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Oxidative stress is a pathomechanism causally linked to the progression of chronic cardiovascular diseases and diabetes.
Mitochondria have emerged as the most relevant source of reactive oxygen species, the major culprit being classically considered
the respiratory chain at the inner mitochondrial membrane. In the past decade, several experimental studies unequivocally
demonstrated the contribution of monoamine oxidases (MAOs) at the outer mitochondrial membrane to the maladaptative
ventricular hypertrophy and endothelial dysfunction. This paper addresses the contribution of mitochondrial dysfunction to the
pathogenesis of heart failure and diabetes together with the mounting evidence for an emerging role of MAO inhibition as putative
cardioprotective strategy in both conditions.

1. Introduction

According to the World Health Organization, cardiovascular
diseases represent the number one cause of death globally
(WHOMarch 2013). In particular, coronary heart disease is a
leading cause of mortality and morbidity due to heart failure
(HF). With an increasingly aging population and improved
survival after the onset of HF in elderly, the syndrome is
recognized as a growing problem for the health-care systems
worldwide due to its enormous financial burden [1]. Diabetes
mellitus (DM), themost severemetabolic disease, is currently

viewed as a serious threat to global health due to its increasing
prevalence, especially in developing countries; it is predicted
that 592 million people will have diabetes by 2035 [2]. The
association of type 2 DM with increased cardiovascular
morbidity and mortality is widely recognized [3] with both
traditional and nontraditional risk factors being involved
[4]. This is particularly true for the association between
HF and diabetes, since according to the Framingham Study
the frequency of HF was significantly higher in diabetic
patients (mainly in women) as compared to the age-matched
healthy subjects [5]. In the past two decades, mounting
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epidemiological and clinical evidence suggests that DM
increases the risk for the so-called “diabetic cardiomyopathy”
that develops independently of other risk factors such as
coronary disease and hypertension [6].

Oxidative stress is the common pathomechanism that
greatly influences the progression of both cardiovascular
and metabolic diseases. The difficulty to assess the redox
pathophysiology is related to both its spatiotemporal het-
erogeneity and the existence of complex networks of redox
signaling as well as the amplification of ROS generation
that occur in pathological conditions. This latter condition,
known as either “ROS-induced ROS release” [7, 8] or the
“kindling radicals” concept [9, 10], refers to the situation in
which extramitochondrial (or even mitochondrial) ROS are
acting mainly as triggers for mitochondrial ROS production.
From mechanistic point of view, this crosstalk to and from
mitochondria [9] renders the complete characterization of
a pathological entity in a particular model when using the
causal reasoning difficult [11]. However, from therapeutic
point of view, this crosstalk among several ROS generators
appears to be advantageous since there is sound experimental
evidence for the partial or even complete abrogation of
oxidative stress (and of its deleterious consequences) by
inhibiting a single source of ROS [12]. The complexity of the
prooxidative status in patients with HF and DM is further
contributed by the chronic low-grade inflammation with the
induction of a vicious, self-perpetuating circle, responsible
for the: (i) aggravation of the oxidative stress via ROS
generation by the activated monocytes/macrophages [13–15]
that can also interact with cardiac cells [16] and (ii) activation
of the inflammasome and phagocytes by ROS originating in
cardiac mitochondria [17–20].

The prominent sources of cardiovascular oxidative stress
in HF and DM are mitochondria, uncoupled eNOS, and
nicotinamide adenine dinucleotide phosphate (NADPH,
Nox) oxidases (reviewed in [11, 21–25]). Whereas in case of
Nox conflicting data have been reported in the literature,
with both protective [26] and deleterious [27] roles of Nox4-
derived ROS in the development of HF, the contribution of
mitochondria and eNOS as major sources of intracellular
oxidative stress is a widely accepted concept [10, 28–30].
However, in the past decade, the contribution of monoamine
oxidases (MAOs), FAD-containing dehydrogenases located
at the outer mitochondrial membrane, as novel sources of
obligatory ROS generation in the cardiovascular pathology,
has become evident [31].

Here, we briefly review the contribution of mitochon-
drial dysfunction to the pathogenesis of heart failure and
diabetes, pointing out the commonalities between these two
conditions. We will further refer to the beneficial effects of
MAO inhibition in relation to cardiovascular pathology and
experimental diabetes. Finally, wewill emphasize the need for
a translational approach, assessing the contribution of MAO-
related oxidative stress to the pathogenesis of mitochondrial,
endothelial, and contractile dysfunction in diabetic versus
nondiabetic patients undergoing heart surgery.

2. Mitochondrial Dysfunction in Heart Failure

Mitochondria, the powerhouses of our cells that provide the
main amount of energy required for normal cardiomyocyte

function, have emerged in the past decades as the major
sources and amplifiers of oxidative damage in the cardiovas-
cular system [32].

Heart failure is a multietiological clinical syndrome that
develops progressively as a consequence of a primary cause
(acute or chronic) that impairs the systolic function (HF
with reduced ejection fraction) and/or the diastolic one (HF
with preserved ejection fraction). In the vast majority of
cases, the primary event is represented by either a chronic
hemodynamic (pressure or volume) overload or an acute
coronary syndrome that triggers the pathological hypertro-
phy and ultimately the development of HF. Several experi-
mental models (mainly mechanically or genetically induced
hypertension and coronary artery ligation) have been used
to mimic these conditions and shed light on the pathophysi-
ology of the syndrome.

In the past decade, mitochondrial dysfunction and
the subsequent disrupted redox signaling have been sys-
tematically reported to underlie both the development of
pathological ventricular hypertrophy and its progression
towards the overt cardiac failure (reviewed in [21, 22, 33,
34]). At variance from physiological (adaptive) hypertrophy,
where mitochondrial function increases in order to maintain
adequate cardiac function [35], pathological (maladaptive)
hypertrophy and heart failure have been reported to share
similar mitochondrial abnormalities [22] with respect to
(i) substrate metabolism (decreased fatty acid oxidation
plus increased/unchanged or decreased glucose oxidation in
advanced stages of HF, responsible for the energetic defi-
ciency [25]), (ii) calcium handling [36, 37], (iii) respiratory
function (decreased in most of the cases; see below), and (iv)
ROS production (variable degrees of oxidative stress [38]).

The contribution of metabolic impairment with the sub-
sequent energetic dysfunction to the pathogenesis of HF
and its therapeutic potential will not be addressed here (the
reader is referred to several excellent reviews [39–43] of the
field). Similarly, the role of impaired calcium uptake, release,
and signaling in the development of cardiac dysfunction has
been comprehensively characterized [36, 37, 44]. We will
focus instead on the alteration of respiratory function and its
consequence, oxidative stress.

Oxidative phosphorylation represents the ultimate source
of aerobic ATP production and requires the coordinated
activity of the electron transport chain (ETC) consisting of
enzymatic complexes I–IV and complex V (ATP synthase)
at the inner mitochondrial membrane. Impairment of the
ETC activity is responsible on one side for the reduced ATP
generation by ATP synthase (complex V) and on the other
side for the increased superoxide production mainly at com-
plexes I and III of the ETC due to partial reduction of oxygen
[45–48]. However, it has to be mentioned that mitochondria
are endowed with a robust ROS-detoxifying network com-
prising both enzymes and nonenzymatic antioxidants that
are able to counteract even a significant oxidative burden in
physiological conditions. Indeed, generation of superoxide,
hydroxyl anions, and hydrogen peroxide by the ETC com-
plexes becomes relevant only in pathological conditions [49].
The term oxidative stress refers to a persistent imbalance
betweenROSgeneration anddetoxification; however, the vast
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majority of studies have addressed the issue of ROS emission
(defined as the difference between ROS production and ROS
removal) without concomitant assessment of status of the
antioxidant response [50].

The current evidence for ETCdysfunction andmitochon-
drial ROS production shows a broad variability in animal
models ofHF and humanswithHF of different etiologies.The
impairment of the ETC activity (in particular, of complexes I
and III as the major sites for ROS production) in the failing
myocardium has been reported in various models of HF. Ide
et al. showed a decreased complex I activity with subsequent
electron leakage and increased superoxide production in a
model of HF induced in dogs by rapid ventricular pacing
whereas the superoxide dismutase activity was not changed
[51]. These authors further demonstrated in the same model
a significant positive correlation between the cardiac produc-
tion of superoxide and hydroxyl radicals (directly assessed by
electron spin resonance spectroscopy) and the left ventricular
contractile dysfunction [52]. The activities of complexes III
and V have also been reported to decrease in the same
experimentalmodel of pacing-induced left ventricular failure
in dogs; this paper also reported increased aldehyde levels
in left failing ventricles as indirect measure of increased
oxidative stress [53, 54].

In an elegant series of studies, the group of TorstenDoenst
analyzed the occurrence of mitochondrial dysfunction in
relation to the type of contractile abnormalities. In the rat
model of HF induced by chronic pressure overload they
reported a decline in complex I (but not in complex II
[22]) supported respiration in isolated mitochondria that
occurred in association with systolic dysfunction (diagnosed
by impaired ejection fraction) 20 weeks after the induction
of transverse aortic constriction (TAC) [55]. Of note, in this
model, diastolic dysfunction occurred prior to the impair-
ment of mitochondrial respiratory capacity. Interestingly, the
same group recently also reported in the same experimental
model (HF with systolic dysfunction 20 weeks after TAC)
that the onset of diastolic dysfunction was coincident with
the maximal ROS production; conversely, the occurrence of
contractile dysfunction at 20 weeks was no longer related
to the ROS production and was not reversed by the antiox-
idant interventions [56]. Similarly, in the rabbit model of
pressure-overload induced HF, dysfunction of mitochondrial
complexes I and II occurred during the transition from
compensated left ventricular hypertrophy to overt failure and
was also independent of ROS production [57]. In another
experimental model of HF due to pressure overload, the
spontaneous hypertensive rat, a defect in complex IV was
demonstrated [58].

ETC defects were also associated with the murine model
of HF induced by the coronary artery ligation. Ide et al.
reported a decrease in enzymatic activity of the complexes
I, III, and IV containing several mitochondrially encoded
subunits (but not of the nuclear encoded complex II) and
a parallel reduction in mtDNA-encoded gene transcripts, a
significant increase in levels of hydroxyl radicals and lipid
peroxides, changes that were associated with ventricular
dilation and decreased contractility [59].

An important decrease in mitochondrial respiratory
capacity was also found in a canine model of moderate
HF induced by coronary microembolization in the presence
of normal activities of ETC complexes, an effect that was
assigned to the lack of assembly of complexes constituting
the so-called respirasomes [60]. Rosca et al. considered the
decrease in functional respirasomes in HF as the primary
event responsible for the decreased oxidative phosphory-
lation and the increased ROS production leading to the
progressive decline in cardiac performance [21, 61]. These
authors also reported that, depending on the experimen-
tal model, mitochondrial subpopulations are differentially
affected: whereas, in the canine model of intracoronary
microembolization, both populations were equally affected,
in the rapid ventricular pacing model, a significant decrease
in oxidative phosphorylation was found in the interfibrillar
mitochondria (but not in the subsarcolemmal population).
Moreover, the isolation technique significantly accounts for
the magnitude of the reported mitochondrial defect and
explains the heterogeneity of the experimental and clinical
data [21].

A great variability also characterizes the defects of
ETC complexes reported to occur in the failing human
heart. An important decrease of the respiratory capacity
was reported in saponin-skinned muscle bundles obtained
from myocardium of explanted human hearts with end-
stage HF: in one study state 3 respiration was found to be
significantly lower in endocardium versus the epicardium
[62] and in the other the impairment of complex I-linked
respiration was reported to occur early in the development
of HF [63]. Similarly, Scheubel et al. reported a moderate
decrease in complex I activity in left ventricular specimens
harvested from explanted human hearts [64]; this decrease
occurred in the absence of mtDNA damage, an observation
that supports the hypothesis that the failing human heart
is not irreversibly damaged [65]. Recently, Stride et al.
reported a marked reduction in oxidative phosphorylation
in left ventricle biopsies obtained from patients with chronic
ischemia and systolic dysfunction (ejection fraction <45%)
for complex II-supported respiration, an increased ROS
production, and a tendency for decreased antioxidant defense
in the ischemic tissue; however, the degree of coupling was
comparable in mitochondria harvested from the ischemic
and nonischemic tissue of the same heart [66]. We have
previously reported that complex I- (but not complex II-)
supported respiration is impaired in atrial appendages
harvested from coronary patients with preserved systolic
function (ejection fraction >50%) [67]. At variance from
all the previous reports, in a recent study performed in
freshly isolated mitochondria from failing ventricles, com-
plex I-dependent respiration was reported to be coupled
and enhanced in the failing hearts, whereas complex II-
dependent succinate respiration was associated with greater
uncoupling [68]. However, no major differences were found
in the capacity of mitochondria to oxidize different substrates
supplied ex vivo, a finding that reinforces the observation
that reversible mitochondrial damage occurs in the failing
hearts. Interestingly, these authors reported a reduced state 3
respiratory rate for succinate in the subgroup of diabetic
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patients, an observation suggestive for an impairment of
mitochondrial respiratory capacity in the failing hearts in the
presence of diabetes.

3. Mitochondrial Dysfunction in Diabetes

The term diabetic cardiomyopathy refers to the association
of left ventricular hypertrophy/remodeling with diastolic
dysfunction that precedes the development of systolic dys-
function andmayprogress to heart failure [69]. Elucidation of
the pathogenesis of diabetic cardiomyopathy is currently an
active field of research. In particular, metabolic impairment
and mitochondrial dysfunction have been systematically
investigated in the past decades in both clinical and experi-
mental settings (reviewed in [70–74]). We will further refer
to the impairment of respiratory capacity and the subsequent
redox imbalance in order to highlight commonalities with the
aforementioned findings in HF. Early studies performed in
rats with type 1 DM pharmacologically induced with strepto-
zotocin firstly mentioned the contribution of mitochondria
to the diastolic dysfunction [75] and reported the decrease
in succinate-supported respiration and complex II activity;
the latter change was attributed to the generation of an
adduct of hydroxynonenal and complex II [76]. However,
most of the knowledge of mitochondrial dysfunction was
gained from genetically modified rodents that recapitulate
the metabolic phenotype of humans with obesity and type 2
diabetes. In spite of some differences in pathophysiological
mechanisms underlying cardiomyopathy in type 1 and type 2
of experimental diabetes, compromised mitochondrial ener-
getics is a common feature in both types of diabetes [77].
Accordingly, depressed state 3 respiration was reported to
occur in experimental models of type 1 [78, 79] and type 2
diabetes [80], and also in obesity with insulin resistance [81].
In the latter study, the decrease in oxidative phosphorylation
capacity was associated with increased production of H

2
O
2

and mitochondrial uncoupling, a process that decreases
cardiac efficiency and may underlie the increased propensity
of diabetic hearts to develop HF [82].

As in the case of HF, whether functional differences
occur in cardiac mitochondrial subpopulations has been
also investigated in a murine model of type 1 diabetes
[83]. Complex II-supported respiration was decreased to a
greater extent in interfibrillar mitochondria (as compared to
subsarcolemmal ones). In the former population, a decrease
in complex I respiration was also reported together with an
increased production of superoxide and a decrease in cardi-
olipin. However, it is not clear if the active ADP-stimulated
respiratory rate as indicator of maximal respiratory capacity
was also depressed in this study.

Mitochondrial dysfunction has also been confirmed
in the diabetic human heart. Neufer’s group reported a
decreased glutamate and fatty acid-supported respiration and
an increased sensitivity to Ca2+-induced permeability tran-
sition in permeabilized myofibers prepared from right atrial
appendages harvested from coronary patients with type 2
diabetes; these authors also demonstrated the increase in
oxidative stress as shown by a greater rate of H

2
O
2
emission,

glutathione depletion, and increased levels of hydroxynone-
nal and nitrotyrosine-modified proteins, respectively. Impor-
tantly, they also reported an inverse relationship between
respiratory capacity and HbA1c [84, 85]. More recently,
a decrease in complex I and fatty acid-mediated active
respiration was found in subsarcolemmal (but not in interfib-
rillar) mitochondria isolated from atrial appendages of type
2 diabetic patients, regardless of the levels of HbA1c and
hyperglycemia [86]. In another elegant study, the impairment
in mitochondrial function and dynamics has been associated
with contractile dysfunction in diabetic (but not in obese)
patients; however, in this case, mitochondrial dysfunction
correlated with the level of glycated haemoglobin [87].

Thepast decade of research provided convincing evidence
that mitochondrial dysfunction is a central event in the
pathogenesis of HF andDM.This concept extends far beyond
the impairment of respiratory capacity and the generation of
oxidative stress and includes several other pathomechanisms
such as: impairedmitochondrial biogenesis, posttranslational
modification of mitochondrial proteins, metabolic shifts and
remodeling, and abnormal calcium handling that occur
in both pathological conditions. Thus, it becomes more
and more evident that the “common soil” hypothesis [88]
proposed almost two decades ago (postulating that cardio-
vascular diseases and diabetes share common genetic and
environmental risk factors) should be extended to include
mitochondrial dysfunction as well.

4. Monoamine Oxidases as Novel
Sources of Mitochondrial Oxidative Stress in
Cardiovascular System

In the past decade, monoamine oxidases (MAOs) have
emerged as another important mitochondrial source of
oxidative stress in the cardiovascular system (please see [31]
for a recent comprehensive review). MAOs are flavoproteins
located in the outermitochondrialmembranewhere they cat-
alyze the oxidative breakdown of endogenous monoamines
and dietary amines, with the constant generation of H

2
O
2
,

aldehydes, and ammonia as byproducts. Two isoforms,
MAO-A and MAO-B, with specific tissue distribution and
substrate affinity, have been described [89]; in experimental
settings, pharmacological criteria are useful to characterize
the isoenzymes: MAO-A is selectively inhibited by low doses
of clorgyline andMAO-B is blocked by low doses of deprenyl
(selegiline) [90].

MAOs-related oxidative stress unequivocally contributes
to acute myocardial ischemia/reperfusion injury [91] and to
the mitochondrial dysfunction and pathologic hypertrophy
elicited by pressure overload in a murine model of HF [92,
93]. Of note, MAO-A protein has been reported to be overex-
pressed in all the experimentalmodels ofHF induced in rat by
hemodynamic overload (pressure and volume) and coronary
ligation [31]. Also, MAO-A activity has been reported to
increase in response to angiotensin II, an observation relevant
for the clinical settings of heart failure and diabetes where the
renin-angiotensin system is upregulated [94].
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Figure 1: Effects of MAO-A inhibition on vascular function in isolated rat aortas. (a) Acetylcholine-induced endothelium-dependent
relaxation in phenylephrine-preconstricted aortic segments (𝑛 = 4, ∗𝑃 < 0.05 with and without diabetes; #

𝑃 < 0.05 with and without
MAO inhibitor, clorgyline, 10 𝜇mol/L). (b) Assessment of H

2
O
2
formation by ferrous oxidation xylenol orange (FOX) assay in the presence

or absence of the MAO inhibitor (𝑛 = 4, ∗𝑃 < 0.05 with and without diabetes; #𝑃 < 0.05 with and without clorgyline, 10 𝜇mol/L).

Also, MAOs have emerged as mediators of experimental
endothelial dysfunction via the excessiveH

2
O
2
production in

two murine models of acute (induced with lipopolysaccha-
ride, LPS) and chronic (induced with angiotensin II and A
II) oxidative stress, respectively [12]. In this study, we demon-
strated that exposure of mouse aortas isolated in organ bath
to exogenous MAO elicited endothelial function via a ROS-
dependent mechanism. Importantly, both the impairment of
endothelial-dependent relaxation and H

2
O
2
emission were

partially reversible in the presence of pharmacological inhi-
bition of MAO-A (with clorgyline and moclobemide) and
MAO-B (with selegiline), respectively. Importantly, in this
model, endogenous vascular catecholamines are sufficient to
activate MAO to induce endothelial dysfunction (no exoge-
nous substrate was added in the experiment).Themechanism
was most probably related to the decreased vascular gener-
ation of nitric oxide since in a separate set of experiments
MAO-A was found to limit the endothelial accumulation of
cyclic guanosine monophosphate. We further investigated,
in organ bath experiments, the contribution of endogenous
MAO as mediator of endothelial dysfunction. We found that
both MAO isoforms are expressed in the vascular system
and induced in response to LPS and A II via the NF-𝜅B
and phosphatidylinositide 3-kinase signaling [95]. In vivo
exposure to A II and LPS increasedMAO expression in aortic
rings and acute MAO inhibition partially restored normal
endothelium-dependent relaxation in vessels harvested from
A II and LPS treated animals; this effect was associated with
a reduction in the vascular formation of H

2
O
2
[12].

We also recently demonstrated that MAO-A inhibition
corrects endothelial dysfunction in Zucker diabetic fatty
rat (ZDF), a genetic model of type 2 diabetes [96]. In
organ bath experiments, preincubation for 30min with the
MAO-A inhibitor, clorgyline, significantly improved the
endothelium-dependent relaxation of the aortic rings isolated
from ZDF rats and had no effect on vascular relaxation in
control aortic rings. Also, vascular H

2
O
2
generation was

increased in diabetic vessels and significantly decreased in the
presence of clorgyline (10 𝜇mol/L, Figure 1).

Whether basic science’s predictions on the role of MAO
inhibition in the failing heart hold true in humans is not
known. A pioneering study has recently reported that atrial
activity of MAO assessed in right atrial appendages may
serve as an independent predictor for postoperative atrial
fibrillation in patients undergoing cardiac surgery [97].

Eugene Braunwald pointed out already back to 1997 that
there are two emerging epidemics of cardiovascular disease,
heart failure and atrial fibrillation [98]. MAOs contribution
to both conditions has been documented. In line with our
experimental data, it is conceivable to address the role of the
enzyme in DMwhich together with obesity are the other two
menacing pandemics of the 21st century. Accordingly, contri-
bution of MAO-related oxidative stress to the pathogenesis
of endothelial, mitochondrial, and contractile dysfunction
in diabetic patients undergoing cardiac surgery should be
thoroughly investigated.
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Moreover, several studies reported the contribution of
NADPH oxidase and eNOS uncoupling to the pathological
production of vascular ROS after percutaneous coronary
interventions (reviewed in [99]). In line with previously
reported contribution ofMAOs to the experimental endothe-
lial dysfunction it is tempting to speculate that MAO-derived
ROS may be involved in the postprocedural complications
such as restenosis and stent thrombosis.

5. Conclusions

The past decade of research provided convincing evidence
that mitochondrial dysfunction may be an important event
in the development of pathological hypertrophy in both heart
failure and diabetic cardiomyopathy. Not only mitochondrial
but also endothelial dysfunction is a widely investigated
mechanism in cardiometabolic diseases and a valuable ther-
apeutic target. There is an unmet need for novel therapies
tailored to reduce the risk of heart failure in patients with dia-
betes mellitus. Therefore, the design of a prospective study in
cardiac patients with and without diabetes undergoing heart
surgery aimed at providing further mechanistic insights into
the role of MAO as an emerging mitochondrial therapeutic
target for cardio- and vasculoprotection is strongly recom-
mended.
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[67] O. Duicu, C. Juşcă, L. Falniţă et al., “Substrate-specific impair-
ment of mitochondrial respiration in permeabilized fibers from
patients with coronary heart disease versus valvular disease,”
Molecular and Cellular Biochemistry, vol. 379, no. 1-2, pp. 229–
234, 2013.

[68] A. M. Cordero-Reyes, A. A. Gupte, K. A. Youker et al., “Freshly
isolated mitochondria from failing human hearts exhibit pre-
served respiratory function,” Journal of Molecular and Cellular
Cardiology, vol. 68, pp. 98–105, 2014.

[69] S. Boudina and E. D. Abel, “Diabetic cardiomyopathy, causes
and effects,” Reviews in Endocrine and Metabolic Disorders, vol.
11, no. 1, pp. 31–39, 2010.

[70] R.Harmancey andH. Taegtmeyer, “The complexities of diabetic
cardiomyopathy: lessons from patients and animal models,”
Current Diabetes Reports, vol. 8, no. 3, pp. 243–248, 2008.

[71] H. Bugger and E. D. Abel, “Mitochondria in the diabetic heart,”
Cardiovascular Research, vol. 88, no. 2, pp. 229–240, 2010.

[72] R. Blake and I. A. Trounce, “Mitochondrial dysfunction and
complications associated with diabetes,” Biochimica et Biophys-
ica Acta, vol. 1840, no. 4, pp. 1404–1412, 2014.

[73] S. D. Martin and S. L. McGee, “The role of mitochondria in the
aetiology of insulin resistance and type 2 diabetes,” Biochimica
et Biophysica Acta, vol. 1840, no. 4, pp. 1303–1312, 2014.

[74] O. Lorenzo, E. Ramı́rez, B. Picatoste, J. Egido, and J. Tuñón,
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