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Abstract

The complex feature characteristics and low contrast of cancer lesions, a high degree of

inter-class resemblance between malignant and benign lesions, and the presence of various

artifacts including hairs make automated melanoma recognition in dermoscopy images

quite challenging. To date, various computer-aided solutions have been proposed to identify

and classify skin cancer. In this paper, a deep learning model with a shallow architecture is

proposed to classify the lesions into benign and malignant. To achieve effective training

while limiting overfitting problems due to limited training data, image preprocessing and data

augmentation processes are introduced. After this, the ‘box blur’ down-scaling method is

employed, which adds efficiency to our study by reducing the overall training time and space

complexity significantly. Our proposed shallow convolutional neural network (SCNN_12)

model is trained and evaluated on the Kaggle skin cancer data ISIC archive which was aug-

mented to 16485 images by implementing different augmentation techniques. The model

was able to achieve an accuracy of 98.87% with optimizer Adam and a learning rate of

0.001. In this regard, parameter and hyper-parameters of the model are determined by per-

forming ablation studies. To assert no occurrence of overfitting, experiments are carried out

exploring k-fold cross-validation and different dataset split ratios. Furthermore, to affirm the

robustness the model is evaluated on noisy data to examine the performance when the

image quality gets corrupted.This research corroborates that effective training for medical

image analysis, addressing training time and space complexity, is possible even with a light-

weighted network using a limited amount of training data.

1. Introduction

Cancer is one of the most severe threats to global health in today’s world. Globally, approxi-

mately 19.3 million new cancer cases, including 1,198,073 skin cancer cases, and nearly 10.0

million cancer deaths, including 63,731 skin cancer deaths, were recorded in 2020 [1]. The

global cancer burden is estimated to rise by 47%, with an occurrence of 28.4 million new cases,
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by 2040 [1]. Around 75% of deaths related to skin cancer are caused by malignant melanomas.

To lessen the spread of cancer and increase survival rates worldwide, early cancer screening

and diagnosis are considered essential public health tactics. Skin cancer can be remedied if it is

detected early when the thickness of the malignant tumor is lower than a particular threshold.

However, the prognosis worsens rapidly as the disease progresses. The five-year survival rate

of advanced stage cases is less than 15%, while the survival rate for early-stage diagnosis with

proper treatment is above 95% [2]. Regrettably, since 2020, the diagnosis and treatment of can-

cer is been hindered due to the pandemic of coronavirus disease 2019 (COVID-19) as fear of

infection with the virus in health care systems, inhibits people from seeking screening, diagno-

sis, and treatment for non–COVID-19 disorders [3]. For early skin cancer screening, a full

body skin checkup, which is reasonably quick and non-invasive, is recommended by medical

associations. Nonetheless, visual skin examination might not be an effective approach to dis-

cover skin cancer at an early stage [4]. Medical appliances may aid doctors in screening but

due to the symptoms and characteristics of skin cancer, such as the potential of rapid progres-

sion requiring diagnostic refinement, accurate diagnosis of melanoma is difficult even for

experts [4]. Melanoma, the worst form of skin cancer, is the least frequent yet the deadliest

type of lesion and it can spread swiftly to other regions of the body. It develops when melano-

cytes undergo malignant transformation [5]. As the correspondence between malignant and

benign features is particularly close at the initial evolutional phase [6], early detection remains

challenging for clinical experts.

Dermoscopy is a non-invasive examination procedure where the diagnostic accuracy

depends on the experience and training of the dermatologist. Over the past decades, dermo-

scopic examination has been employed progressively in clinical practice to assess vascular

structures [7]. Unfortunately, even using dermoscopy, the accuracy of melanoma detection is

estimated to be only 75–84% [8]. Though it improves the accuracy of diagnosis significantly,

assessment of dermoscopic images is time-consuming and errors may occur during the pro-

cess even with expert dermatologists [9]. The morphological structural features of a lesion,

such as the color spectrum, shades of color, skin lesion color gradient, number of lesions,

streaks, and grid patterns, are the major causes behind this [10]. Moreover, people often only

consult doctors after cancer has progressed to the point that it is impossible to recuperate

from. In most cases, the initial observation is done in primary care clinics before the patient is

transferred to a dermatologist as it is quite unachievable for dermatologists to check all patients

for primary staged skin tumors [11]. In this case, computer aided diagnosis can play a signifi-

cant role as it processes by extracting key details such as color variant, texture features, asym-

metry, border irregularity, and diameter which may not be perceived by human eyes

accurately [12]. Image processing techniques along with machine learning methods could be a

useful approach for classification and diagnosis but often cause false positive and false negative

cases. Deep Learning technology could aid to detect skin cancer in an early stage with higher

accuracy and reduce process interpretation time.

The aim of this research is to classify skin cancer lesions into benign and malignant classes,

employing a deep learning approach. A shallow deep learning model is proposed by conduct-

ing an ablation study on it. As dermoscopic images are affected by noise, hairs, dark corners,

color charts, uneven illumination and marker ink [13], image pre-processing methods are

deployed to increase the performance of our proposed model. Several commonly used algo-

rithms are introduced to segment the skin lesions accurately. Moreover, as deep learning

requires a dataset of sufficient size, data augmentation is carried out to increase the number of

images. To reduce training time and space complexity, a down-scaling approach is introduced

using bilateral and box blur algorithm. In our study, the term down-scaling means, reducing

total space taken by an image without decreasing its actual size. Simply, the image size will
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fanconic/skin-cancer-malignant-vs-benign. The

dataset was divided into two folders of train and

test. There are two classes, benign and malignant,

where a total of 1800 dermascopy images are

found benign and the rest 1497 images are

malignant. All the images were in RGB format and

have 224 x 224 pixels. However, all the rights of

the Data are bound to the ISIC-Archive rights

https://www.isic-archive.com. The ISIC Archive is

an open source platform with publicly available

images of skin lesions under Creative Commons

licenses or CC BY-NC license. This type of license

allows others to distribute, remix, adapt, and build

upon the material in any medium or format for

noncommercial purposes only, and only so long as

attribution is given to the creator. Basically this

license allows the creator to retain copyright whilst

allowing others to copy and distribute and make

use of their work non-commercially. This archive

serves as a public resource of images for teaching,

research, and for the development and testing of

diagnostic artificial intelligence algorithms. Anyone

can access ISIC archive and make use of the skin

lesion images that it provides in their research

work. ISIC-Archive contains a total of 69445 skin

cancer dermoscopy images of two classes with

necessary metadata. Interested researchers can go

to the above link and access the images by clicking

on ‘Gallery’ option. From this page, images can be

downloaded with metadata by selecting required

number of pictures. However, images of ISIC-

Archive are in different pixel size. Therefore, if any

researcher wants a small portion of labeled and

resized dataset of ISIC-Archive, they might work

with ‘Skin Cancer: Malignant vs. Benign’ dataset

that we have employed. This is a labeled and

resized dataset which is publicly visible and hence

anyone can view and access the dataset. Further

information regarding the access procedure of the

data origin point can be found in this GitHub

repository https://github.com/hrafid/ISIC-data-

availability-statement/blob/

5fa2ab56db6bc0f6cddac0b2df171841a9391bc6/

Data%20availability%20statement.pdf.
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remain same, but the space taken by image will be reduced. After applying the method, statisti-

cal analysis, including Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), Root

Mean Squared Error (RMSE), Structural similarity index measure (SSIM), Dice Similarity Co-

efficient (DSC) and histogram analysis, is done on the processed image to evaluate the algo-

rithms. As a result of introducing down-scaling method, the image size and model training

time, denoting space complexity and time complexity, are reduced significantly. Performance

evaluation matrices such as Accuracy (ACC), Recall and Specificity, F1-score, Root mean

squared error (RMSE), Mean absolute error (MAE) and Area under curve (AUC) value are

computed to evaluate the effectiveness of our model. However, to check the possibility of

occurring overfitting, k-fold cross-validation using different dataset split ratios are performed

on both datasets before and after applying augmentation. Moreover, as real world dataset con-

tains noises, the model is evaluated on noisy data to examine the performance when the image

quality gets corrupted.

This paper is organized in a total of 11 sections. Firstly, the challenges of skin cancer detec-

tion are demonstrated in section 2 and research objectives are shown in section 3. A detailedli-

terature review with limitations is presented in section 4. Dataset used in this study is

described in section 5. Section 6 contains some sub-sections that describe the image prepro-

cessing steps, image down-scaling method and image segmentation process. Later, augmenta-

tion of down-scaled images and overview of the training approaches is presented in section 7.

In section 8, the proposed model SCNN_12 is described. Section 9 showcases experimental

results and discussion along with all the findings of this study. Limitations of this research is

presented in section 10 and finally the conclusion of the study is presented in section 11

2. Challenges in skin cancer detection

Challenges for detecting skin cancer in an early stage can be described as follows:

1. Noise may obscure significant features of an image, and artifacts may interfere with obtain-

ing the desired accuracy. Therefore, noise and unwanted regions which may contain arti-

facts should be eliminated.

2. In some cases, there is low contrast and brightness from neighboring tissues, color texture,

light rays and reflections form additional impediments to scrutinizing skin lesions

accurately.

3. Moles of the human body, which can be quite similar to benign and malignant lesions,

make classification hard.

4. The structure of cancerous lesion of benign and malignant stages is nearly similar for which

it is often challenging to interpret correctly without proper image preprocessing steps.

Fig 1 shows several challenges commonly included in skin cancer dermoscopy images.

3. Research objectives

The main objective of this study is to construct an effective method to classify skin lesions into

benign and malignant classes with the highest possible accuracy while limiting time and space

complexity. The main contributions of our paper are as follows:

1. Unnecessary regions of tissue and hairs visible in images are removed using morphological

closing.

2. The quality of the images is improved by applying the enhancement technique, gamma

correction.
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3. Regions of Interest (ROI) are extracted successfully using different algorithms, namely

OTSU thresholding, morphological dilation, subtraction and morphological opening.

4. Down-scaling is carried out by employing the box blur algorithm followed by a bilateral fil-

ter to boost the performance while reducing computational complexity.

5. The number of dermoscopy images is increased by employing four color space data aug-

mentation techniques in order to reduce overfitting issues while training the model.

6. A shallow convolutional neural network (SCNN_12) model of depth 12 is proposed, after

performing an ablation study, to classify skin cancer with the highest possible accuracy.

7. The model is tested using K-fold cross-validation and splitting the dataset using various

ratios before and after augmentation to check overfitting issue.

8. The robustness of the model is ascertained, evaluating the model on noise induced test

dataset.

4. Literature review

To improve the efficiency of the performance of automatic detection, segmentation and classi-

fication, many specialists and scholars have conducted research in this area. Ameri A. et al.,

[14], proposed a deep CNN model to classify skin cancer images into two classes. AlexNet was

employed as the pre-trained model. A total 3400 images, 1700 in the benign and 1700 in the

malignant class, were obtained from the HAM10000 dermoscopy image database. Their pro-

posed model obtained an accuracy of approximately 84%. The existing public skin cancer data-

sets mostly contain an inadequate number of segmented ground truth labeling which is

laborious and expensive. However, on their dataset, almost 80% of images were at benign

class. Authors manually balanced the classes with the equal number of images that led to

higher accuracy. In this case, implementing some effective image processing and data augmen-

tation techniques could have been a better approach. Moreover, the proposed model might be

Fig 1. Automatic recognition of skin cancer is impeded by various factors. (a) represents some interferences with

important features (b) shows the similarity between benign and malignant lesions.

https://doi.org/10.1371/journal.pone.0269826.g001
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further experimented by changing different parameters and hyper-parameters that might aid

to improve robustness and a good comparison among the performance could have been pre-

sented. As segmentation of cancerous lesions accurately is vital, the authors of a recent paper

[15], proposed fully automated deep learning ensemble methods, based on Mask R-CNN and

DeeplabV3+, for the segmentation of lesion boundaries. For pre-processing the datasets, the

authors applied the Shades of Gray algorithm. They used the ISIC-2017 segmentation training

set for training their network. The model performed its best by achieving the highest accuracy

of 94% using Fuzzy Gradient Descent (FGD) optimizer. The ISIC-2017 testing set and PH2

dataset were used as the test set to evaluate the performance of their introduced methods. For

the ISIC-2017 testing set, their proposed ensemble methods performed preeminently in seg-

menting the skin lesions with a sensitivity of 89.93% and a specificity of 97.94%. In terms of

sensitivity, the suggested Ensemble-A approach beat FrCN, FCNs, U-Net, and SegNet by 4.4%,

8.8%, 22.7%, and 9.8%, respectively. Their proposed Ensemble-S, Ensemble-L and Ensemble-

A networks performed best with an accuracy of 93%, 93% and 94% respectively. In this study,

exploring more data pre-processing and augmentation techniques might had an impact on

increasing accuracy as skin cancer dataset often contains noises, artifacts and limited number

of images. Moreover, an ablation study could have been experimented tofigure out how the

model behaves under different parameters. Kharazmi et al [16], developed a novel automatic

skin vessel segmentation framework in order to detect and evaluate cutaneous vascular struc-

tures in ceroscopy images. The retrieved vascular characteristics were further investigated for

skin cancer categorization into Basal cell carcinoma (BCC) and benign lesions. Applying their

framework, a computer-assisted disease classification was performed to differentiate BCC

from benign lesions. The authors obtained a segmentation sensitivity and specificity of 90%

and 86% respectively on a test set of 500000 manually segmented pixels, defined by an expert

as the ground truth. Compared to some other state of the art methods, the proposed method

achieved the highest AUC of 96.5% when separating BCC from benign lesions using only the

extracted vascular features and the Random Forest classifier. One of the limitations of this

study is that they did not eliminate the bubble presented in skin images. As the presence of

artifacts highly interfere on overall performance, removal of artifacts might have been a better

approach to improve their accuracy. Later, a new approach, based on a novel regularizer tech-

nique was introduced to evaluate the classification accuracy of a deep CNN model [17]. The

regularizer was based on the standard deviation of the weight matrix of the classifier and

embedded in each convolution layer to control the values of kernel matrix. The suggested

model obtained an accuracy of 97.49% and an AUC value of 98.3% for 100 epochs outper-

forming other advanced techniques. However, the authors admitted that the proposed regu-

larizer cannot be utilized for feature selection or reduction. They also mentioned choosing

optimal gamma value for gamma correction algorithm is computationally expensive and

time intensive. Sikkander et al. [18] proposed a novel segmentation based classification

model for the identification of skin lesions on ISIC skin lesion dataset by merging a Grab-

Cut algorithm with an Adaptive Neuro-Fuzzy Classifier (ANFC). The system was developed

by deploying four key steps namely, preparation, segmentation, extraction of features, and

classification. After preprocessing the images by applying the top hat filter and inpainting

technique, the GrabCut algorithm was executed to extract the ROI. Afterwards, the feature

extraction phase was carried out by using a deep learning based Inception model. Finally, a

dynamic hybrid ANFC system was employed to classify the dermoscopy images. A dataset

with seven classes obtained from the ISIC skin lesion dataset was used for this purpose. The

proposed method performed with an accuracy of 97.91%, a sensitivity of 93.40% and a spec-

ificity of 98.70%. Their future work includes, experimentation with other deep learning net-

works that might improve overall accuracy. Jinnai et al. [19] trained a faster, region-based
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CNN (FRCNN) for the classification of benign and malignant tumors on a dataset of 4732

clinical images. The model was trained for 100 epochs using Visual Geometry Group-16

(VGG-16) as the backbone network. To improve the performance, data augmentation was

carried out by applying some commonly used techniques. However, a maximum accuracy

of only 91.5% was achieved by evaluating the model on a test dataset of 666 images. Other

authors [20] attempted to increase the proficiency of deep CNNs using transfer learning

and fine-tuning for the classification of benign vs. malignant skin cancer. They used a data-

set of 3600 images of size 224 × 224, downloaded from the ISIC Archive. Initially, three pre-

trained models namely Inception v3, InceptionResNetv2 and ResNet50 were employed on

ISIC dataset of 3600 images for 20 epochs with a learning rate of 0.0001, Adam optimizer

and a batch size of 32. These models were then trained and evaluated by changing the opti-

mizer and batch size to find the best performance. The highest experimental accuracy, pre-

cision, recall, F1 score and ROC-AUC score of 93.5%, 94%, 77%, 85% and 86.1% were

obtained with ResNet50 using the Stochastic Gradient Descent (SGD) optimizer and a

batch size of 64. Although, they performed data augmentation, no image processing method

was carried out in this study, which is one of the crucial steps in skin cancer classification

tasks. Along with batch size and optimizer, learning rate might be changed since, learning

rate highly impact on performance and training time. After extracting the ROIs from the

images of DermIS and DermQuest datasets using an improved k-mean algorithm, a new

fully automated CNN based transfer learning approach was used for the identification of

melanomas [21]. To address overfitting issues, data augmentation was applied on the ROIs

of the images. They proposed a fine-tuned model based on AlexNet architecture, by replac-

ing the low level feature layers resulting in the highest accuracy of 97.9% and 97.4% on Der-

mIS and DermQuest datasets respectively. However, in pre-processing step, only a noise

removal technique is applied. Artifacts removal, image enhancement and experimenting

with some optimizer and learning rate while training the models, could have been incorpo-

rated to validate the model’s robustness. Artifacts and resemblances between the normal

and cancerous skin lesions can reduce the performance of a model [22]. Therefore, authors

of this paper, removed these artifacts in order to implement the segmentation process more

precisely. They subsequently applied YOLOv4 deep neural network and active contour seg-

mentation method in order to segment the melanoma tumor. The model was tested on the

ISIC2018 and ISIC2016 datasets and achieved an average dice score of 1 and a Jaccard coef-

ficient of 98.9%. Wei et al [23] proposed a proficient and shallow melanoma classification

network based on MobileNet, DenseNet architecture, with a small number of parameters. A

lightweight U-Net model was built to segment skin lesion regions. The quantity of the

images was improved from 900 to 4430 by utilizing different augmentation methods. Their

model achieved an accuracy of 96.2%. Input image size of their network was too large that

required higher computing resources. Due to insuficient amount of data, in some cases

poor performance was observed. Besides, experimenting some loss functions could have

been incorporated to enhance model’s performance. The entire literature review including

limitation is summarized in Table 1 as shown below.

5. Dataset description

A total of 3297 dermoscopy images, provided by the Kaggle skin cancer image ISIC archive

[24] dataset are analyzed for this research. There are two classes, benign and malignant, where

1800 of the dermascopy images are benign and 1497 are malignant. The images are found in

RGB format and have 224 x 224 pixels. The description of the dataset is summarized in Table 2

and Fig 2.
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6. Proposed methodology

This section constitutes three main sub-sections: image preprocessing, segmentation and

down-scaling. Algorithms used for these processes are described briefly in this section.

In image preprocessing, under the sub-sections hair removal and enhancement, two algo-

rithms namely morphological closing and gamma correction are applied respectively. The pre-

processed resulting image is then passed through the steps of segmentation and down-scaling.

Six techniques related to segmentation are introduced, namely Otsu’s thresholding, morpho-

logical dilation, subtraction, morphological erosion, largest blob and hole-filling to extract the

ROI successfully. Down-scaling is carried out on preprocessed images by employing two algo-

rithms: bilateral filter and box blur, where bilateral filter is used to smooth the pixels and

box blur is used to down-scale the images. A number of assessment techniques, namely, MSE,

PSNR, SSIM, RMSE, Histogram Analysis and DSC are applied to the down-scaled images to

compare the structural and feature similarity measures.

6.1. Image pre-processing

Image preprocessing involves suppressing undesired features of an image as well as enhancing

meaningful features such as color, shape and texture which are necessary for a particular appli-

cation. The raw image dataset which is downloaded from a source has often unwanted regions,

small air bubbles, blood vessels, variations in brightness, contrast and noise as well as hair pre-

sented in various densities [25]. This could result in a reduced performance of the proposed

neural network based model. As shown in Fig 3, a malignant melanoma image can be

Table 1. A summary of the literature review showing the past techniques and their limitations.

Authors Task Models Limitations

Ameri et. al., [14] Classification,

segmentation

CNN i. Further experimentation of proposed model’s parameters is absent.

ii. Absence of image pre-processing and data augmentation technique

Manu Goyal et. al.,

[15]

segmentation Mask R-CNN DeeplabV3+ i. Lack of ablation study on proposed model

ii. Lack of image processing and data augmentation techniques that might have

given better accuracy

Kharazmi et. al., [16] Classification Feature extraction

Random forest

i. No eliminatation of artefacts (bubble) that are present in the images

ii. Absence of ablation study in proposed model

Albahar et. al., [17] Classification CNN model with novel

regularizer

i. Lack of ablation study in proposed model

Sikkander et. al..

[18]

Segmentation

Classification

ANFC i. Experimentations with other deep learning models is absent.

Sagar et.al., [20] Classification CNN i. Absence of image preprocessing techniques

ii. Use of a specific optimizer and learning rate

Ashraf et. al., [21] Segmentation YOLOv4 i. Lack of artefacts removal techniques

ii. Use of a specific optimizer and learning rate

Wei et. al., [23] Classification CNN i. Size of input image is too large requiring higher resources

ii. Experimentations with various loss functions is absent

https://doi.org/10.1371/journal.pone.0269826.t001

Table 2. Dataset description.

Name Description

Total number of images 3297

Dimension 224 × 224 pixels

Color grading RGB

Benign 1800

Malignant 1497

https://doi.org/10.1371/journal.pone.0269826.t002
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visualized as three channels: healthy skin, cancerous lesions and artifacts. Artifacts, including

unwanted objects and hair are denoted as peripheral and the cancerous lesion is denoted as

the tumor. These regions are also characterized by variations in size and multi-scale and

multi-resolution features [26]. Therefore, for each image, we focused on the elimination of

artifacts surrounding the tumor and the extraction of the cancerous lesion. Several methods

(e.g. median filter, morphological closing, k-means clustering) have been introduced in the lit-

erature to automate the preprocessing and lesion segmentation in this context.

These algorithms are applied to our images and the best one, based on highest PSNR values

is selected as PSNR is a prominent statistical measure to compare the original and processed

images. A higher PSNR value indicates a higher quality and a less noisy image. Algorithms

applied for image processing and their PSNR values, are summarized in Table 3.

Here, three processes are mentioned namely, hair removal, contrast enhancement and

noise removal. For hair removal, two algorithms are picked and since morphological closing

yields the highest PSNR score, closing is employed for the process. For contrast enhancement,

between contrast limited adaptive histogram equalization (CLAHE) and gamma correction,

gamma correction is chosen as the PSNR value of gamma correction is higher than CLAHE.

Likewise, in the last process, instead of selecting median filter, bilateral filter is chosen for

noise removal and down-scaling image pixels.

Methodologies applied to meet the challenges in skin cancer detection are illustrated in (Fig

4). Here, the complete preprocessing method is divided into two main processes: ‘hair

removal’ and ‘enhancement’. In this approach, the tiny blood vessels, air bubbles and hairs are

eliminated through the morphological closing operation which is a sub-process of ‘hair

removal’. In the ‘enhancement’ process, gamma correction is applied to enhance the contrast.

Fig 2. Skin cancer ISIC archive dataset.

https://doi.org/10.1371/journal.pone.0269826.g002
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6.1.1. Hair Removal. Since the presence of hairs can reduce the classification accuracy

and overall performance of a model, they should be eliminated before the training phase. For

this purpose, morphological closing is adopted as it can successfully eliminate the hairs with-

out destroying the meaningful features.

6.1.1.1 Morphological Closing. Morphological closing is a variant form of a morphological

operation that consists of morphological dilation followed by erosion. In this regard, the

Fig 3. Three regions and artifacts in the skin lesion image.

https://doi.org/10.1371/journal.pone.0269826.g003
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dilation operation fills narrow gaps and notches of the contour and extends the thickness or

size of the foreground object according to the shape of a given structuring element or kernel

while the erosion operation shrinks the foreground object of the resultant image with the same

kernel [27]. In this process, a kernel is structured of a suitable size based on the operation to be

performed. Fig 5 illustrates the process flow of morphological closing on our dataset.

The implementation is fairly straight forward and is accomplished by using morphologyEx

(), a function of openCV. The function will perform dilation and erosion and return the

desired output. The mathematical expression of morphological closing of X by B, as explained

by [28] can be stated as Eq 1:

X � B ¼ ðX � BÞ � B ð1Þ

where, X = input image, B = structuring element, X�B is closing of X by B, X� B = dilation of

X by B, (X� B)�B = erosion of X� B by B,� = symbol of addition and� = symbol of sub-

traction. Therefore, the closing of X by B = the dilation of input image, X followed by the

erosion.

The formula of dilation of X by B can be stated as Eq 2:

X � B ¼
[

b2B

Xb ¼
[

x2X

Bx ¼ fxþ b j x 2 X; b 2 Bg
ð2Þ

here, the kernel B is positioned with its origin at (x, y) and the new pixel value is derived using

the formula of Eq 3 [29]:

gðx � yÞ ¼
1 if Ff its S

0 otherwise
ð3Þ

(

here, F denotes the image where erosion will be performed and S denotes the structuring ele-

ment for performing erosion.The formula of erosion of X by B, where E is an integer grid and

X is an image in E can be stated as Eq 4:

X � B ¼
\

b2B

X� b ¼ fp 2 E j Bp � Xg ð4Þ

here, Bp indicates translation of B by p and translation of X by -b is denoted by X−b.
This function cv2.morphologyEx() is based on the concept of bitwise filtering which

requires three parameters namely input image, type of morphological operation and

Table 3. Comparison of different approaches based on PSNR values.

Process Algorithm PSNR

Hair removal Morphological tophat + Impainting 39.23

Morphological Closing 40.54

Contrast Enhancement CLAHE 38.22

Gamma correction 41.29

Noise remove / Down-scaling Median filter

41.78

Bilateral filter 42.94

https://doi.org/10.1371/journal.pone.0269826.t003
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structuring element or kernel which determines the nature of the operation. For our case, the

type of morphological operation is morphological closing (cv2.MORPH_CLOSE). Before

applying the filter, a structuring element also known as kernel is generated. Using NumPy, a

kernel can be structured in a rectangular shape. But a rectangular kernel does not always pro-

duce better result, especially in complex structured medical images. In these special cases, an

elliptical or circular shaped mask may provide a better outcome. With the help of cv2.getStruc-

turingElement () which is a function of opencv, a structuring element of different shapes can

be generated. This function requires two parameters: kernel shape and size.

Kernel shape: the kernel shape can be rectangular, elliptical or circular. The shape is chosen

based on the characteristics of the images and the goal of applying the kernel.

Kernel size: kernel size is also set based on the application. If a very tiny noise is present in

an image, kernel size can be smaller and vice versa.

In our study, we have used a Cross-shaped kernel as it provided the optimal output while

not degrading the image quality. However, rectangular and elliptical shaped kernel are also

experimented which did not provide a satisfactory output as shown in Fig 6. Although hairs

Fig 4. Steps performed for image pre-processing.

https://doi.org/10.1371/journal.pone.0269826.g004

Fig 5. Process flow of applying morphological closing.

https://doi.org/10.1371/journal.pone.0269826.g005
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were removed, image quality decreased and became highly pixelated. Our kernel size for struc-

turing element was (15, 15). As the hair was spread all over the image, a small kernel size (e.g.

5, 5) could not remove all the hairs successfully.

The result is that hairs, both inside and surrounding the foreground object, are successfully

removed from the input image. The process flow of morphological closing and the resultant

image are shown in Fig 6.

6.1.2. Enhancement. The main goal of image preprocessing is image restoration or

enhancement in order to enhance the relevant details by applying a suitable algorithm, based

on the nature of the dataset. In order to recognize objects, an image needs to be processed with

illumination compensation [12]. Since the gamma correction algorithm performed with the

highest PSNR score for this purpose, we have introduced the method for this study.

6.1.2.1. Gamma Correction. Gamma correction, also regarded as ‘Power Law Transform’,

carries out a non-linear transformation to every pixel of a source image [29]. Instead of adding

a constant value to the pixels, gamma correction applies an exponential function on individual

pixel intensity values. This can be expressed mathematically as Eq 5:

gðx; yÞ ¼ ½f ðx; yÞ�g ð5Þ

where, g(x,y) is the gamma corrected image, f(x,y) is the input image and γ is the given gamma

value. A gamma value, γ< 1 is considered as encoding gamma causing the lesion to be

brighter in a dark background and a gamma value γ> 1 is considered as decoding that causes

the lesion to be darker in a light background. Encoding gamma restores the pixels more effi-

ciently. The process of applying gamma correction can be illustrated as Algorithm 1.
Algorithm 1. Gamma Correction.
BEGIN

(1) Read Input image, f(x,y) where and x and y represents the
dimensions

(2) Apply gamma value, γ on f(x,y)
(3) Let, Output image = g(x,y)
(4) IF γ = 1:

Output, g(x,y) = linear.
(5) ELSE IF γ < 1:
Output, g(x,y) = brighter

(6) ELSE IF γ >1:
Output, g(x,y) = darker

END
The gamma distribution are plotted in 3 different graphs as shown in Fig 7, illustrating the

output behavior of an image for different gamma values. In each of the graphs, the x-axis rep-

resents the intensity values of the input image and the y-axis represents the intensity values of

the resultant image. A significant difference is noticed in the input and output intensity with

changes of the gamma value.

Fig 6. Resultant image of morphological closing with different kernel shape.

https://doi.org/10.1371/journal.pone.0269826.g006
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A suitable gamma can be found by experimenting with different gamma values on the tar-

get image [30]. In this process, the first step requires rescaling the pixel intensity range from

[0,255] to [0, 1.0]. After selecting and applying a suitable gamma value based on the color

intensity of the source image, the target output is obtained. Finally, the resulting image is

scaled back again to [0,255]. In our study, a gamma value of 1.2 is used, as higher gamma val-

ues were washing out the pixels and lower gamma values cause a loss of important details. Fig

8 illustrates image transformation for different gamma values. For a gamma value 1, the output

is linear. For gamma values of 0.1 and 0.5, the image is found quite faded. Moreover, for the

gamma valuesof 1.5 to 3.0, the image is found to become darkened. In both cases, cancerous

lesion is not clear and less highlighted which might cause poor performance of the neural

network.

However, a universal value of 1.2 would not be suitable for any image sets in which skin

cancer lesions should be detected but a suitable gamma value can be chosen following our

process.

The process flow of applying gamma correction and changes in the resultant image is

shown in Fig 9 where the output of morphological closing is used as the input of gamma

correction.

Table 4 represents all the determined parameter values for morphological closing and

gamma correction which are described above.

Fig 7. Plots for three gamma correction states.

https://doi.org/10.1371/journal.pone.0269826.g007

Fig 8. Gamma corrected image transformation.

https://doi.org/10.1371/journal.pone.0269826.g008
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6.2. Segmentation

Segmentation of medical images by extracting the disease area is a crucial component in this

field of research [31]. The detection of the ROI is a complex task and segmentation of melano-

cytic lesion can be very difficult [32]. For this purpose, several techniques are employed to

bring out the desired lesion from the images. The data enhancement method used in this seg-

mentation task is the same as described in section 6.1. In the segmentation step, the Otsu’s

thresholding, morphological dilation, substraction, morphological erosion, largest contour

detection and hole-filling methods are carried out to extract the cancerous lesion from the sur-

rounding healthy skin. The process of image segmentation is shown in Algorithm 2.
Algorithm 2. Image segmentation process.
BEGIN

1. Read preprocessed dermoscopy images, p(x,y) where and x and y
represents the dimensions

2. Apply Otsu’s thresholding on p(x,y)
Let otsu_img, o(x,y) is the output.

3. Apply morphological dilation on otsu_img, o(x,y)
Let dilate_img, d(x,y) is the output

4. Subtract otsu_img from dilate_img, d(x,y)
Let sub_img, s(x,y) is the output

5. Apply morphological erosion on sub_img, s(x,y)
Let erote_img, e(x,y) is the output

6. Find the largest blob from erote_img, e(x,y)
Let blob_img, b(x,y) is the output
Apply hole-filling operation on blob_img, b(x,y)
Let hole_img, h(x,y) is the output

7. Apply inrange operation on hole_img, h(x,y) and preprocessed
image p(x,y)

Let segmented_img, f(x,y) is the final output
END

Fig 9. Process flow of applying gamma correction.

https://doi.org/10.1371/journal.pone.0269826.g009
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6.2.1. Otsu’s Threshholding. A key prerequisite for extracting the essential features is

that the lesion must be distinct from the surrounding normal skin. To achieve that, automatic

thresholding proposed by Otsu is one of the most powerful methods [12]. This is a non-linear

operation that converts a gray-scale image into a binary image. The input of this algorithm is

generally a grayscale image and while the output is a binary image based on the pixel intensity

of the input image. If the intensity of a pixel> threshold, the corresponding output pixel is

marked as 1 (white), and if the input pixel intensity < = threshold, the output pixel is marked

as 0 (black). The equation for deriving the threshold value can be illustrated as Eq 6:

T ¼
1

2
m1 þ m2ð Þ ð6Þ

For computing a threshold value automatically between 0 and 1, Otsu’s thresholding fol-

lows the basic procedure of Algorithm 3 [13]:
Algorithm 3. Otsu’s thresholding.
BEGIN

1. Read an image as input
2. Select an initial estimated threshold value for T.
3. Using the estimation of T, segment the image which produces two

groups of pixels: G1 and G2. Therefore, G1 consisting of all pixels
with the intensity values �T, and G2 consisting of all pixels with the
intensity values <T.

4. Calculate the mean intensity values μ1 and μ2, for the pixels in
both regions G1 and G2.

5. Derive a new threshold value based on the formula of Eq (3).
6. Repeat steps 2 through 4 until the difference in T< the prede-

fined parameter T0.
END

In this method, the algorithm establishes an optimal threshold value by minimizing the

within-class variance (σ2) or maximizing the between class variance (σ2) of an object and back-

ground pixels of an image. The between-class variance formula can be defined as [13]:

s2ðtÞ ¼ w0ðtÞw1ðtÞ½m1ðtÞ � m2ðtÞ�
2

ð7Þ

s2 tð Þ ¼ w0 tð Þ � w0ðtÞ
m � m1ðtÞ
1 � w0ðtÞ

�
mðtÞ
w0ðtÞ

� �� �

ð8Þ

w0 tð Þ ¼
Xn

N

w1 tð Þ ¼ 1 � w0 tð Þ; m tð Þ ¼
X

t
n
N

ð9Þ

where, σ2 (t) is the between-class variance, w is the weight, μ is the combined average value

and T is the threshold value. In this process, pixels of the image are divided into two clusters

with intensity values 0 and 255. Here, w0, μ1 respectively represents background pixel weight

and mean values and on the other hand, w1, μ2 respectively represents foreground pixel weight

Table 4. Selected parameter values for morphological closing and gamma correction.

algorithm parameter

Morphological closing Structuring element = cv2.MORPH_CROSS, kernelSize = (15, 15)

morphological operation = cv2.MORPH_CLOSE

Gamma correction Gamma value = 1.2

https://doi.org/10.1371/journal.pone.0269826.t004
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and mean values. For our case, the algorithm is applied on skin images using cv2.threshold()

method that requires four parameters:

Input image: a gray scale image where the algorithm will be applied. Our input image is

skin cancer image after applying morphological closing and gamma correction.

Threshold value: This value is chosen based on the input pixel intensity. If the input pixel

value is less than the threshold, it is set to 0, otherwise, a maximum value (usually 255) is used.

Our threshold value was 120, as for skin lesion the pixel intensity was around this value in

most of the images. However, this value is determined based on optimal resultant image, after

experimenting with some other threshold values.

Maximum value: This value is assigned to the pixel that surpass the mentioned threshold.

Usually, this value is 255 which is applied on our study as well.

Thresholding technique: As we have applied Otsu’s thresholding, cv2.THRESH_OTSU is

passed as an extra flag along with cv2.THRESH_BINARY. Therefore, our parameter is cv2.

THRESH_BINARY+cv2.THRESH_OTSU.

The resultant image of Otsu’s thresholding is shown in Fig 10. Here, the output image is

denoted as ‘mask-1’ with a red border surrounding it, in order to show the white regions sur-

rounding the four corners of the image more clearly.

6.2.2. Morphological Dilation. Dilation, represented by� is a base morphological opera-

tion that adds pixels to the boundaries of foreground objects. Valleys and the width of maxi-

mum regions are expanded using dilation by eliminating undesirable noises. cv2.dilate()

method is used to apply morphological dilation which requires two inputs to perform the pro-

cess. The first input is the original input image and the second input is the structuring element

by which the image will be dilated. This structuring element, also known as the kernel, deter-

mines how many pixels will be added in order to emphasize the size of the foreground object

[5]. In this case, our inputs are binarized image and a structuring element (kernel) of size (5,

5). We chose this kernel size as our goal is to enlarge the skin foreground lesion in a minimum

amount. A higher kernel size would much expand the area which was not our purpose. The

mathematical formula of morphological dilation is defined in section 6.1.1.1.

The kernel size can be decreased and increased to get the desired shape and size of the fore-

ground object, as illustrated in Fig 11. The blue border around the red object indicated how

the size becomes larger after the dilation operation.

Fig 10. Resultant image after applying Otsu’s thresholding.

https://doi.org/10.1371/journal.pone.0269826.g010
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The resultant image (mask-2), after applying dilation on mask-1 is shown in Fig 12 where

regions of mask-2 are expanded compared to mask-1.

6.2.3. Subtraction. In the previous operations (Otsu’s thresholding and morphological

dilation), two masks: mask-1 and mask-2 were generated where mask-2 was obtained by dilat-

ing the pixels of mask-1. The purpose of dilating the white region of mask-1 and producing

mask-2 is to acquire the edge of the cancerous lesion. A simple subtraction of mask-1 from

mask-2 is implemented to preserve the edges of all the contours presented in the image [27].

Thus, a new mask, mask3 is created, which is shown in Fig 13. The process is described in

Algorithm 4. In Fig 13, the lesion of mask-2 is denoted as L-2 and the lesion of mask1 as L-1

where both mask-1 and mask-2 are of the same size of 224 X 224. Both lesions have pixel value

of 255 where the number of pixels in L-2> number of pixels in L-1. Therefore, while subtract-

ing mask-1 from mask-2, all the overlapping white pixels of mask-2 and mask-1 result in black

pixels. Algorithm 4 shows the pseudo-code of deriving mask-3:
Algorithm 4. Pixel subtraction method.
START

READ mask-2 as input m2(x,y) and mask-1 as m1(x,y)
CALCULATE N = len (m2)
LET, m3(x,y) = output
FOR pixel in N:

IF m2[pixel] = = 255 AND m1[pixel] = = 255
ASSIGN m3[pixel] = 0

ELSE IF m2[pixel] = = 255 AND m1[pixel] = = 0
ASSIGN m3[pixel] = 255

ELSE IF m2[pixel] = = 0 AND m1[pixel] = = 0
ASSIGN m3[pixel] = 0

END IF
END FOR

END
As L-2 and the other white regions (four corners) of mask-2 are greater than the white

regions of mask-1, some white pixels remain after subtraction. As a result, thin white edges

appear on mask-3 which is nothing but the dilated pixels of mask-2 (Fig 13).

Fig 11. Changes of pixels after applying morphological dilation.

https://doi.org/10.1371/journal.pone.0269826.g011
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6.2.4. Largest blob. It is observed from mask-3 that, along with the cancerous lesion,

unnecessary regions surrounding the ROI have also been extracted. To eliminate these regions

and keep only the desired ROI, the largest blob is detected [12]. Using the functions of

OpenCV namely findContours () and drawContours (), it is possible to locate and acquire the

size of contours in an image. A contour can be defined as a sequence of pixels that denotes a

Fig 12. Resultant mask after applying morphological dilation.

https://doi.org/10.1371/journal.pone.0269826.g012

Fig 13. Resultant mask after subtracting mask-1 from mask-2.

https://doi.org/10.1371/journal.pone.0269826.g013
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particular object in an image. in this process, at first mask-3 is converted into single channel

grayscale format and binary thresholding is applied. Hence, all the objects in the image will be

divided into two clusters, black (0) and white (255) based on the intensity value. All white pix-

els separated by borders of black pixels will be considered as a contour. With the help of the

findContours (), all the objects in mask-3 are located. The function requires three parameters

namely input image, contour retrieval mode and contour approximation method. It then pro-

vides a python list of all contours and a hierarchy as outputs. Here, our first parameter value is

the skin cancer image (Mask-3 of Fig 14). Second parameter, contouring retrieval mode is cv2.

RETR_EXTERNAL, since our goal is to extract the largest contour. This mode derives only the

outermost contours presented in an image. We have used cv2.CHAIN_APPROX_SIMPLE as

the third parameter value. Instead of storing all the coordinates of a contour, cv2.CHAIN_AP-

PROX_SIMPLE preserves only the necessary coordinates. For example, for the contour of a

rectangular shape, it does not retrieve all the points. Rather it just stores the necessary four

points, removing the redundant points, by which a rectangle can be easily derived. We have

used the approximation method as it saves memory while not compromising efficiency. Subse-

quently, after getting the list of contours, the function max () is employed to find the largest

blob by sorting the list from largest to smallest using the attribute, reverse = True. We passed

two parameters, contour list and a key = cv2.contourArea. Using the key, the function max()

derives the largest blob from the contour list. Finally, the function drawContours() proceeds to

draw an outline of this largest object area. After this process is completed, a binary mask is

returned covering the desired largest blob [5].

The process flow of deriving mask-4 from mask-3 using the largest blob detection is illus-

trated in Fig 14.

6.2.5. Hole-Filling. After extracting the largest contour from the image, it can be noticed

that the interior of the blob has intensity values similar to the background pixels. Therefore,

the hole has to be filled to obtain the final mask for segmentation. The objective of filling a

hole for a binary image is filling the entire region of a contour with the pixel value of 255 using

Eq 10 [13].

Xk ¼ ðXk� 1 � BÞ \ A
c ð10Þ

here, B is the structuring element or kernel, k defines the pixel index of an image where k

denotes the pixel which is being altered and k-1 indicates the neighboring pixels of k. A is the

Fig 14. Process flow of extracting the largest blob from mask-3.

https://doi.org/10.1371/journal.pone.0269826.g014
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set containing a subset according to the definition of [29], For hole filling, Eq 11 is ued.

Fðx; yÞ ¼
1 � Iðx � yÞ if ðx; yÞ is on the border of I

0 otherwise
ð11Þ

(

where, I is the binary image and F is the output image. F will be 0 everywhere apart from the

image border, which is denoted as 1−I. Finally, to draw the largest contour, cv2.drawContours

function is utilized. Here, the first parameter is where the contour will be drawn; the second

parameter is the list of contours. As we have just one largest contour, we have passed a list of

single contour. The third parameter is the index of target contour to be drawn, for our case ‘0’

is set, as we have just one index in the contour list. The fourth parameter is the color of mark-

ing. For our case, the value is (255,255,255). Therefore, the contour will be drawn with a pixel

value of (255,255,255). The last parameter is the thickness of drawing the contour border. We

have filled the contour area with a pixel value of (255,255,255). Therefore, cv2.FILLED param-

eter value is used to fill the entire area of the contour with a value of (255,255,255) and a binary

mask is returned as our final segmentation mask.

Finally, with the help of a bitwise_AND() function, this mask is merged with the pre-pro-

cessed image. The process of deriving the final mask and the segmented ROI is illustrated in

Fig 15.

After implementing the algorithms associated with the segmentation process, it can be

observed that the ROIs are successfully extracted as shown in Fig 16.

Table 5 represents all the selected parameter values for the algorithms associated with the

segmentation process which are demonstrated above.

Fig 15. Process of extracting ROI by filling the largest blob.

https://doi.org/10.1371/journal.pone.0269826.g015
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6.3. Down-scaling

A digital image consists of two-dimensional arrays, having a size (number of pixels) of M x N

where the number of rows is denoted by M and the number of columns is denoted by N. The

location and value of each pixel are determined by coordinates (x, y) and the intensity value f

respectively. Therefore, the representation of a digital image can be described as f(x, y). In this

regard, down-scaling is the decrease of spatial resolution, retaining an equivalent two-dimen-

sional (2D) image. This is usually done to reduce the storage requirements of images [33].

Reducing the number of pixels of an image can also contribute to decreasing the training time

of a CNN model. As stated, in our study, the term down-scaling means, reducing total space

taken by an image without decreasing its actual size. The original resolution of our image was

224x224 and after down-scaling, this will remain the same. But the size of the images before

down-scaling was on average around 45 kb. After down-scaling, this size was reduced to

Fig 16. (a) Pre-processed images of skin lesion (b) Resultant images after ROI extraction.

https://doi.org/10.1371/journal.pone.0269826.g016

Table 5. Selected parameter value for segmentation process.

Algorithm/process method Necessary parameter

Otsu’s thresholding cv2.threshold() Threshold value = 120, Maximum value = 255, Thresholding technique = cv2.THRESH_BINARY+cv2.THRESH_OTSU

Morphological Dilation cv2.dilate() kernel size = (5, 5)

Largest blob

cv2.findContours() Contour retrieval mode = cv2. RETR_EXTERNAL, contour approximation method = cv2.CHAIN_APPROX_SIMPLE

max() key = cv2.contourArea

Hole-filling cv2.drawContours Index = 0, border color = (255, 255, 255), type = cv2.FILLED

https://doi.org/10.1371/journal.pone.0269826.t005
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around 6 kb while preserving important details. We have used two filters namely bilateral filter

and box blur simultaneously for the purpose. At first, a bilateral filter is applied in order to

remove noise, smooth and down-scale pixels. It reduces the image size from 45 kb to 14 kb.

Then we apply a box blur filter which reduces the image size from 14 kb to 6 kb. Therefore, the

reason for applying two filters is mainly, bilateral filter smooth image by removing noises also

reduces size. To reduce size more, box blur is applied. Moreover, after applying box blur, our

accuracy did not drop (section 9.5.1). Time complexity, space complexity and result analysis of

this approach are demonstrated in section9.5.

6.3.1. Bilateral filter. Noise removal techniques can aid to identify details and characteris-

tics of images that are not obvious. This is an important task in biomedical image analysis as

the medical images require reliable techniques to get accurate results [34]. The performance of

neural networks heavily depends on edge information and noise filtering techniques [35]. The

most common de-noising filters described in previous research are mean filter, median filter,

Gaussian blur, etc. These filters often cause the loss of important information as they blur out

the pixel intensity. To resolve this problem, a bilateral filter, defined as a weighted average of

nearby pixels, is introduced. Bilateral filters take into account the difference in the value of

neighboring pixels to retain the details while smoothing out the image. The equation of bilat-

eral filter [36,37] is as follows:

Suppose that kpj−pjk 2 [0,1] is a spatial distance that can be defined for all index pairs (1:

j), 11�i,j�N. Then bilateral filter weights [] are stated in Eq 12.

wij ¼ exp �
kpi � pjk

2

2s2
d

 !

exp �
jgi � gjj

2

2s2
r

 !

ð12Þ

Here σd and σr are constant filter parameters, and |gi−gj| is the preferable distance to the

guidance signal (g) components. The bilateral filter’s arithmetical complexity of a signal appli-

cation to images situated on grids that are rectangular can be reduced to 0(N).

Optimal outcome of this filter highly depends on the suitable parameter values. The param-

eter values can be determined based on the highest PSNR achieved [38]. Therefore, in this

study, by tweaking the parameter values and analyzing PSNR, the optimal parameter value is

chosen. The algorithm is applied using cv2.bilateralFilter() method, which requires four

parameters, input image, diameter of each neighborhood pixel, S value in color space and S

value in coordinate space. Diameter denotes the diameters of pixel neighborhood or simply fil-

ter size. A large filter (d > 5) are used to filter heavy noise but tends to perform slowly, hence

we have used d = 5 for our application. A larger sigma value (> 150) of this parameter results

in, more pixels within the neighborhood will be mixed together. It causes a strong effect mak-

ing larger areas under similar pixel intensity. On the contrary, if the value is small (<10), the

filter will not have a noticeable effect. Therefore, we have used a value of 75 by experimenting

with other values, to achieve the best possible outcome. Alike sigma color, a larger sigma space

value (> 150) results in, more pixels within the neighborhood will be mixed together. If the

value is smaller (<10), the filter will not have a noticeable effect. Usually, values of Sigma

Color and Sigma Space are kept equal. Therefore, a value of 75 is passed as a sigma space value.

The process of applying the bilateral filter is illustrated in Fig 17 where the output images

are smoothed without blurring of edges and where the output of gamma correction is used as

input of the bilateral filter.

6.3.2. Box blur. Down-scaling is carried out using different interpolation algorithms such

as bi-linear, bi-cubical and nearest neighbor. These traditional downscaling algorithms often

result in losing data and causing irregular outcomes. For this research, a different approach

namely box blur algorithm is introduced. The main objective of introducing box blur in our
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study is to reduce computational time, storage space and processing power while not sacrific-

ing overall performance. The box filter devised by Crow [39], also known as “moving average”

is a simple filter that is recognized for its low computational complexity, optimality and feasi-

ble implementation compared to other filters for down-scaling. The importance of box filters

in image processing was demonstrated by Viola and Jones with their landmark face detection

algorithm [40]. Geavlete et al., [41] applied box filters to accelerate computation for the detec-

tion of the Speeded-Up Robust Features (SURF).

Box blur filter is the fastest filter algorithm, using an N x N kernel full of ones. The amount

of blurring of the pixels of an image and the computational complexity are determined by the

value of N. A weighted average is computed by multiplying the individual pixel with the corre-

sponding kernel matrix. After multiplication, the average of the pixels is calculated. The algo-

rithm for this method is described in Algorithm 5.
Algorithm 5. Box Blur.
BEGIN

1. Let, input image = p(x,y)
2. Define the kernel size to apply on p(x,y), k = N x N
3. Total, t = 0
4. Size of window for the target pixel, w = k // N x N
5. FOR pixel in w:

Window pixel, w[i] = w[i] x k[i] //retrieve the values by
multiplying

t + = w[i] //add all the numbers
5. Target pixel, Tp = t / k // divide by the area of the kernel
6. Repeat above for all the remaining windows in x direction
ENDFOR

END
For applying box blur, ImageFilter.BoxBlur() is used. This function requires only one

parameter, radius. Radius value 0 does not have any effect on an image. Radius value 1 makes

a 1 X 1 window size which has a little effect. Therefore, we used a value of 2 as higher value

(> = 3) was not providing the expected outcome. Hence, the window size will be 2r×2r, where,

r denotes the window radius. The formula for the targeted pixel value using blur box filters

Fig 17. Resultant image after applying the bilateral filter.

https://doi.org/10.1371/journal.pone.0269826.g017
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[42] is stated in Eq 13.

Pi;j ¼
Xm

k¼0

Xm

l¼0

wk;lFiþk;jþl ð13Þ

Here, Fi, j denotes the pixel values in the image for i, j = 1, . . .. . ., n. Using the box filter, the

distributed weights for all the four pixels from which the average of the four pixels is calculated

are equivalent.

P ¼
1

ð2rÞ2
Fi;j þ Fi;jþ1 þ Fiþ1;j þ Fiþ1;jþ1 ð14Þ

The resultant image after applying box blur is shown in Fig 18.

Finally, values of MSE, PSNR, SSIM, RMSE, Histogram Analysis and DSC are evaluated for

the preprocessed image and the down-scaled image.

MSE. MSE is the calculation of cumulative squared error between the pixels of the original

and processed image. The range of MSE lies between 0 and 1 where a value close to 0 indicates

Fig 18. Resultant image after applying Box blur Table 6 represents all the selected parameter values for the

algorithms associated with down-scaling process.

https://doi.org/10.1371/journal.pone.0269826.g018

Table 6. Selected parameter for down-scaling process.

Algorithm/process method Necessary parameter

Bilateral Filter cv2.bilateralFilter() Diameter = 5, Sigma Color = 75, Sigma Space = 75

Box Blur ImageFilter.BoxBlur() Radius = 2

https://doi.org/10.1371/journal.pone.0269826.t006
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higher image quality. Formula for MSE is stated in Eq 15.

MSE ¼
1

mn

Xm� 1

i¼0

Xn� 1

j¼0

G i; jð Þ � P i; jð ÞÞ2 ð15Þ
�

where, G represents the ground truth image (i.e., input image) and P represents the processed

image, m and n denotes the pixels of G and P while i, j denotes the rows of m, n pixels.

PSNR. PSNR is the ratio between the maximum possible signal power and the power of the

distorting noise affecting the quality of a processed image.

PSNR ¼ 20 log 10ððMAXÞ
ffiffiffiffiffiffiffiffiffiffi
MSE
p

Þ ð16Þ

where, MAX is the maximum value of the pixels of the image (i.e., 255). The higher the PSNR

value, the less the distortion [43]. For an 8-bit image, a good PSNR value typically lies between

30 to 50 decibels.

SSIM. In the SSIM method, image degradation is measured as the transformation of per-

ception in structural information [44]. The outcome is in the range of −1 to 1, where 1 signifies

‘perfect structural similarity’ and 0 signifies ‘no similarity’.

SSIMðx; yÞ ¼
ð2mxmy þ c1Þð2sxy þ c2Þ

ðm2
x þ m

2
y þ c1Þðs

2
x þ s

2
y þ c2Þ

ð17Þ

where, μx and μy are the means of two images (x,y), derived by applying the gaussian window.

s2
x and s2

y denote the variance, σxy is the covariance of the images and c1 and c2 are the two var-

iables used to alleviate the division. c1 = (0.01 × 255)2 and c2 = (0.03 × 255)2 where 0.01 and

0.03 are employed as default values.

RMSE. RMSE estimates the variance between the predicted value and actual value to assess

the magnitude of the error. To compute RMSE, errors are first squared and then averaged.

Lowe RMSE especially values close to 0 means good quality.

RMSE ¼
PN

j¼1
ðdfi � ddÞ

2
=N

h i1
2

ð18Þ

Here, ðdfi � ddÞ
2

is the square of differences of predicted value (dfi) and actual value (dd)
and N denotes the size of the dataset.

DSC. The DSC is computed as a statistical validation metric to estimate the similarity of

images before and after applying box blur filter. The range of DSC values is from 0 to 1, where

a value close to 1 point to a higher resemblance of the images.

DSC ¼
2 � Area of Overlap

Total Number of Pixels in both Images

� �

ð19Þ

Table 7 represents MSE, PSNR, SSIM, RMSE and DSC values of 10 randomly chosen

images.

Table 7 states that PSNR values of 10 blur box processed images are in the range of 40–43

dB, indicating that the images are of good quality. SSIM values are in the range of 0.90 to 0.96,

which demonstrates that the images are structurally similar even after the application of down-

scaling using the blur box algorithm [45].

Histogram analysis. The histogram of an image is a graph that signifies the intensity

amounts for every pixel. In this graph, the x-axis represents the intensity value in a range of

0–255 and the y-axis represents the number of pixels. Comparing the histograms of two
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images, changes can be evaluated. In our study, a histogram of an original image and an image

after applying box blur filter are generated (Fig 19).

7. Augmentation and training experiments

Data augmentation techniques are applied to increase the number of images. The augmented

dataset is split into training, validation and testing. After splitting, the training dataset is used

to train our proposed SCNN_12 model by performing an ablation study to determine the opti-

mal parameters, hyper-parameters and their values based on the highest classification accu-

racy. Fig 20 illustrates the complete process.

7.1. Augmentation

CNNs have been demonstrating good performance in computer vision tasks, including auto-

mated skin lesion detection and classification over the decades. To build deep learning models,

the validation error must diminish with the training error. However, these models often tend

to overfit and require ample size datasets, unfortunately the availability of annotated skin

lesion images is somewhat inadequate and annotation is arduous and time-consuming. How-

ever, data augmentation can aid to expand datasets by transforming and over-sampling images

while retaining original pixel details and target labels. A fundamental requirement of this

method is that the sematic meaning remains unchanged in the generated images. This tech-

nique has been adopted in skin lesion classification tasks to reduce overfitting issues [46]. In

Table 7. MSE, PSNR, SSIM, RMSE and DSC of 10 images.

Image MSE PSNR SSIM RMSE DSC

Image_1 3.296 42.949 0.953 0.08 0.983

Image_2 3.876 42.231 0.939 0.09 0.971

Image_3 4.310 41.432 0.912 0.10 0.965

Image_4 3.564 42.120 0.922 0.09 0.974

Image_5 4.450 41.032 0.910 0.11 0.960

Image_6 3.345 42.865 0.949 0.08 0.973

Image_7 3.899 42.110 0.922 0.08 0.970

Image_8 4.810 40.432 0.906 0.12 0.958

Image_9 4.834 40.128 0.900 0.12 0.956

Image_10 4.410 41.011 0.913 0.11 0.968

https://doi.org/10.1371/journal.pone.0269826.t007

Fig 19. Histograms of original image vs box blur filter.

https://doi.org/10.1371/journal.pone.0269826.g019
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our study, use of data augmentation is employed to overcome the problem of data inadequacy.

Previous research has demonstrated the effectiveness of data augmentations by simple trans-

formations such as flipping, rotation, color space augmentations, zooming and random crop-

ping. However, changing the color distribution of images by decreasing or increasing the pixel

intensity can be an effective alternative way to augment the data [47,48]. In some cases, geo-

metrical augmentation methods actually decrease the performance, as the structure of the

medical image is mostly complex [47]. These transformations are very useful on straightfor-

ward images. A few shortcomings of geometric conversions are, required additional memory

resources, higher computation costs and training time [47]. Moreover, in several research

domains such as medical data analysis, the biases distancing the training data from the testing

data are more complex than positional and translational variances. Therefore, the scope of

where and when geometric transformations can be applied is relatively limited. In medical

imaging, the location of a tumor is very important in detecting abnormalities. Geometrical

augmentation for instance flipping or rotating can change the exact location of the tumor or

affected area. Therefore, this may affect on overall accuracy. On the contrary, photometric

transformation augments images just by altering the intensity value, which can be an effective

approach in the medical domain. This technique balances image lighting and color while keep-

ing the geometry unaffected. Therefore, instead of using typical transformation techniques

such as flipping, rotation or cropping; brightness [20] and contrast alteration of images is car-

ried out for data augmentation.

Brightness is a relative term defined as the overall lightness or darkness of an image. On the

other hand, contrast is the difference of brightness between the object and background pre-

sented in an image. The mathematical formula can be expressed as:

gðxÞ ¼ sðxÞ þ b ð20Þ

here, s(x) = source image pixels and g(x) = output image pixels after altering brightness.

Increasing or reducing the value of parameter β will add or deduct a constant value to every

pixel. A positive β value causes brightened image, whereas a negative value results in darkening

Fig 20. Augmentation and classification process.

https://doi.org/10.1371/journal.pone.0269826.g020
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the image. To enhance the contrast level, the brightness difference needs to be increased by

multiple. The mathematical formula can be expressed as:

gðxÞ ¼ a� sðxÞ ð21Þ

In this formula, s(x) = source image pixels and g(x) = output image pixels after altering con-

trast. The parameter α>1 means enhancing contrast and α<1 means generating an image of

less contrast. Similarly, β>1 means enhancing brightness and β<1 means decreasing bright-

ness. For this study, we experimented with various beta (β) and alpha (α) values and choose

alpha values 1.3 and 0.7 for respectively bright and darkened images and beta values 1.3 and

0.7 respectively for high contrast and low contrast image. Based on the above formulas, the

dataset is augmented byapplying four approaches, increasing brightness, decreasing bright-

ness, increasing contrast and decreasing contrast. As shown in Fig 20, after data pre-processing

and applying down-scaling, 3297 down-scaled images were obtained. Four augmentation tech-

niques have been employed on both datasets before and after applying down-scaling methods.

In addition, to assess the effectiveness of our photometric augmentation approach, some

other geometric augmentation possibilities are explored. In this regard, data augmentation is

carried out by horizontal flip, vertical flip, rotation by 90˚ and 45˚ angle. Both photometric

and geometric augmented datasets are trained in order to evaluate the comparison between

them in terms of accuracy. The experimental result of this comparison is showed in section 9.6

Table 15.

7.2. Data split

The last step before conducting the training process of the model involves splitting the dataset.

In the training phase, the model is trained with a dataset and validated with a separate dataset.

Afterward, the learning weights are saved and tested on another test dataset of unknown

images. Hence, a dataset must be split in training, validation and testing datasets. Generally,

three common splitting ratios for training-testing data (90:10, 80:20, and 70:30) are used to

assess the model’s learning [49]. We split both of the augmented datasets into three sets follow-

ing the ratio of 70:20:10 for training, validation and testing respectively. After splitting the aug-

mented dataset of total 16,485 dermoscopy images, we get 11,540 images in the training set,

3298 images in the validation set and 1647 images in the testing set, all including both benign

and malignant cases which is shown in Table 8.

7.3. Ablation study

At present, the method "ablation study" is widely used in the context of neural networks with

an objective to attain in-depth perception of the network’s performance by examining the con-

sequence of altering or removing some elements [42]. When different components, parameters

and hyper-parameters of the architecture is removed or altered, the model tends to yield

Table 8. Number of images in classes after spitting.

Dataset Class Number of images

Benign 6300

Training set Malignant 5240

Benign 1800

Validation set Malignant 1498

Benign 900

Testing set Malignant 747

https://doi.org/10.1371/journal.pone.0269826.t008
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decreased, identical or increased performance. Based on the study, any potential flaws of the

model can be detected and resolved by upgrading the architecture. In our research, the param-

eters and hyper-parameters of the proposed model are determined by performing an ablation

study based on the optimal performance in terms of accuracy. In building a most effective

CNN model for a particular dataset, it is important to experiment with different parameters

and changing components of the model. Keeping this in mind we employed ablation study by

tweaking the parameters and changing components of CNN such as batch size, loss function,

activation function, optimizer and learning rate. In this regard, four study cases are employed

by exploring different CNN components. The results of ablation study are explained in Section

9.2.

7.3.1. A detailed explanation of ablation study that have been used for the experi-

ment. Several CNN components such as learning rate and batch size, [50] optimizer, loss

function can be varied to improve the performance of a CNN model. In ablation study 1, the

model is trained using three different batch sizes (16,32,64) [20] and the optimal batch size is

chosen based on highest accuracy. In ablation study 2, two output layer activation functions

namely softmax and sigmoid are employed to determine for which, highest accuracy is gained.

Four widely-used loss functions namely, Binary Cross Entropy, Mean Squared Error [51],

Categorial Cross Entropy and Kullback-Leibler Divergence [51] are experimented in case

study four as changing loss function impacts on overall performance. Finally, the network is

trained six times on the down-scaled augmented dataset with three different optimizers

namely Adam, Nadam and Adamax using two different learning rates of 0.001 and 0.001. In

this process, the model is trained on the training dataset and validated on the validation data

set with each of the learning rates and optimizers independently. Afterward, each model is

tested with the test set to find the best model in terms of accuracy.For the pre-processed aug-

mented dataset (before down-scaling) the model is trained only with the best optimizer and

learning rate to compare the time complexity and overall performance of the model for the

datasets before and after applying down-scaled method.

8. Model

Traditional CAD tools, which require extracting features manually, are found to have major

drawbacks [52] as custom-made features are mostly domain specific with an arduous process

of feature design. An alternative and possibly superior method is to learn the significant fea-

tures from images directly and automatically through a CNN model without any human inter-

pretation. CNNs are designed to utilize spatial and configurational layers, interspersed with

pooling layers, followed by fully connected layers which together capture the spatial and tem-

poral features of an image, through relevant filters. This is very effective in reducing the num-

ber of parameters without reducing the quality of the model. CNNs can be trained to

understand a sophisticated image dataset and increasingly applied in medical image classifica-

tion, detection and segmentation tasks because of its high accuracy and the reusability of

weights. We, therefore, propose a narrow-depth CNN model for classifying skin lesions into

two classes: benign and malignant.

CNN is a complex feed-forward variant of neural networks. The architecture is composed

of multiple layers of artificial neurons. These work as a placeholder of a mathematical function

where a weighted sum of a given input and a predicted output is provided. Thus, the behaviors

of all neurons are defined by their weights. The neurons learn in each layer learn the weights

by a back propagation algorithm.

CNNs are made up of three key layers namely (a) convolutional layers which extract various

features from the input images and provide an output called the feature map. (b) pooling layers
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that decrease the size of the convoluted feature map to reduce the computational costs and

finally (c) fully connected layers (FC) which consist of weights and biases and neurons. This

has been implemented in computer vision tasks, originally to detect low level features (such as

structure, edges and curves) and later to discover more abstract characteristics. The input x of

a CNN model has three dimensions: h×w×d, where h is the height, w is the width and d is the

depth or number of channels. In this research, the height and weight are equal or h = w. The

convolution layer computes a dot product between the input and weights to generate feature

maps by introducing nonlinearity with an activation function:

hk ¼ f ðWk � xþ bkÞ ð22Þ

Here, hk are the feature maps to be generated, bk is the bias,Wk are the weights and x is the

input image [53].

Pooling layers reduce the number of parameters which aids to diminish the computational

cost and accelerate the training process, adjusting for over-fitting by functioning individually

on every depth wedge of an input image. The FC layer connects the neurons of two different

layers and is normally placed before the output layer of CNN architecture. It is convenient to

put a non-linear activation function on each convolutional layer where CNNs with rectified

linear units perform better with lower computational load than CNNs with equivalent tanh

units [54]. The mathematical representation can be defined as:

f ðxÞReLU ¼ maxð0; xÞ ð23Þ

This function can be expressed as [26]:

UðyÞ ¼ maxð0; yÞ ¼
y if y � 0

0 if y < 0
ð24Þ

(

The dropout technique is adopted to discard neurons randomly in the FC layer causing the

model to learn diverse independent features. The hidden layer and all these layers are stacked

together to build the CNN architecture.

A very important parameter of CNN network is the Activation Function which controls if a

neuron should be activated or not. This function may vary from one hidden layer to another

and is responsible for introducing non-linearity into the output of a neuron. The Softmax acti-

vation function [55] is often used in solving both binary and multi-class classification prob-

lems. However, the main objective of CNN is minimizing the loss function using Eq 25 [56]:

L ¼
1

2

Xn

i¼1

ðkYi � Sik
2
Þ

¼
1

2

Xn

i¼1

ðkYi � WiXik
2
Þ

ð25Þ

here, n represents the total number of training observations and
Pn

i¼1
indicates the sum over

all samples. Alongside, Yi denotes the true value for all samples and all predicted outcomes are

symbolized by Si where Xi is the frequency of training vectors with corresponding weights

(Wi). The difference between these actual and predicted values is calculated over all instances

to complete the further investigation.

The output of the softmax function in our case is a probability p 2 {0, 1} which is applied as

the substitution of the square error loss function. The mathematical expression of the
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predicted output class probability is [53] is:

pi ¼
eai

PN
k¼1
eak

ð26Þ

here, eai denotes the non-normalized outputs from the previous layer and the inputs of the

softmax function. N refers to the number of neurons in the output layer. Softmax normalizes

all the preceding values to the range of 0 to 1 where the addition of these values always equals

1. Thus, if the probability of one particular class changes, it affects the other values as well so

that the summation of probabilities remains 1.

CNNs have a complex network structure comprising a number of layers, typically requiring

massive computation and memory resources, and a large time complexity. During training, as

the data distribution of each input in the central layers tends to be distinct, the parameters are

updated, leading to a high computation time [57]. A shallow architecture is more applicable

for small datasets than deep CNN models as complex architectures tend to cause overfitting

issues with a small number of images [58]. To avoid these issues, we construct a shallow CNN

network with few layers small convolution kernel sizes to achieve satisfactory performance

along with a relatively low computational cost [59]. For a shallow architecture, assuming that

size of the input feature map isH ×W × N, the size of the output feature map isH ×W ×M
and the convolution filter size is K × K, the number of parameters of a standard convolution

layer will be K2 × N ×M, and the number of parameters of a depth wise distinguishable convo-

lution layer can be calculated as K2×N+12×N×M. The result shows that the depth wise discrete

convolution is 1/M + 1/K 2 for the standard convolution parameters only.

8.1. SCNN_12 architecture

Our proposed model is composed of 12 weighted layers: 4 convolutional layers followed by 4

max-pooling layers, a flatten layer, two dense layers and a softmax layer as shown in Fig 21.

Each block in the architecture constitutes one 2 × 2 kernel sized convolutional layer fol-

lowed by one max pooling layer and a Rectified linear unit (ReLU) activation function for fea-

tures extraction. The input shape is defined as 224 × 224 × 3 where height x width = 224 x 224

and 3 denotes the number of color channels (RGB format). The convolution layers in each

Fig 21. Architecture of proposed SCNN_12 model.

https://doi.org/10.1371/journal.pone.0269826.g021
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block extract complex data features and the maxpool layer reduces the extracted features. Max

pool layer reduces the feature map to lessen the computational complexity while preserving

the relevant features of the input image. First, the input layer is fed to block-1 containing the

first convolution layer of 16 filters with kernel size 3 × 3. This extracts the features from the

input image. This is then followed by a 2 × 2 max pool layer which shrinks the extracted feature

map from the first convolution layer into half its size (222 × 222 is reduced to 111 × 111).

Block-2 and block-3, consist of a 3 × 3 kernel sized convolution layer of 32 filters, followed by

a maxpool layer of 2 × 2. These blocks also extract features from the resultant feature map of

block-1 and reduces the size of the image half to its size. Block-3 results in a much smaller fea-

ture map with dimension 52 × 52. Block-4 consists of the fourth convolutional layer of 64 fil-

ters with an equivalent size of kernel 3 × 3 and a 2 × 2 max pooling filter. Block-4 produces a

feature map of dimensions 12 × 12. Block-4 is followed by a flatten layer which converts the

pooled feature map into a 1D vector. The flatten layer is followed by a FC layer comprising

1024 neurons equipped with the ReLU activation function. A dropout layer with a value of 0.5

is placed after the FC layer to deal with over-fitting issues and to accelerate the training. As the

model is designed to classify the images into two classes, the classification layer or output layer

consists of a FC layer with two neurons which takes the 1D resulting tensor as input and gives

a binary output where 0 and 1 respectively indicate benign and malignant class.

8.2. Training procedure

After conducting ablation study, the proposed model is trained with a batch size of 32 and the

maximum number of epochs is set to 200. Weights based on the minimum loss value are saved

using the ‘callback’ function of Keras during the training process. ‘Categorical cross-entropy’,

specified as ‘categorical_crossentropy’ in Keras, is used as the loss function when compiling

the model. The cross-entropy loss function is typically applied to the feature discriminate net-

work. The relevant equation is as follows [23]:

L ¼
� yln p ; y ¼ 1

� ð1 � yÞln ð1 � pÞ; y ¼ 0
ð27Þ

(

FL ¼
� að1 � pÞgyln p ; y ¼ 1

� ð1 � aÞpgð1 � yÞln ð1 � pÞ; y ¼ 0
ð28Þ

(

Ltotal ¼
ALþ BLþ CL; use L

AFLþ BFLþ CL; use FL
ð29Þ

(

Where L denotes the cross-entropy loss function, y represents the actual category label, and

p refers to the predicted category label probability value. In Eq 28, FL is the focal loss function,

α is the factor applied to balance the impact of negative and positive classes to the loss function

value and another factor γ is employed to assess the effect of rigid and easy samples to the loss

function value. In Eq 29, Ltotal is a measure of the entire loss of the training model, A, B signi-

fies the loss function weight of the two classification models in the total loss function and C

denotes the loss function weight of the feature categorize network in the overall loss function.

The values of A, B, and C are initialized to 1, 1, and 0.5 respectively. Tensor flow, a well-known

framework that provides Application Programming Interfaces (APIs), is used for building and

evaluating the model. The model is trained on Jupyter notebook with Anaconda’s latest python

version 3.8. Since the training of neural network is computationally intensive, especially with a
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large dataset, it is crucial to utilize Graphical Processing Units (GPU). Three computers are

used for this research equipped with Intel Core i5-8400 Processor, NVidia GeForce GTX 1660

GPU, 16 GB of Memory, and 256 GB DDR4 SSD for storage.

9. Result and discussion

To evaluate the proposed SCNN_12 classification model several metrics are used namely accu-

racy, precision, recall, fi-score, and specificity. In order to assess AUC [60] value, ROC curves

are generated for all configurations. The model evaluation error metrices: mean absolute error

(MAE) and root mean squared error (RMSE) are also evaluated. Confusion matrix generates

the values of true positive(TP), true negative(TN), false positive(FP), false negative(FN). The

evaluation matrices are calculated with the values obtained from the confusion matrix. In this

section, all the ablation study cases with results are discussed along with statistical analysis.A

comparison of the time and space complexity is presented to evaluate the efficiency of our

introduced down-scaling method. Space complexity is found out by comparing the storage

taken by images before and after applying dawn-scaling method. Finally, results of k-fold

cross-validation, splitting dataset with different ratios and testing the model with noise

enduced dataset are shown.

9.1. Evaluation metrices

According to [61], a classifier’s capability to accurately predict the classes is considered the

main measure in evaluating a binary classification model. This section describes the evaluation

metrices used to evaluate the quality of the CNN classification model.

Accuracy (Acc) is a measure to evaluate the model’s capability to predict the correct class in

the test set. It is one of the simplest evaluation metrics. It is calculated as the sum of TP and TN

divided by the sum of TP, TN, FP and FN.

ACC ¼
TP þ TN

ðTP þ TN þ FPþ FNÞ
ð30Þ

Recall, the metric that evaluates the ability of a model to predict the true positive rate. It is

the ratio of true positives to all positive predictions in the test set. It is calculated by dividing

TP by the sum of TP and FN

Recall ¼
TP

ðTPþ FNÞ
ð31Þ

Specificity indicates the model’s capability to predict the true negative rate. It is found by

dividing TN by the sum of TN and FP

Specificity ¼
TN

ðTN þ FPÞ
ð32Þ

The precision metric quantifies the proportion of correctly predicted positive cases made in

the test set. It is the ratio of TP to all the positive predictions of the classifier (TP+FP).

Precision ¼
TP

ðTP þ FPÞ
ð33Þ

F1-score (F1) produces a single score that balances the concerns of both precision and recall

in just one number. In other words, it gives an overall performance measure of the
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classification model. It is calculated with the following equation,

F1 ¼ 2 �
Precision � Recall
ðPrecisionþ RecallÞ

ð34Þ

MAE analyzes the average of the error, where error is the absolute difference between the

actual values and predicted values, for each sample in a dataset.

MAE ¼
Pn

i¼1
jxi � xtj ð35Þ

here n denotes the number of total observations in the test dataset xi is the true values of the

test set and xt is the value predicted by the classifier.

RMSE is the square root of the mean of the square of all errors, providing the average

model prediction error.

RMSE ¼
XN

j¼1

ðdfi � ddÞ
2
=N

" #1
2

ð36Þ

here N denotes the number of total observations in the test dataset dfi is the true values of the

test set and dd is the value predicted by the classifier.

ROC curve is sn evaluation metric, which is obtained by plotting the True Positive Rate

(TPR) or Recall against False Positive Rate (FPR) at several threshold values. FPR is calculated

as:

FPR ¼ 1 � Specificity ¼ 1 �
TN

TN þ FP
ð37Þ

9.2. Performance analysis based on ablation study

The augmented skin cancer dataset is used to train our proposed SCNN_12 classification

model based on ablation study. In this context, the results recorded for all the case studies are

demonstrated.

9.2.1 Ablation study 1: Changing batch size. In this study, we have experimented with

three batch sizes 16, 32 and 64 with optimizer Adam and learning rate 0.001. Table 9 is evident

that batch size 32 is giving the highest test accuracy (98.43%) among all the batch sizes while

also having a high training and validation accuracy.

9.2.2 Ablation study 2: Changing output layer activation function. In the output layer,

we experimented with both Softmax activation function and Sigmoid activation function.

While both of these perform quite well, it is observed from Table 10 that Softmax activation

function gave the highest test accuracy (98.74%).

9.2.3 Ablation study 3: Changing loss function. Experimentation with various loss func-

tions was employed in ablation study. Loss functions: binary cross entropy, Mean squared

error, Categorial Cross Entropy and Kullback-Leibler Divergence were chosen for experimen-

tation. Our findings of Table 11 indicate that on the augmented dataset, both binary cross

Table 9. Performance analysis by changing batch size.

Case study Batch size Training Accuracy (%) Validation Accuracy (%) Test Accuracy (%) Findings

16 98.73 97.54 98.32 Less accuracy

1 32 98.94 97.96 98.43 Highest accuracy

64 98.67 97.65 98.17 Less accuracy

https://doi.org/10.1371/journal.pone.0269826.t009
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entropy and Categorial cross entropy yield a similar performance obtaining the identical accu-

racy (98.74%) of the bunch.

9.2.4. Ablation study 4: Changing optimizers and learning rate. Tables 12 and 13 show

the performance of the SCNN_12 model configured for three different optimizers (Adam,

Nadam and Adamax) with learning rates 0.001 and 0.0001. The 2×2 confusion matrix was gen-

erated for all configured models to calculate the performance metrics for the comparison of

these six configured SCNN_12 models.

In Table 12, the optimizer is referred to as ‘OP’, the learning rate as ‘LR’, the training accu-

racy as ‘T_acc’, the training loss as ‘T_Loss’, the validation loss as ‘V_Loss’, the validation accu-

racy as ‘V_Acc’, the test loss as ‘Te_Loss’ and the test accuracy as ‘Te_Acc’. It can be observed

from Table 12 that optimizer Adam with a learning rate of 0.001 performs best, recording the

highest test accuracy of 98.74%. it also gained a validation accuracy of 99.49%. This configura-

tion also has the lowest validation and test loss of 0.02 and 0.05 respectively. In contrast, Ada-

max with a learning rate of 0.0001 has the lowest validation and test accuracy of 98.57% and

97.42% respectively. The rest of the models have a moderate performance with validation accu-

racies above 98% and validation losses lower than 0.06. In terms of training accuracy and loss,

all the training accuracies were in the range of 98–99% and most of the losses were below 0.04

which indicates that there are no signs of overfitting or underfitting issues.

In Table 13 the optimizer is denoted as ‘OP’, the learning rate as ‘LR’, specificity as ‘Spe’

and precision as ‘Pre’. Considering three optimizers, Adam with a learning rate 0.001 yields

the most accurate prediction with an AUC of 98.65%, recall of 99.11%, specificity of 98.05%,

precision of 98.94% and f1-score of 99.02%. The poorest performance is obtained by Adamax

with a learning rate of 0.0001 with an AUC of 97.33%, recall of 97.85%, specificity of 96.83%,

the precision of 97.63% and an F1 score of 97.74%. Optimizer Nadam with a learning rate

0.001 performed adequately, achieving scores close to the best configuration (Adam 0.001).

9.3 Statistical analysis

Root Mean Squared Error and Mean absolute error matrices were used to evaluate all six con-

figurations of the proposed SCNN_12 model. Comparison between different outcomes based

on root mean squared error is represented in Fig 22.

Fig 22 shows the RMSE for all six configurations. For RMSE, the smaller the error value,

the better is the performance. It is observed that Adam with a learning rate of 0.001 demon-

strates the lowest RMSE whereas Adamax with a learning rate of 0.0001 has the highest RMSE.

The remainders of the configurations of SCNN_12 perform moderately recording values in

the range of 25.2–31.5.

Table 10. Performance analysis by changing output layer activation function.

Case study Output layer activation function Training Accuracy (%) Validation Accuracy (%) Test Accuracy(%) Findings

2 Softmax 98.73 97.54 98.74 Highest accuracy

Sigmoid 97.16 95.22 96.75 Less accuracy

https://doi.org/10.1371/journal.pone.0269826.t010

Table 11. Performance analysis by changing loss function.

Case study Loss function Training Accuracy (%) Validation Accuracy (%) Test Accuracy (%) Findings

Binary cross entropy 98.73 97.54 98.74 Highest accuracy

3 Mean squared Error 95.64 93.28 93.58 Less accuracy

Categorial Cross Entropy 98.73 97.54 98.74 Highest accuracy

Kullback-Leibler Divergence 95.64 94.28 94.87 Less accuracy

https://doi.org/10.1371/journal.pone.0269826.t011
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Afterwards, comparison between different outcomes based on mean absolute error is repre-

sented in Fig 23.

The lower the MAE value, the better the performance. It can be observed from Fig 23 that

Adam with a learning rate 0.001 has the lowest Mean Absolute Error MAE of 0.816 whereas

Adamax with a learning rate of 0.0001 has the highest MAE of 1.381. The remainder of the

configurations performs moderately, recording values in the range of 1.11–1.31.

After conducting ablation study of four test cases, the configuration of the resulted model is

shown in Table 14.

9.4. Result analysis of best model

For our best configured SCNN_12 model (Adam 0.001) based on the highest test accuracy, the

training and validation accuracy and loss curves were generated as well as the ROC curve and

the confusion matrix.

The training accuracy and training loss curve illustrate how efficiently the model is learning

from the training dataset whereas the validation accuracy and validation loss curve represent

how successfully it is applying its learning to an unknown validation dataset over the training

phase. Figs 24 and 25 represent the loss and training curve respectively for our best configured

model (Adam 0.001). As can be seen from Fig 25, the training curve is converging smoothly

from the very first epoch to the last epoch without major bumps. As shown in Fig 25, the vali-

dation curve also does not have any major ups and downs till the endpoint. Validation accu-

racy rises over epochs along with the training accuracy and the gap between the validation

accuracy curve and the training accuracy curve is negligible which indicates no occurrence of

overfitting during training of the model. Like the accuracy curve, the loss curve of Fig 24 con-

verges steadily to the final epoch with diminishing loss values. The lower the loss value, the

higher the accuracy, and both Figs 24 and 25 verify the efficiency of the proposed model

(SCNN_12 with Adam 0.001) in terms of training and validation.

The confusion matrix for the best model is represented in Fig 26. The rows denote the

actual label of the test images and the columns denote the predicted label of test images after

Table 12. Training loss(T_loss), training accuracy (T_acc), validation loss (V_loss), validation accuracy (V_acc), test loss (Te_loss), test accuracy (Te_acc) for each

of the optimizers corresponding to the learning rates.

OP LR T_Acc V_Loss V_Acc Te_Loss Te_Acc Findings

Adam 0.001 99.66 0.021 99.49 0.056 98.74 Highest accuracy

0.0001 99.35 0.035 99.20 0.061 98.14 Less accuracy

Nadam 0.001 99.51 0.031 99.29 0.057 98.32 Less accuracy

0.0001 99.31 0.368 98.92 0.068 97.89 Less accuracy

Adamax 0.001 99.06 0.041 98.73 0.073 97.65 Less accuracy

0.0001 98.99 0.066 98.57 0.081 97.42 Less accuracy

https://doi.org/10.1371/journal.pone.0269826.t012

Table 13. AUC, Recall (Rec), Specificity (Spe), Precision (Pre) and F1-score (F1) for each of the optimizers corresponding to the learning rates.

Op LR AUC Rec Spe Pre F1

Adam 0.001 98.65 99.11 98.05 98.94 99.02

0.0001 97.93 98.55 97.60 98.35 98.45

Nadam 0.001 98.26 98.84 97.82 98.54 98.69

0.0001 97.61 98.21 97.26 98.11 98.16

Adamax 0.001 97.39 98.01 97.11 97.87 97.94

0.0001 97.33 97.85 96.83 97.63 97.74

https://doi.org/10.1371/journal.pone.0269826.t013
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training. As we are dealing with a binary classification problem, two classes can be seen in the

matrix: benign (BC) and malignant (MC). Here, the diagonal values indicate successfully pre-

dicted TP and TN values. The matrix shows no major bias to any one class predicting the clas-

ses quite consistently. By classifying 98.74% of the test images correctly, our proposed

SCNN_12 model achieves the best performance.

The Receiver Operator Characteristic (ROC) probability curve is plotted and the AUC

value is derived from the ROC curve. The AUC is used as a summary of the ROC curve repre-

senting the performance of a model in distinguishing the positive and negative classes. An

AUC value close to 1 indicates that the model is capable of detecting almost all the TP and TN

values flawlessly. From Fig 27, it can be seen that the ROC curve almost touches the top of the

Fig 22. Root mean squared error of all six configurations of SCNN_12.

https://doi.org/10.1371/journal.pone.0269826.g022

Fig 23. Mean absolute error of all six configurations of SCNN_12.

https://doi.org/10.1371/journal.pone.0269826.g023
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y-axis with a false positive rate close to 0 and a true positive rate close to 1. We obtain an AUC

value of 98.65% ascertaining the effectiveness of the model.

9.5. Evaluation of Space Complexity and Time Complexity based on down-

scaling approach

This section evaluates the impact of down-scaling images in terms of time complexity and

space complexity. The performance after applying bilateral and box blur methods is discussed

as well to assess our down-scaling approach.

9.5.1 Result analysis after applying Bilateral and Bilateral + Box blur filter. To evaluate

why two filters are employed simultaneously for down-scaling the images, a well comparison

of accuracy, average image size and average training time is shown in Table 15.

It is observed from Table 15 that, in both cases, a test accuracy above 98% is obtained. The

noticeable impact is, average image size can be reduced to 5–6 KB and training time from 110

seconds to 107 seconds when two filters are applied. Therefore, it asserts the effectiveness of

applying both of these filters on the purpose of down-scaling without compromising accuracy.

9.5.2. Evaluation of space complexity after applying down-scaling method. The space

complexity of ten randomly chosen preprocessed images (outputs of section 9.3) is analyzed

based on their size. Down-scaling is applied to these images resulting in reduced storage

requirements. The dataset generated by applying the down-scaling method is denoted as ‘DG-

after’ and the dataset before applying down-scaling method is denoted as ‘DG-before’.

In Fig 28, the orange bars show the storage requirements of the images which were not

down-scaled whereas the blue bars show the storage requirements of the down-scaled images.

It can be observed that for each image, approximately 40–60 KB storage was saved. As the stor-

age requirements differ for different images, the total storage of 100 images before and after

down-scaling is calculated. Before scaling down, the storage taken by 100 images was 180 Mb

and after scaling down, the storage taken by 100 images was reduced to approximately 17 Mb.

Table 14. Configuration of optimal model based on hyper-parameters.

Configuration Value

Input shape 224 × 224

Epochs 200

Optimization function Adam

Learning rate 0.001

Batch size 32

Weight decay 0.0001

Loss function Binary Crossentropy

A hidden layer activation function ReLU

Output layer Activation function Softmax

Dropout 0.5

Momentum 0.9

https://doi.org/10.1371/journal.pone.0269826.t014

Table 15. Comparison among Bilateral and Bilateral + Box blur filter based on accuracy, average image size and average training time.

Experiment Optimizer Learning

Rate

Average image size

(KB)

Average training time

(epoch/s)

Training Accuracy

(%)

Validation Accuracy

(%)

Test

Accuracy (%)

Bilateral Adam 0.001 10–14 110 99.43 98.32 98.09

Bilateral

+ Box blur

Adam 0.001 5–6 107 99.66 98.49 98.74

https://doi.org/10.1371/journal.pone.0269826.t015
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9.5.3. Evaluation of time complexity after applying down-scaling method. As explained

in section 9.2, the model is trained using optimizer Adam and learning rate 0.001 with both

the preprocessed and the down-scaled dataset. Fig 29 shows the time taken for 200 training

epochs for both of these datasets. Here, the x-axis represents the number of epochs and the y-

axis represents the time taken by each epoch. The orange and blue line graphs visualize the

training time of the datasets before (DG-before) and after (DG-after) applying down-scaling

respectively. A significant gap can be seen between the orange and blue curves which demon-

strate that the down-scaled dataset is consuming less training time.

Fig 24. Training and validation loss curve of 200 epochs for Adam with learning rate 0.001.

https://doi.org/10.1371/journal.pone.0269826.g024

Fig 25. Training and validation accuracy curve of 200 epochs for Adam with learning rate 0.001.

https://doi.org/10.1371/journal.pone.0269826.g025
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Fig 26. Confusion matrix of the best configured model (Adam 0.001).

https://doi.org/10.1371/journal.pone.0269826.g026

Fig 27. ROC curve of best configured model (Adam 0.001).

https://doi.org/10.1371/journal.pone.0269826.g027
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Fig 28. Storage comparison for 10 images individually for both ‘DG-before’ and ‘DG-after’ where ‘DG-before’

indicates the dataset before applying down-scaling and ‘DG-after’ indicates the dataset generated after down-

scaling.

https://doi.org/10.1371/journal.pone.0269826.g028

Fig 29. Training time per epoch comparison for 200 epochs of datasets ‘DG-before’ and ‘DG-after’ where ‘DG-

before’ indicates the dataset before applying downscaling and ‘DG-after’ indicates the dataset generated after

down-scaling. Another impact, observed during training is that our down-scaled dataset (DG-after) records the

highest accuracy within 200 epochs (Fig 30) whereas the non-down-scaled dataset (DG-before) takes more than 200

epochs to achieve the highest accuracy. This further adds to the efficiency of employing this method on future

researches.

https://doi.org/10.1371/journal.pone.0269826.g029
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9.6. Performance analysis of geometric and photometric augmented

dataset

To assess the performance of applying photometric augmentation technique on our dataset,

some geometrical augmentation techniques, (vertical flip, horizontal flip, rotation by 90˚ and

rotation by 45˚) are explored. For both of the methods, our proposed model is trained using

optimizer Adam with a learning rate of 0.001 and the experimental result is shown in Table 16.

In Table 16, training accuracy is denoted as T_Acc, training loss is denoted as T_Loss, Vali-

dation accuracy as Val_Acc, validation loss as Val_Loss, test accuracy as Te_Acc and test loss

as Te_Loss. For geometric augmentation, poor performance is obtained compared to photo-

metric augmentation. The test accuracy dropped at 97.03% from the highest accuracy of

98.74%. Though, the difference in the accuracies of these two data augmentation techniques is

not significantly high for our dataset, while working with larger and real world skin cancer

datasets, applying photometric augmentation might be a better approach.

9.7. Overfitting check employing k-fold cross-validation and splitting into

various ratios

9.7.1 K-fold cross-validation. In this study, we have performed k-Fold cross-validation

on the down-scaled dataset before and after applying augmentation, in order to evaluate pro-

posed model’s generalization capabilities as well as to check if there is any possibilities of over-

fitting issues. To check overfitting issue, K-fold cross-validation is performed for ensuring that

every observation from the original dataset has the chance of appearing in training and test set

which is a standard practice to detect overfitting in a CNN model [62]. For k-fold cross-valida-

tion, two k values of 5 and 10 are employed for experimentations as these are considered as

standard k values [63]. Tables 17 and 18 represents the performance of 5-Fold and 10-Fold

cross-validation respectively on augmented dataset.

In Tables 17 and 18, average validation accuracy is denoted as average val_acc. For 5-Fold

cross-validation, the proposed model is able to achieve an average validation accuracy of

98.73% (Table 17). On the other hand, with 10-Fold cross-validation the proposed model

gained an average validation accuracy of 98.31% (Table 18). Both in 5-fold and 10-fold cross-

validation most of the folds had validation accuracies well above 96%. In both 5 and 10 fold

cross-validation, no fold shows alarming gap between training accuracies and validation accu-

racies. Moreover, all the training and validation accuracies are quite balanced in every fold.

This indicates no overfitting issues in our augmented dataset and adds to the robustness to

proposed model.

For further validation, K-fold cross-validation is also carried out on the the dataset before

applying augmentation with proposed model (Tables 19 and 20). Here the model is able to

Table 16. Comparison of performance between geometric and photometric augmented dataset.

Experiment T_Acc T_Loss Val_Acc Val_Loss Te_Acc Te_Loss

Geometric 96.29 0.18 97.54 0.27 97.03 0.23

Photometric 99.66 0.016 99.49 0.021 98.74 0.056

https://doi.org/10.1371/journal.pone.0269826.t016

Table 17. Result of 5-Fold cross-validation on augmented dataset.

Accuracy Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average Val_acc

Training 98.42 99.64 99.73 98.62 99.57

Validation 97.93 98.51 99.04 97.86 99.20 98.51

https://doi.org/10.1371/journal.pone.0269826.t017
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achieve an average validation accuracy of 98.29% and 98.26% relatively in 5 fold and 10 fold

cross validation. In all folds the validation accuracies were well above 96%. Both 5 fold and 10

fold cross-validation, no fold shows alarming gap between validation and training accuracy.

Furthermore, training and validation accuracies stays balanced in all folds indicating no over-

fitting issues in non augmented dataset.

9.7.2 Spliting the datasets before and after applying augmentation in different ratios.

We achieve the highest performance from the proposed model using a split ratio of training:

validation: test = 70:20:10. To validate this perfoance further, by showing no occurance of

overfitting, we have split the datasets before and after applying augmentation into three more

ratios. The down-scaled dataset (before augmentation) is split into training:validation:test

dataset using four ratios of 60:30:10, 75:15:10 and 90:10:10. Likewise, the same ratios are used

to split the augmented dataset. Results of these experiments are showed in Tables 21 and 22.

It is observed that, for every ratio, the proposed model is able to acquire test accuracy close

to our highest test accuracy on both augmented and non-augmented datasets. Moreover, the

gap between training and test accuracy is minimal and quite balanced across all splitting ratios

which indicate no overfitting in any splitting ratio and robustness of the model on any given

similar dataset.

9.8. Performance analysis of the optimal model on noise induced test data

When working with real world datasets, in most cases, image quality got corrupted due to

noise. As our proposed system provides an optimal accuracy on public dataset, it should be

Table 18. Result of 10-Fold cross-validation on augmented dataset.

Accuracy Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

Val_acc

Training 97.34 99.86 96.40 99.88 99.51 99.74 98.86 99.07 98.47 99.61

Validation 96.83 99.20 95.86 99.17 98.86 99.25 98.04 98.68 97.92 98.97 98.31

https://doi.org/10.1371/journal.pone.0269826.t018

Fig 30. Validation accuracy curve of both ‘DG-before’ and ‘DG-after’ datasets where ‘DG-before’ indicates the

dataset before applying downscaling and ‘DG-after’ indicates the dataset generated after down-scaling.

https://doi.org/10.1371/journal.pone.0269826.g030
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examined how the network performs with noise induced test data set. Therefore, we have

added Gaussian noise [64] with a value of 0.1 [65] and tested the model. After Gaussian noise

was injected, the accuracy dropped a little but not significantly. It is observed that, before add-

ing noise, we had the highest test accuracy of 98.7% and after adding noise, we get a test accu-

racy of 97.13% (Table 23). This outcome proves that even with noisy data, our proposed

method is able to achieve optimal accuracy.

9.9. Comparison between the accuracy of the proposed methodology and

existing classifiers

Ameri A. et al., [14] achieved an accuracy of approximately 84%, a sensitivity of 81%, a speci-

ficity of 88% and an AUC of 91% based on the Stochastic Gradient Descent with momentum

(SGDM) optimizer, 40 epochs and batch sizes of 30 threshold confidence score of 0.5 and

learning rate of 0.0001. Jinnai et. al., [19] obtained an accuracy of 91.5% on FRCNN model,

using VGG-16 as backbone network, and SGD as optimizer with a learning rate of 0.0001.

Other researchers [15] and [66] who used FGD optimizer, obtained lower accuracies of 94%

and 95.2% based on the Faster-RCNN and F-MLP classifiers respectively. As described, Rehan

Table 19. Result of 5-Fold cross-validation on the dataset before applying augmentation.

Accuracy Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average Val_acc

Training 98.81 99.36 98.52 99.37 98.54

Validation 97.74 98.95 98.17 98.83 97.80 98.29

https://doi.org/10.1371/journal.pone.0269826.t019

Table 20. Result of 10-Fold cross-validation on the dataset before applying augmentation.

Accuracy Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

Val_acc

Training 97.34 99.86 96.40 99.88 99.51 99.74 98.86 99.07 98.47 99.61

Validation 97.58 98.42 99.02 96.95 98.37 97.86 98.75 99.10 98.42 98.21 98.26

https://doi.org/10.1371/journal.pone.0269826.t020

Table 21. Performance of proposed model on the dataset after augmentation with various splitting ratios.

Split ratio

(Training:validation:test)

Optimizer Learning Rate Training

Accuracy (%)

Validation Accuracy (%) Test

Accuracy (%)

60:30:10 Adam 0.001 98.75 97.83 97.32

70:20:10 Adam 0.001 99.66 99.49 98.74

75:15:10 Adam 0.001 99.87 99.54 98.53

80:10:10 Adam 0.001 99.26 98.47 98.64

https://doi.org/10.1371/journal.pone.0269826.t021

Table 22. Performance of proposed model on the dataset before augmentation with various splitting ratios.

Split ratio

(Training:validation:test)

Optmizer Learning Rate Training

Accuracy (%)

Validation Accuracy (%) Test

Accuracy (%)

60:30:10 Adam 0.001 98.54 97.71 96.83

70:20:10 Adam 0.001 99.46 98.73 98.67

75:15:10 Adam 0.001 99.71 98.28 98.62

80:10:10 Adam 0.001 99.34 98.63 98.51

https://doi.org/10.1371/journal.pone.0269826.t022
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Ashraf et. al. [21] achieved an accuracy of 97.9% and 97.4% for their two datasets respectively.

Lequan Yu et.al. [67] obtained an accuracy of 85.5% based on the FCRN model with SGD opti-

mizer, with the ISBI 2016 Skin Lesion Analysis towards Melanoma Detection Challenge data-

set. Though the number of epochs was more than 3000, only a batch size of 4 was considered

for this experiment. An accuracy of 96% was achieved by Andre Esteva et. al. [68]. Their CNN

model obtained this result based on the Stanford University Medical Center and undisclosed

Online Databases holding 129,450 clinical images. An accuracy of approximately 92% accuracy

was obtained using a CNN model in the research of Boman and Volminger [69] and Fujisawa

et. al. [11].

Our approach is able to address the limitations of previous studies described in Table 1. All

the image preprocessing algorithms and their parameter values deployed in this study are

selected after a wide experiment with our dataset. Instead of applying geometrical augmenta-

tion, photometric augmentation is carried out to increase the number of images from 3297 to

16485 as photometric augmentation yields the highest performance. We propose a shallow

CNN model named SCNN_12 by performing ablation study on it to acquire highest possible

accuracy. The maximum accuracy 98.74% is attained based on the Adam optimizer, batch size

of 32, 200 epochs with a learning rate of 0.001. Table 24 shows a comparison of our model

with existing work.

Table 23. Performance of proposed model on noisy dataset.

noise amount Optimizer Learning Rate Test

Accuracy (%)

Gaussian 0.1 Adam 0.001 97.13

https://doi.org/10.1371/journal.pone.0269826.t023

Table 24. Comparison of accuracy between the proposed system and existing systems.

Authors Models Dataset Batch

Size

Epochs Optimizer Learning

Rate

Accuracy

Ameri A. CNN HAM10000 dermoscopy image database (3400 images) 30 40 SGDM 0.0001 84%

Lequan Yu et.al. FCRN ISBI 2016 Skin Lesion Analysis Towards Melanoma Detection Challenge 4 3000 SGD 0.001 85.5%

Andre Esteva et.

al.

CNN The Stanford University Medical Center and undisclosed Online Databases

(129,450 clinical images)

- - - - - - - - - - - - - - - - 96%

Shunichi Jinnai

et. al.

FRCNN 5846 clinical images from 3551 patients. 4 100 SGD - - - - 91.5%

Joakim Boman,

et. al.

CNN ISIC Dermoscopic Image Dataset (23,647), DermQuest (16,826),

Dermatology Atlas (4,336), a total number of 1,948 images had been taken

from DermaAmin, Dermoscopy Atlas, Global Skin Atlas, Hellenic

Dermatological Atlas, Medscape, Regional Derm, Skinsight and the pH2

database.

100 30 - - - - 0.001 91%

Rehan Ashraf

et. al.

CNN DermIS: 3176 images

DermQuest: 1096 images

- - - - 10 - - - - Small rate 97.9%

97.4%

Manu Goyal et.

al.

Faster-

RCNN

International Symposium on Biomedical Imaging ISBI—2017 testing dataset - - - - - - - - ——- - - - - - 94.5%

Abder-Rahman

Ali et. al.

F-MLP ISIC 2018: Skin Lesion Analysis Toward Melanoma Detection” grand

challenge datasets

- - - - 20 FGD 0.001 95.2%

Yasuhiro

Fujisawa et. al.

CNN ILSVR2012 dataset: Containing 1.2 million images within 1,000 classes 30 -—-—- - - - - - - - - 92%

Proposed model

SCNN_12

CNN Kaggle skin cancer image ISIC archive dataset consisting of 3297 skin

cancer images (1800 Benign and 1497 Malignant). After augmentation:

16485 images

64 200 Adam 0.001 98.74%

https://doi.org/10.1371/journal.pone.0269826.t024
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10. Limitation

We have worked with a small number of images. Though data augmentation technique

enlarges the dataset, the performance of our proposed model could be more evaluated, experi-

menting with a larger dataset. Moreover, in some cases, real data differs from publicly available

datasets. It could be investigated, how the model performs with real world data, if we could

work with a real world dataset.

11. Conclusion

In this paper, we propose an automatic approach based on shallow CNN architecture to meet

the challenges of skin cancer detection and classification in dermoscopy images. The approach

is based on preprocessing the dermoscopy images using morphological closing and gamma

correction, smoothing by bilateral filter, down-scaling applying box blur algorithm and aug-

menting the dataset using four augmentation techniques. We have also introduced segmenta-

tion where the ROI is extracted from the preprocessed images by applying morphological

operations and thresholding. Compared with much deeper networks, the shallow CNN has a

very good classification performance and a low computational time. Therefore, a shallow

CNN network is developed and ablation study is employed to make it more robust. The system

achieved an accuracy of 98.74% using the Adam optimizer with a learning rate of 0.001. In

order to further validate this performance, the proposed model is experimented on noisy data-

set and K-fold cross-validation as well as data splitting using various ratios is conducted.

Therefore, our research demonstrates that lightweight CNNs with down-scaling mechanisms

can be employed to solve complicated medical image analysis problems, reducing computa-

tional cost while preserving a high accuracy.
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