine ribonucleotides de novo biosynthesis|g_Prevotella.s_Prevotella_copri; k110:
PWY-5097:L-lysine biosynthesis VI|g_Prevotella.s_Prevotella_copri; k95: PWY-6151:S-adenosyl-L-methionine
cycle I; k152: NONMEVIPP-PWY:methylerythritol phosphate pathway I; k109: PWY-5097:L-lysine biosynthesis
VI; k127: PWY-2942:L-lysine biosynthesis III; k58: PWY-6700:queuosine biosynthesis; k69: PWY-7221:guanosine
ribonucleotides de novo biosynthesis; k911: PWY-5505:L-glutamate and L-glutamine
biosynthesis|unclassified; k359: PWY-7229:superpathway of adenosine nucleotides de novo biosynthesis
I|unclassified; k556: PWY-7220:adenosine deoxyribonucleotides de novo biosynthesis II|unclassified. b
Heatmap of Spearman rank correlation between the three DA species most correlated with function
pathways and the remaining DA species detected by mbDenoise-zinb-cov. We used FDR-adjusted P values.
*Adjusted P values were between 0.01 and 0.05, **Adjusted P values were less than 0.01. c Flow chart of
biological function analysis based on literature research on three DA species and two differential pathways
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and obesity. Moreover, the development of liver cancer promoted by obesity depends
on the production of tumor promoting cytokines IL-6 and TNF, which can cause liver
inflammation and activation of oncogenic transcription factor STAT3 [39]. The path-
way k556 most correlated with Lactobacillus ruminis was reported to be implicated in
multiple sclerosis [40], which is closely related to diet [41, 42] and IL-6 [43, 44]. On
the other hand, Haemophilus parainfluenzae was negatively associated with high plant-
based diet, and was linked to elevated total indoxyl sulfate (IS) levels [45]. IS was then
reported in connection with adverse clinical complications in patients with chronic kid-
ney disease [46]. Furthermore, Haemophilus parainfluenzae was considered to have a
negative correlation with insulin resistance (IR) [47], which can be activated by high-
fat diet [48]. Conversely, there was a significant increase in the abundance of Veillonella
at genus level (to which species Veillonella unclassified belongs) with IR [49] and type
1 diabetes [50]. Bizarrely, the positive correlation between Haemophilus parainfluenzae
and Veillonella unclassified, and the negative and positive correlations between IR and
Haemophilus parainfluenzae and Veillonella, respectively, are contradictory, which are
worthy of more research. Interestingly, the pathway K660most correlated withVeillonella
unclassified concerns the process of intestinal gluconeogenesis, whose portal sensing is
a clinical link in the diminution of food intake induced by protein-enriched diet (PED)
[51]. Although there is a still debate about PED that promotes satiety, weight loss and
glucose homeostasis, it may be the basis for new nutritional strategies to tackle the
severe metabolic consequences of obesity and diabetes. Figure 7c presents a flow chart of
biological function analysis discussed thus far.
Thus, in addition to Prevotella copri and Lactobacillus ruminis, we argued that

Haemophilus parainfluenzae and Veillonella unclassified are potential biomarkers. Note
thatHaemophilus parainfluenzae and Veillonella unclassified were uniquely identified by
our method. Other species uniquely detected by mbDenoise-zinb-cov (green marked in
Fig. 6c) included Prevotella stercorea, Eubacterium eligens, andAlistipes senegalensis. Like
Prevotella copri, Prevotella stercorea belongs to Prevotella genus, which is related to plant-
rich diet [32, 52, 53], Eubacterium eligens was reported to be negatively associated with
dietary fructose intake [54], and Alistipes senegalensis belongs to Alistipes genus, which is
bile-tolerant and abundant in animal-based diet [31].
To obtain convincing evidence that overall patterns in microbiome variation and DA

species identified between two locations were not biases introduced by mbDenoise, we
extracted the subset of the data from Bhopal (39 samples and 176 species), and carried
out a negative control experiment by randomly assigning a binary label (Bhopal/Kerala)
to each sample and then repeating the analysis. Additional file 1: Fig. S3.1 shows that
there was no significant difference in community composition, for all methods except
PPCA-NB, and that our method declared far fewer DA species than DESeq2, edgeR, and
mbImpute did.

Study on oral microbiomes of chronic periodontitis

Periodontitis is an inflammatory disease that leads to the destruction of tooth-supporting
tissues. The main type of periodontal disease is chronic periodontitis (CP), which is the
leading cause of adult tooth loss in the world [55]. The pathogenesis of periodontitis is
not only affected by genetic and epigenetic factors, but is also regulated by the formation
of microbial biofilms on and around teeth [56, 57].
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Consider the second dataset in Table 1 from a study by Galimanas et al. [58] in
which microbial samples were collected from both CP patients and healthy controls and
across three oral sites, tongue, below the gingiva (subg), and above the gingiva (supra).
Ordination and beta diversity analysis in Additional file 1: Fig. S3.2a reveals signifi-
cant community distinctions between CP and control groups, and between gingiva and
tongue, but hardly any difference between subg and supra sites. To simplify matters, we
restricted attention to gingival sites. The corresponding data subset consisted of 48 sam-
ples and 70 species. Figure 8a and b show that there was again significant difference in
community structure between CP and control groups, but no difference between subg
and supra sites.
We then turned to the question of identifying microbial taxa that explain differences

between CP and control samples, which may serve as indicators of progress for CP.
We compared our method with others using the same subsets as in Fig. 8a and b. The
set visualization in Fig. 9a shows that mbDenoise-zinb-cov identified the largest num-
ber of species between CP and control samples. Moreover, two species, Porphyromonas

Fig. 8 Analysis of oral microbiomes of chronic periodontitis. a Data ordination and beta diversity analysis
between CP patients and healthy controls, with tongue samples removed. b Data ordination and beta
diversity analysis between subg and supra sites. Included were algorithm-based (PCA and t-SNE),
model-based (ZIFA, PPCA-NB, mbDenoise-zinb), and denoising methods (PPCA-NB, mbDenoise-zinb and
SAVER) by applying PCA and t-SNE to the denoised data. Inputs of PCA and t-SNE were log-transformed. Beta
diversity was assessed using PERMANOVA



Zeng et al. Genome Biology           (2022) 23:94 Page 15 of 29

Fig. 9 DA testing and network analysis on gingival microbiomes of chronic periodontitis. a Visualization of
sets of DA species between CP and control groups. Shown are sets detected by t-test, DEseq2, edgeR,
metagenomeSeq, and t-test applied to imputed/denoised data (mbImpute, SAVER, and mbDenoise-zinb-
cov). We used a FDR threshold of 0.05. b Visualization of sets of DA species between subg and supra sites. c
The most common sub-network between CP patients and healthy controls using NetShift. Drivers were red
marked. d Spread of drivers for each DA detection method. e Spearman rank correlation between drivers and
unique DA species. *Adjusted P values were between 0.01 and 0.05, **Adjusted P values were less than 0.01

endodontalis and Selenomonas FT050, were identified by mbDenoise-zinb-cov uniquely
(green marked). Some studies indicate that Porphyromonas endodontalis is likely to be
implicated in CP [59, 60]. Selenomonas FT050 was found to have a high level in gen-
eralized aggressive periodontitis [61], suggesting that it may act as a bridge between
generalized aggressive periodontitis and CP. On the other hand, Fig. 9b shows that there
were few or no DA species between subg and supra sites for most methods.
DA species are not only reflected in community composition and diversity, but also

in the variation of microbe-related network topology. In order to evaluate the reliabil-
ity of DA species detected by our method, we applied NetShift [62] to quantify changes
in microbial association network between CP and control groups. We first calculated
the correlation matrix of species separately for CP patients and healthy controls. Then
the edge matrices were constructed and used as inputs into NetShift. Figure 9c shows
the most common sub-network. We see that there were three microbe drivers (red
marked), pneumosintes, oral taxon 362, and maltophilum. Moreover, these drivers were
also DA species identified by mbDenoise-zinb-cov, DESeq2, and edgeR, were only partly
detected by metagenomeSeq, t test, and SAVER, and were completely missed by mbIm-
pute (Fig. 9d). We then calculated the Spearman rank correlation between these drivers
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and unique DA species identified by mbDenoise-zinb-cov, DESeq2, and edgeR. Using a
cutoff of 0.5, Fig. 9e shows that only Porphyromonas endodontalis (uniquely identified
by mbDenois-zinb-cov) was highly correlated with two drivers maltophilum and oral
taxon 362.
We also extracted the data subset, comprising of tongue samples from CP patients and

healthy controls, and carried out alpha diversity analysis. Additional file 1: Fig. S3.2b
suggests that only our proposed method performed well, being consistent with previous
studies that patients with chronic periodontitis were associated with significantly higher
alpha diversity than those for healthy subjects [63].

Study on stool microbiomes of colorectal cancer

Colorectal cancer (CRC) is the third most commonly diagnosed human malignant tumor
and the fourth highest cause of cancer-related death worldwide [64]. There is increasing
evidence that intestinal microbiota dysbiosis plays a pivotal role in the development of
colorectal cancer [65].
Consider the third to sixth datasets in Table 1, each comprising of CRC and healthy

control samples. These datasets were subsets of microbiome surveys carried out by Zeller

Fig. 10 Analysis of stool microbiomes of colorectal cancer. a Data ordination through algorithm-based (PCA
and t-SNE), model-based (ZIFA, PPCA-NB, mbDenoise-zinb), and denoising methods (PPCA-NB,
mbDenoise-zinb and SAVER) by applying PCA and t-SNE to the denoised data on the third dataset in Table 1.
Inputs of PCA and t-SNE were log-transformed, and the empty was due to an exception in ZIFA. Beta diversity
was assessed using PERMANOVA. b Alpha diversity analysis on the third dataset in Table 1. Included methods
for composition estimation were zr, svt, pmr, dmm, empirical Bayes estimate by PPCA-NB and by
mbDenoise-zinb, and zr using the denoised data from SAVER (SAVER_zr). Significance was calculated using
the Wilcoxon test
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et al. [66], Feng et al. [67], Yu et al. [68], and Vogtmann et al. [69], representing subjects
with normal weight by BMI (18.5–24.9 kg/m2). Ordination and beta diversity analysis
in Fig. 10a and Additional file 1: Fig. S3.3 show that for the third to fifth datasets CRC
patients could be roughly distinguished from healthy controls. This is especially the case
for model-based methods. On the other hand, we see from Fig. 10b and Additional file 1:
Fig. S3.4 that there was no discernible difference in alpha diversity between the two
groups, with the exception of mbDenoise-zinb in the fifth dataset having the largest sam-
ple size. In this case, only mbDenoise-zinb arrived at a conclusion that CRC patients
had significantly decreased alpha diversity compared with healthy subjects, which is
consistent with previous findings [70].
Different from DA analysis on the first and second datasets, here we aimed to demon-

strate the reproducibility of our method by using four CRC datasets. The Venn diagrams
in Fig. 11a show that mbDenoise-zinb-cov identified the largest number of species. Fur-
thermore, it had the best reproducibility in the sense that 23 out of 363 species were

Fig. 11 DA analysis of stool microbiomes of colorectal cancer. a Venn diagrams of DA species across four
CRC datasets. Shown are sets detected by t-test, DEseq2, edgeR, metagenomeSeq, and t-test applied to
imputed/denoised data (mbImpute, SAVER, and mbDenoise-zinb-cov). We used a FDR threshold of 0.05. b
Percent stacked barplot of CRC-enriched species identified across four datasets by each method. Condition
1-4 represent species identified in one, two, three, and four datasets. Numbers marked red correspond to the
counts found in each condition. c Heatmap of − log10(FDR-corrected P values) of the 23 common species
identified by mbDenoise-zinb-cov across four datasets. d The frequencies of seven CRC biomarkers
discovered across four datasets in each method. Condition 4-2 represent biomarkers identified in four, three,
and two datasets
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found in all four datasets (Fig. 11b). DESeq2 did the second best, but the results from
a negative control study (Additional file 1: Fig. S3.5) indicate that it was overly lib-
eral. We note that the 23 common species identified by mbDenoise-zinb-cov (Fig. 11c)
mainly belong to five families (Clostridiaceae, Ruminococcaceae, Bacteroidaceae, Lach-
nospiraceae, and Erysipelotrichaceae), which have been reported to be associated with
CRC [71–74]. More importantly, seven previously reported CRC biomarkers, including
Fusobacterium nucleatum, Faecalibacterium prausnitzii, Bacteroides fragilis, Peptostrep-
tococcus stomatis, Parvimonas micra, Solobacterium moorei, and Clostridium symbiosum
[75–78], were discovered most frequently by mbDenoise-zinb-cov (Fig. 11d).
Several other DA species in Fig. 11c are also worthy of mention. These include Bac-

teroides vulgatus, Ruminococcus torques, Clostridium hathewayi, Clostridium bolteae,
and Lachnospiraceae bacterium 7_1_58FAA. Bacteroides vulgatus is enriched in the gut
microbiota of healthy people compared with CRC patients [79], and evidence suggests
that it is associated with Crohn’s disease (CD) [80]. Ruminococcus torques was reported
to increase disproportionately in patients with CD and ulcerative colities [81], both
of which increase the risk of developing CRC [82]. It is also correlated with high red
meat intakes that contribute to an increased risk of CRC [83]. Clostridium hathewayi,
combinedwith Fusobacterium nucleatum and two other bacteria, improve diagnostic per-
formance of Fusobacterium nucleatum alone [84, 85]. Clostridium bolteae is identified to
drive lipopolysaccharide biosynthesis in the gut of CRC patients [86]. Lachnospiraceae
bacterium 7_1_58FAA has a clear connection with L-glutamate degradation V. Note
that L-glutamate dehydrogenase deficiency leads to D-2-hydroxyglutarate dehydrogenase
deficiency [87], and a CRC specific pathway through D-2-hydroxyglutarate can drive
epithelial-mesenchymal transition and induce CRC progression [88].

Discussion
The work in this paper connects to the recent interest in modeling microbiome count
data. Specifically, our proposed ZIPPCA-NB model and those of Xu et al. [89] and Sohn
and Li [90] all belong to the general class of generalized latent variable models. How-
ever, the latter two methods treat the f i’s as unknown parameters to be estimated rather
than random variables. Another difference concerns the underlying count distribution.
It is well-known that the negative binomial distribution in ZIPPCA-NB is preferable to
Poisson [89] or quasi-Poisson [90] in terms of addressing the overdispersion of micro-
biome count data. Nevertheless, there is a price to be paid for the increased flexibility
of ZIPPCA-NB, which requires computationally intensive numerical optimization tech-
niques. Recent work by Liu et al. [91] also uses the negative binomial distribution as the
underlying count distribution, and applies variational approximation (VA) for approxi-
mate estimation and inference. However, there are important differences between mbDe-
noise and their method, MZINBVA. First, mbDenoise is a general statistical method
for describing and simulating microbial community profiles in a cross-sectional study,
whereas MZINBVA focuses on differential abundance testing in longitudinal/multi-level
studies. Second, mbDenoise fits the data at the overall community level with rich depen-
dencies among taxa and independence among samples, whereas MZINBVA fits the data
at the individual taxon level accounting for structured correlations between samples but
ignoring correlations between taxa.
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Rather than using sampling, the main idea behind VA is to use optimization. However,
inference using VA is challenging. Nevertheless, some progress has been made in the lit-
erature. Assume that the dimension of the units of analysis tends to infinity, but that the
other dimension of features is fixed, Westling and McCormick [92] build a connection
between VA and profileM-estimation, and provide a sandwich covariance formula for the
VA estimate; see also Liu et al. [91]. However, due to the complicated nature of the prob-
lem, developing a general theory in high dimensions would be a substantial undertaking
that the result would effectively be a separate paper. Work along this line is in progress.
An alternative is to use the Laplace approximation or penalized quasi-likelihood. How-
ever, compared with VA, the Laplace approximation is known to suffer from convergence
problems [20].
As pointed out by one referee, a common approach to address data redundancy is

to take into account phylogenetic tree information. For example, the Unifrac method
incorporates tree information and can be used in ordination and distance-based testing
approaches such as PERMANOVA [93]. There are two reasons why we do not consider
the phylogenetic relationships among microbes. First, incorporating the tree structure
into the ZIPPCAmodel underlying mbDenoise will inevitably make the current modeling
and fitting too complicated. Second, in practice the phylogeny is inferred from molecular
sequences, and so it is necessary to quantify uncertainty in phylogenetic inference and its
impact on downstream analyses. Nevertheless, it is interesting yet challenging to describe
and simulate microbial community profiles while taking into account the phylogenetic
tree information.
Care must be taken during denoising because one can never rule out the possibility that

signal may be lost from the data. This is likely a consequence of the linearity nature of the
ZIPPCAmodel, that is, logμij = αi0+β0j+f �

i β j. In practice, the assumption of linearity is
questionable and nonlinear functions of f i such as neural networks might do a better job.
mbDenoise could facilitate other forms of downstream analysis not considered in this

paper. One such task is the inference of microbial correlation networks [94, 95]. Unfortu-
nately, technical noise in microbiome data makes it challenging to quantify dependencies
or interactions between microbes [96, 97]. Denoising has the potential to enhance the
discovery of these interactions. Some progress on this problem has been made in the
field of single-cell transcriptomics. van Dijk et al. [98] proposed Markov affinity-based
graph imputation of cells (MAGIC) to recover gene expression values while correcting for
dropout and other sources of noise, and demonstrated that MAGIC was effective at infer-
ring gene-gene interactions. However, care must be taken when carrying out correlation
analysis, as with other high-level analyses, because over-denoisingmay obscure important
relationships and introduce spurious correlations between genes [12]. To our knowledge,
the performance of computational and statistical methods for inferring microbial ecolog-
ical networks from denoised data has not been evaluated using either simulated or real
datasets, which is a necessary step on the road to understanding the impact of denoising
and represents an important direction for future research.

Conclusion
A fundamental challenge in the analysis of microbial abundance data is technical noise.
mbDenoise was proposed specifically for microbiome data to decouple biological vari-
ation from technical noise. mbDenoise is based on a zero-inflated negative binomial
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probabilistic PCA (ZIPPCA-NB) model that distinguishes between biological and tech-
nical zeros, and accounts for unequal library size and overdispersion of data. mbDenoise
learns the parameters of ZIPPCA-NB using a highly efficient variational approximation
algorithm. The low rank latent representation in the ZIPPCA-NB model, which makes
use of a mild assumption of data redundancy, enables the learning process to aggregate
information across samples and taxa. mbDenoise adopts an empirical Bayes approach to
recover true abundance levels.
We extensively evaluated the performance of mbDenoise using simulated experiments

and empirical datasets. We demonstrated that mbDenoise achieves high accuracy in
estimating model parameters and predicting latent variables as well as in estimating
underlying microbial compositions, and that both zero-inflation and overdispersion are
essential components for its superior performance. In most cases, mbDenoise compared
favorably to state-of-the-art methods in recovering true abundance levels and improving
high-level analyses including unconstrained ordination, diversity estimation, and differ-
ential abundance analysis. We thus expect mbDenoise to be a nice contribution to the
statistical toolbox for analyzing and interpreting microbiome data.

Methods
Noise model

mbDenoise is a denoising method for microbiome data based on a ZIPPCA model that
addresses overdispersion and zero-inflation. First, the Gaussian distribution in proba-
bilistic PCA for continuous variables is extended to the negative binomial distribution
for describing overdispersed sequence counts. Second, a Bernoulli distribution is used
to characterize excess zeros as either biological zeros (true absence) or technical zeros
(undetected presence). More formally, this two-part noise model can be expressed as

latent space zij
ind∼ Bern(ηij),

fi1, . . . , fik
ind∼ N(0, 1),

parameter space ηij = exp(ci + τj)

1 + exp(ci + τj)
,

logμij = αi0 + β0j + f �
i β j,

observation space xij | μij, zij
ind∼

{
0 if zij = 1,
NB(μij,φj) if zij = 0,

where ind means independently distributed, and Bern, N, and NB denote the Bernoulli,
normal, and negative binomial distributions, respectively. The zij are latent indicators for
excess zeros, and ηij, the probabilities of zero inflation, are specified by a linear logit link,
with sample-specific parameters ci and taxon-specific parameters τj, where i = 1, . . . , n
and j = 1, . . . , p. αi0 and β0j are similarly defined in the NB part with a log link, and φj
are taxon-specific overdispersion parameters. When φj → 0, NB reduces to the Pois-
son distribution. The latent variables f i = (fi1, . . . , fik)� representing the coordinates of
observed data xi = (xi1, . . . , xip)� in a k-dimensional latent space, k � p, and the factor
loadings β j jointly capture the correlations among microbes [99].
Note that, in the above, sample-specific parameters αi0 are introduced to handle the

uneven library size across samples, and the low-rank representation f �
i β j takes advantage

of the redundancy in microbiome data.
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Variational approximation for ZIPPCA

Let � = {ci, τj,αi0,β0j,β j,φj} denote the set of parameters governing the ZIPPCAmodel.
Finding the maximum likelihood estimate is difficult, because the integrals involved in
the data likelihood do not have closed form expressions. A general technique in the latent
variable modeling literature is the Monte Carlo expectation maximization algorithm.
However, Monte Carlo methods are computationally intensive and havemainly been used
for small-scale problems. Here, we adopt a highly efficient deterministic approximation
approach, known as variational approximation (VA) [100]. The main idea of VA is to
specify a family of distributions and then find a member of the family that is close to the
true posterior distribution of latent variables. Specifically, consider a variational family
of distributions q(f i, zi) for the latent variables (f i, zi). Using Jensen’s inequality, the data
log-likelihood satisfies

n∑
i=1

log p(xi) =
n∑

i=1
log

[
Eq

{
p(xi, f i, zi)
q(f i, zi)

}]

≥Eq
n∑

i=1
{log p(xi, f i, zi)} −

n∑
i=1

Eq{log q(f i, zi)}.

The right-hand size above is called an evidence lower bound (ELBO). It is easy to
see that maximizing the ELBO with respect to q(f i, zi) is equivalent to minimizing the
Kullback–Leibler divergence between q(f i, zi) and the true posterior p(f i, zi | xi). The
VA algorithm involves alternately computing the lower bound for the current parameter
values and then maximizing this bound to obtain the new parameter values.
In this paper, we focus on the mean field variational family, where the latent variables

are mutually independent [101]. Specifically, we assume q(zij)
ind∼ Bern(πij), q(f i)

ind∼
N(mi,�i). Write π i = (πi1, . . . ,πip)� and � = {mi,�i,π i}. We call � the variational
parameters. Denote by �̂ = {ĉi, τ̂j, α̂i0, β̂0j, β̂ j, φ̂j} and �̂ = {m̂i, �̂i, π̂ i} the VA estimates
of model and variational parameters, respectively. Details on the numerical optimization
procedure can be found in the supplementary.

Denoising

Biases or artifacts in microbiome data exist due to technical reasons, and can make
downstream analyses invalid if unaddressed. Loosely speaking, denosing is a way of
normalizing the data to remove technical noise, so that the denoised data are on a
comparable scale. Two commonly used methods for microbiome data normalization are
rarefying and scaling. However, rarefying only addresses unequal library size, and scaling
is adversely affected by the large number of zeros. Furthermore, they are incapable of
distinguishing between mean and dispersion effects and can cause undesirable or even
erroneous results [102].
The proposed ZIPPCA-NB framework takes into account varying library sizes across

samples, data sparsity and overdispersion, and data redundancy, and so leads naturally
to a model-based denoising strategy. As shown in Fig. 1, the observed data xij are equal
in distribution to (1 − zij)NB(μij,φj), and the latent signal matrix that represents the
underlying biological variation is defined by

x∗
ij = (1 − zij) exp

(
β0j + f �

i β j

)
.
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This definition makes use of the low-rank assumption, removes sampling, sample-
specific, and overdispersion effects, and distinguishes between technical and biological
zeros.
mbDenoise uses the posterior mean of the latent signal matrix to recover the true

abundance levels. A simple calculation shows that

x̂∗
ij = (1 − π̂ij) exp

(
β̂0j + m̂�

i β̂ j +
1
2
β̂

�
j �̂iβ̂ j

)
.

This approach is known as empirical Bayes in the literature. Note that the sample-
specific effects are removed in the denoised data to eliminate the bias caused by library
size.

Dimension reduction and ordination analysis

Ordination techniques are often applied to normalized data to visually inspect whether
sample groupings reflect any biological patterns in an unsupervised manner. These meth-
ods attempt to represent the main structures in multivariate community data with a
reduced set of usually two or three factors.
Data ordination tends to follow one of two methodological approaches. Methods in the

first group are largely algorithm-based, including PCA and t-SNE. A second and more
recent approach specifies a jointmodel formultivariate abundance data [90]. In particular,
there has been considerable interest in latent variable models, because it is natural to
interpret latent variables as the factors in an ordination [21, 99].
Within the ZIPPCA framework, we can use the posterior mean or mode of f i as

the ordination score. One disadvantage of this intrinsic method is that, unlike in lin-
ear PCA, solutions are not constructed incrementally [103]. Alternatively, we can adopt
a general approach in which we first denoise the abundance data, and then apply an
algorithm-based method to the denoised data to compute ordination axes (denoted by
mbDenoise-zinb_pca and mbDenoise-zinb_tsne). We prefer the second strategy, because
it not only retains the versatility of algorithm-based methods, but also accounts for
the characteristics of microbiome data. As the name suggests, mbDenoise-zinb_pca
and mbDenoise-zinb_tsne are proposed for linear and nonlinear dimension reduction,
respectively. In real problems, the truth is unknown and patterns are often not linear, and
hence we recommend mbDenoise-zinb_tsne.

Composition estimation

Microbiome data should be considered as compositions. A common approach to extract
microbial compositions from raw data is to divide every count in a sample by the
total number of counts for that sample. This approach gives relative abundances that
sum to one, but is problematic in the presence of many zeros, because zeros remain
unchanged, which can have an undesirable effect on downstream analyses such as
diversity estimation.
Methods based on a multinomial probability model have been proposed to address this

issue [24]. They describe each community by a vector of taxa probabilities. However,
under the ZIPPCA framework, it is not clear what we should use as a definition of com-
position. To this end, we note that there is a useful relationship between the Poisson and
multinomial distributions [104], namely, if xj

ind∼ Poi(μj), then the conditional distribution
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of x = (x1, . . . , xp)� given x+ = ∑p
j=1 xj is multinomial, x | x+ ∼ Mult(x+,μ/μ+), where

μ = (μ1, . . . ,μp)� and μ+ = ∑p
j=1 μj. We therefore define the underlying compositions

for ZIPPCA-Poi and ZIPPCA-NB as

ρij = μij∑p
k=1 μik

=
exp

(
β0j + f �

i β j

)
∑p

k=1 exp
(
β0k + f �

i βk

) .
For ZIPPCA-Poi, we use an empirical Bayes approach to estimate the compositions

ρ̂
poi
ij =

exp
(
β̂0j + m̂�

i β̂ j + β̂
�
j �̂iβ̂ j/2

)
∑p

k=1 exp
(
β̂0k + m̂�

i β̂k + β̂
�
k �̂iβ̂k/2

) .
For ZIPPCA-NB, this estimate does not account for overdispersion. The problem can be

resolved by first noting that the negative binomial distribution can be written as a mixture
of gamma and Poisson distributions: if x0ij | wij ∼ Poi(wij) and wij ∼ Gamma(φj,φj/μij),
then x0ij | μij,φj ∼ NB(μij,φj). Furthermore, the optimal VA distribution for wij is a
gamma distribution with shape x0ij + φj and rate 1+ φj exp

(
−β0j − m�

i β j + β�
j �iβ j/2

)
[20]. The modified estimate has the form

ρ̂nb
ij =

{
exp

(
β̂0j + m̂�

i β̂ j + β̂
�
j �̂iβ̂ j/2

)
+ φ̂j

}
/νij∑p

k=1

{
exp

(
β̂0k + m̂�

i β̂k + β̂
�
k �̂iβ̂k/2

)
+ φ̂k

}
/νik

,

where νij = 1 + φ̂j exp
(
−β̂0j − m̂�

i β̂ j + β̂
�
j �̂iβ̂ j/2

)
.

DA analysis

For DA testing between two groups, a naive method is to model the abundance data sep-
arately for each group, combine the denoised data, and then apply a test. However, this
approach does not account for the fact that samples from different conditions may have
much in common, and these similarities can be used to learn from the experience of oth-
ers. Also, when the groups are unbalanced, such a strategy is likely to perform poorly. To
address this, we take advantage of the regression-type formulation of the ZIPPCA frame-
work and treat the group indicator as a covariate. The corresponding log link has the form

logμij = αi0 + β0j + γjvi + f �
i β j,

where vi is the covariate (e.g., healthy versus diseased), and γj is the coefficient. We use
the covariate-adjusted model for fitting and denosing data, log-transform the denoised
data, and then apply Welch’s t test to determine which specific taxa are significantly
differentially abundant between two groups. Extensions to multiple groups and more
than one covariate is straightforward.

Evaluation metrics

We provide below details of various metrics or indices for assessing the performance of
mbDenoise in the simulation.

Estimation and prediction indices Suppose M and M̂ are the true and esti-
mated/predicted matrices, respectively. We use two criteria for measuring the distance
betweenM and M̂.
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(A1) Symmetric Procrustes error. First, center the columns of M by their means and
rescale the centered matrix to have unit Frobenius norm. Denote the transformed matrix
by Mt . Similarly, we obtain M̂t . Second, compute the singular value decomposition
M�

t M̂t = UDV�, and then construct a rotated version of M̂t as

M̂rot = trace(D)

‖M̂t‖2F
M̂tVU�.

Finally, calculate the squared Frobenius matrix norm ‖Mt − M̂rot‖2F ;
(A2) Orthogonal projection distance. Let PM = M(M�M)−1M� and P̂M̂ =

M̂(M̂�M̂)−1M̂� be orthogonal projections onto the column spaces of M and M̂, respec-
tively. Calculate the squared Frobenius matrix norm ‖PM − P̂M̂‖2F .

Composition estimation indices Different measures of the closeness between the true
compositions ρij and the estimated compositions ρ̂ij include the following
(B1) Frobenius norm error:

√∑n
i=1

∑p
j=1(ρ̂ij − ρij)2;

(B2) average Kullback–Leibler divergence: (1/n)
∑n

i=1
∑p

j=1 ρij log
(
ρij/ρ̂ij

)
;

(B3) Shannon’s index mean squared error: (1/n)
∑n

i=1

{∑p
j=1 ρ̂ij log(ρ̂ij) − ∑p

j=1

ρij log(ρij)
}2

;

(B4) Simpson’s index mean squared error: (1/n)
∑n

i=1

(∑p
j=1 ρ2

ij −
∑p

j=1 ρ̂2
ij

)2
.

Data recovery indices To assess the agreement between the denoised matrix (x̂∗
ij) and

the signal matrix (x∗
ij), we calculate three criteria:

(C1)mean squared error between the log of denoisedmatrix and the log of signal matrix

1
np

n∑
i=1

p∑
j=1

{
log2(x

∗
ij + 1) − log2(x̂

∗
ij + 1)

}2
;

(C2) mean of taxon-wise Pearson correlation between the denoised and signal matrices

1
p

p∑
j=1

ˆcov
(
x∗
j , x̂

∗
j

)
σ̂

(
x∗
j

)
σ̂

(
x̂∗
j

) ,
where ˆcov denotes the sample covariance, and σ̂ means the sample standard deviation;
(C3) Wasserstein distance between the mean community composition of denoised data

and that of true abundance data

1
p

p∑
j=1

∣∣∣r∗(j) − r̂∗(j)
∣∣∣ ,

where r∗j = ∑n
i=1 x∗

ij/
{
nσ̂

(
x∗
j

)}
and r̂∗j = ∑n

i=1 x̂∗
ij/

{
nσ̂

(
x̂∗
j

)}
, and r∗(j) and r̂∗(j) denote

the order statistics of
{
r∗1 , . . . , r∗p

}
and

{
r̂∗1 , . . . , r̂∗p

}
, respectively.

Existing tools or software

We describe below some of the tools or software used in the study.

ZIFA We downloaded the Python package from https://github.com/epierson9/ZIFA,
and used the fitModel function with default parameters.

https://github.com/epierson9/ZIFA
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PPCA-NB We used the gllvm function in the R package gllvm (version 1.3.0), and
set method = “VA", Lambda.struc = “diagonal", row.eff = “fixed", and family = “nega-

tive.binomial".

pmr We downloaded it from https://github.com/yuanpeicao/composition-estimate, and
used the autoTuneProxGradient function with default parameters.

dmm We used the dmn function in the R packageDirichletMultinomial (version 1.30.0),
with k=10 Dirichlet components.

metagenomeSeq We used the fitFeatureModel function in the R packagemetagenome-

Seq (version 1.30.0) with default parameters.

SAVER We used the saver function in the R package SAVER (version 1.1.2), and set
ncores = 12.

mbImpute We used the mbImpute function in the R packagembImpute (version 0.1.0),
and set ncores = 4.
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