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Abstract: The application of thermophilic microorganisms opens new prospects in steroid biotech-
nology, but little is known to date on steroid catabolism by thermophilic strains. The thermophilic
strain Saccharopolyspora hirsuta VKM Ac-666T has been shown to convert various steroids and to
fully degrade cholesterol. Cholest-4-en-3-one, cholesta-1,4-dien-3-one, 26-hydroxycholest-4-en-3-one,
3-oxo-cholest-4-en-26-oic acid, 3-oxo-cholesta-1,4-dien-26-oic acid, 26-hydroxycholesterol, 3β-hydroxy-
cholest-5-en-26-oic acid were identified as intermediates in cholesterol oxidation. The structures were
confirmed by 1H and 13C-NMR analyses. Aliphatic side chain hydroxylation at C26 and the A-ring
modification at C3, which are putatively catalyzed by cytochrome P450 monooxygenase CYP125
and cholesterol oxidase, respectively, occur simultaneously in the strain and are followed by cascade
reactions of aliphatic sidechain degradation and steroid core destruction via the known 9(10)-seco-
pathway. The genes putatively related to the sterol and bile acid degradation pathways form three
major clusters in the S. hirsuta genome. The sets of the genes include the orthologs of those involved
in steroid catabolism in Mycobacterium tuberculosis H37Rv and Rhodococcus jostii RHA1 and related
actinobacteria. Bioinformatics analysis of 52 publicly available genomes of thermophilic bacteria
revealed only seven candidate strains that possess the key genes related to the 9(10)-seco pathway of
steroid degradation, thus demonstrating that the ability to degrade steroids is not widespread among
thermophilic bacteria.

Keywords: thermophilic actinobacteria; steroids; sterol catabolism; cholate; Saccharopolyspora
hirsuta; bioconversion

1. Introduction

Steroids are abundant biomolecules in various environments and growth substrates
for diverse bacteria. Sterols (e.g., cholesterol, ergosterol, and phytosterols) are steroid 3β-
alcohols with an alkyl side chain consisting of 8–10 carbon atoms. Structurally, bile acids
differ from sterols by cis-A/B-ring juncture, α-orientation of hydroxyl at C3, a saturated
steroid core, and a C5 acyl side chain. Due to the unique lipophilic/amphiphilic properties,
steroidal compounds play vital functions in all living organisms. Annually large amounts
of sterols, bile acids, and other steroids enter into the environment via the decay of biomass
or excretion by humans and animals and as industrial wastes of steroid production plants.

Modern bioinformatics studies of publicly available genomes/metagenomes have
highlighted the global distribution of actinobacteria capable of sterol and cholate degrada-
tion from various ecological niches (soil, aquatic environments, waste, etc.) [1,2]. Currently,
the so-called 9(10)-seco-steroid pathway is the only one known for sterol and cholate aerobic
degradation by actinobacteria [3–6]. This pathway has been intensively studied in the
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pathogenic species M. tuberculosis [7] and Rhodococcus strains [8,9] and the non-pathogenic
species Mycolicibacterium smegmatis mc2155 [10], Gordonia cholesterolivorans [11], and Nocar-
dioides simplex [12]. Aerobic cholate degradation has been mainly studied for Rhodococcus
strains (e.g., R. jostii RHA1) [13] and Pseudomonas stutzeri Chol1 [14], Pseudomonas putida
DOC21 [15], and Comamonas testosteroni TA441 [16]. In general, the molecular mechanisms
of steroid catabolism have been studied mainly for mesophilic actinobacteria, while little is
known about the features of thermophilic actinobacteria capable of steroid oxidation.

Thermophilic microorganisms and their enzymes are widely used in the produc-
tion of foods and detergents and the pulp and paper, textile, and mining industries [17].
An impressive example is provided by Taq polymerase (named after Thermus aquaticus),
which is indispensable for PCR techniques in medicine and biology [18]. Application of
thermophilic strains for steroid bioconversion is of great importance since it may provide
economically feasible biotechnologies by decreasing the production costs for bioreactor
cooling, especially in countries with hot climate. Besides, higher steroid solubility at ele-
vated temperatures is favorable for steroid bioconversion performance. However, data on
steroid bioconversion by thermophilic bacteria are scarce and pertain mainly to distinct
reactions, such as progesterone conversion by Bacillus thermoglucosidasius (=Parageobacillus
thermoglucosidasius) [19] and Geobacillus kaustophilus [20] and reduction of the 3-keto group
as well as the ∆4-double bond in various steroid ketones by the extremely thermophilic
bacterium Calderiella acidophila [21].

The moderately thermophilic Saccharopolyspora hirsuta VKM Ac-666T [22] is capable of
transforming various steroids, such as lithocholic acid (LCA) [23], dehydroepiandrosterone,
androstenedione, and 3β,7(α/β)-dihydroxy-5-ene-D-homo-lactones [24]. Recently, the
Ac-666T genome has been sequenced and preliminary annotated [25].

In this work, aerobic conversion of cholesterol and LCA by S. hirsuta VKM Ac-666T

was studied and the main intermediates were identified. The set of the genes putatively
involved in sterol and cholate catabolism pathways was revealed, and their organization
and clustering were examined. The presence of genes coding for key steroid degradation
enzymes was estimated in the genomes of thermophilic bacteria of different taxa, and potent
microbial steroid degraders that might function at elevated temperatures were predicted.

2. Materials and Methods
2.1. Materials

Cholesterol (Serva, Heidelberg, Germany), lithocholic acid (LCA) from Acros Organics
(Merelbeke, Belgium), cholestenone from Maybridge (Altrincham, UK), randomly methy-
lated β-cyclodextrin (MCD) from Wacker-Chemie GmbH (Munich, Germany), malt extract
for microbiology and corn steep solids from Sigma-Aldrich (St. Louis, MO, USA), and solu-
ble starch and yeast extract from Difco (Franklin Lakes, NJ, USA) were used. Other materi-
als and solvents were of analytical grade and were purchased from commercial suppliers.

2.2. Microorganism

The strain Saccharopolyspora hirsuta VKM Ac-666T was obtained from the All-Russian
Collection of Microorganisms (VKM).

2.3. Microorganism Cultivation and Cholesterol Conversion

The GSMY medium [26], which contained (g/L): glucose, 7; soluble starch, 10; malt
extract, 5; yeast extract, 4.5; and CaCO3, 0.05 (pH 7.0–7.2), was used because its positive
effect on the accumulation of intermediate products of bioconversion was shown in pre-
liminary experiments. The strain was grown in shake flasks (750 mL) containing 50 mL
of the GSMY medium aerobically (200 rpm) at 45 ◦C for 48 h. The resulting seed culture
(5 mL) was added into shake flasks containing 50 mL of the same medium. Each steroid
(cholesterol or LCA) was added as a solution in MCD to a final concentration of 0.5 g/L
24 h after inoculation. Molar ratios (steroid:MCD) were 1:5 or 1:3 for cholesterol and LCA,
respectively. Bioconversion was carried out aerobically (200 rpm) at 45 ◦C for 144 h. For
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growth estimation, the strain was incubated on GSMY agar slants at 20, 30, 37, 45, 50, 55,
and 60 ◦C for 24 h.

For biomass estimation, the samples of the broth (24 h) were centrifuged, the residue
was washed twice with distilled water, and then it was dried at 105 ◦C to constant weight.

The experiments were performed in triplicate.

2.4. Steroid Metabolite Isolation and Identification

After 48 and 144 h of cholesterol conversion, steroids were extracted from the super-
natant (~500 mL; 8000× g, 30 min) with ethyl acetate (250 mL) three times and the pooled
organic extract was concentrated on a rotary evaporator. Crude residues (25–30 mg) were
applied on preparative thin layer chromatography (TLC) plates (ALUGRAM SIL G-200
UV254, Macherey-Nagel, Düren, Germany) and developed in benzene:acetone (4:1, v/v).
Individual compounds were eluted with ethyl acetate and evaporated to dryness. Chro-
matographic purity of the compounds was controlled by TLC and HPLC. Lithocholic acid
bioconversion metabolites formed in small amounts and were not isolated and identified
because their accumulation was insufficient.

2.5. Thin Layer Chromatography (TLC)

Samples of cultivation broth (1 mL) were taken every 24 h and extracted with 2 mL
of ethyl acetate. The extracts were applied on TLC plates (ALUGRAM SIL G/UV254,
Germany) and developed in benzene:acetone (4:1, v/v) and CHCl3:acetone:CH3COOH
(50:50:0.5, v/v/v) for cholesterol and LCA bioconversion derivatives, respectively. Steroids
with the 3-oxo-4-ene moiety were visualized under UV light (254 nm) using a hemiscope
CN-15MC UV Darkroom (Vilber Lourmat, Collégien, France). To visualize cholesterol
and its derivatives with the 3β-ol-5-ene configuration, the TLC plates were treated with
4% (w/v) phosphomolybdic acid hydrate solution in ethyl alcohol, followed by heating at
60–65 ◦C. LCA and its derivatives were assayed after staining the TLC plates with a MnCl2
solution [27] and heating at 105 ◦C for 5–10 min and visualized under UV light (365 nm).

2.6. High-Performance Liquid Chromatography (HPLC)

HPLC analyses were performed using reversed-phase HPLC on an Agilent Infinity
1200 system (Agilent Technologies, Germany SA) with a Symmetry column (250 × 4.6 mm,
5 µm) with a Symmetry C18 precolumn (5 µm, 3.9× 20 mm) (Waters, Milford, MA, USA) at
50 ◦C and a flow rate of 1 mL/min. Steroid assays were performed using two mobile phases
(acetonitrile:water:acetic acid (60:40:0.01, v/v/v) and acetonitrile:2-propanol:water (50:45:5,
v/v/v)) with UV-detection at 200 nm (for compounds with the 3β-ol-5-ene configuration)
and 240 nm (for compounds with the 3-oxo-4-ene configuration).

2.7. Mass-Spectrometry (MS), 1H- and 13C-Nuclear Magnetic Resonance Spectroscopy (1H- and
13C-NMR Spectroscopy)

MS spectra of compounds II, III, and IV were recorded on a tandem mass spectrometer
LCQ Advantage MAX (Thermo Finnigan, Waltham, MA, USA) in the positive ion [M +
H]+ mode at an evaporator temperature of 350 ◦C and capillary temperature of 170 ◦C.
MS/MS spectra were obtained using normalized collision energy (Normolized Collision
EnergyTM) ranging from 20% to 40%. Data were collected and processed using the Xcalibur
software. HRMS experiments for compounds V, VI, VII, and VIII were performed with
an Orbitrap Elite mass spectrometer (Thermo Fisher Scientific GmbH, Bremen, Germany)
with an ESI source.

1H- and 13C-NMR spectra were recorded at 400 and 100.6 MHz, respectively, with a
Bruker Avance 400 spectrometer. Chemical shifts were measured relative to the solvent
signal. Only characteristic signals are given in 1H-NMR of steroids.
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2.8. Genome Analysis

Annotation of the genome was carried out using NCBI PGAP [28], RAST (http://rast.
nmpdr.org/, accessed on 10 September 2019) [29,30] and KAAS (https://www.genome.jp/
tools/kaas/, accessed on 10 September 2019) [31]. Orthologous and paralogous relations
between genes of the S. hirsuta VKM Ac-666T, Mycobacterium tuberculosis H37Rv and
Rhodococcus jostii RHA1 genomes were found using OrthoFinder 2.5.1 [32,33] with inflation
parameter 1.5. A BLAST search [34] against non-redundant protein sequences (NCBI
database) was used as an additional tool to confirm the predetermined enzyme function.
Reciprocal BLAST was used in several cases to search for the genes that correspond to the
known steroid catabolism genes one-to-one.

2.9. Phylogenetic Analysis

A phylogenetic dendrogram showing the relationships of KstD homologs was con-
structed by the maximum likelihood algorithm in MEGA7 [35]; the sequences were aligned
with MUSCLE. Default parameters were used in all cases.

2.10. BLAST Search for Steroid Catabolism Genes

Search for the key genes of the steroid catabolic 9,10-seco-pathway (kstD, kshA, and
kshB) was carried out against several dozen available genomes of thermophilic strains,
using the BLAST+ program [36]. The protein sequences of KstD (NP_218054.1), KshA
(NP_218043.1), and KshB (NP_218088.1) of M. tuberculosis H37Rv were used as reference
ones. A list of bacteria to be screened (Supplementary Table S1) was compiled on the basis
of the literature data [37] on thermophilic and thermotolerant actinobacteria with known
complete genome sequences or annotated contigs and available sources on other known
thermophilic bacteria of diverse phylogenetic positions.

The genomes of Geobacillus kaustophilus and Parageobacillus thermoglucosidasius strains
capable of performing some modifications of steroid compounds were screened for the
steroid catabolism genes (Supplementary Table S2) using the BLAST+ program [36].

3. Results
3.1. Cholesterol and Lithocholic Acid Bioconversion

The S. hirsuta strain grew poorly at 20 ◦C, showed moderate growth at 30–37 ◦C,
and grew well at 45–50 ◦C, but slower growth was observed at 55 ◦C (Figure 1).
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Table 1. Effect of temperature on the growth of S. hirsuta VKM Ac-666T.

Cultivation Temperature, ◦C

20 30 37 45 50 55 60

Dried biomass *,
g/L 0.12 ± 0.01 0.36 ± 0.07 1.21 ± 0.12 1.86 ± 0.21 1.73 ± 0.19 0.28 ± 0.08 0

* The duration of the growth—24 h.

As shown in Figure 2, S. hirsuta fully transformed cholesterol within 144 h. Interme-
diates were isolated, and their structures were characterized by HPLC, mass spectrome-
try, and 1H- and 13C-NMR-spectroscopy (Table 2, Supplementary Figures S1–S30). The
intermediates were identified as 3-oxo-4-ene-compounds: cholest-4-en-3-one (II), cholesta-
1,4-dien-3-one (III), 26-hydroxycholest-4-en-3-one (IV), 3-oxo-cholest-4-en-26-oic acid (V),
3-oxo-cholesta-1,4-dien-26-oic acid (VI), and steroids with a 3β-hydroxy-5-ene moiety:
26-hydroxycholest-5-en-3β-ol (VII) and 3β-hydroxycholest-5-en-26-oic acid (VIII).

No other steroids without a lateral chain (C19-steroids) or a partially oxidized side
chain (C22- or C24-steroids) were detected among the intermediates. Based on the structures
and the time courses of the steroids detected, the following scheme was proposed for
cholesterol bioconversion with S. hirsuta VKM Ac-666T (Figure 3).

Among the lithocholic acid bioconversion intermediates, the compounds with both
the unmodified A-ring structure and the 3-keto-4-ene moiety were found (Supplementary
Figure S31A,B).
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Figure 2. Cholesterol bioconversion by S. hirsuta VKM Ac-666T. Thin-layer chromatography (TLC) chromatogram of 3-keto-
4-ene steroids (A), visualization under ultraviolet (UV) light (254 nm), cholest-4-en-3-one as a reference compound; TLC
chromatogram of 3β-hydroxycholest-5-ene steroids (B), visualization after phosphomolybdic acid staining, cholesterol as a
reference compound; time course of cholesterol consumption (C); time course of the intermediates/metabolites of cholesterol
bioconversion (D). The data are the averages of triplicates. I, cholesterol (cholest-5-ene-3β-ol); II, cholest-4-en-3-one; III,
cholesta-1,4-dien-3-one; IV, 26-hydroxycholest-4-en-3-one; V, 3-oxo-cholest-4-en-26-oic acid; VI, 3-oxo-cholesta-1,4-dien-26-
oic acid; VII, 26-hydroxycholesterol (cholest-5-ene-3β,26-diol); VIII, 3β-hydroxy-cholest-5-en-26-oic acid.
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Table 2. Steroid intermediates detected during cholesterol bioconversion by S. hirsuta VKM Ac-666T.

Number Name and Chemical Structure (mol wt)
High-Performance Liquid Chromatography (HPLC),

Mass-Spectrometry (MS), 1H- and 13C- Nuclear Magnetic
Resonance Spectroscopy (1H- and 13C-NMR Spectroscopy) Data

II

Cholest-4-en-3-one (384)
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(CDCl3) δ: 199.9 (C-3), 182.3 (C-26), 171.9 (C-5), 123.7 (C-4), 56.0, 55.8, 

53.8, 42.4, 39.6, 39.2, 38.6, 35.63, 35.56, 33.92, 33.86, 32.9, 32.0, 28.1, 
24.1, 23.6, 21.0, 18.5, 17.3, 16.7, 11.9 

VI 

3-Oxo-cholesta-1,4-dien-26-oic (412) 
COOH

O  

Rt (mobile phase acetonitrile:2-propanol:water 50:45:5 vol/vol/vol, λ 
240 nm) 3.3 min; Rt (mobile phase acetonitrile:water:acetic acid 

(60:40:0.01 vol/vol/vol, λ 240 nm) 32.2 min; HRMS-ESI (m/z): [M-H]+ 
calcd for C27H39O3 411,2899; found 411, 2903. 1H-NMR (CDCl3) δ: 

7.06 (d, J = 10.1 Hz, 1H, 1-H), 6.24 (dd, J = 1.9, 10.1 Hz, 1H, 2-H), 6.08 
(br. s., 1H. 4-H), 1.23 (s, 3H, 19-CH3), 1,17 (d, J = 7.0 Hz, 3H, 27-CH3), 

0.91 (d, J = 6.5 Hz, 3H, 21-CH3), 0.73 (s, 3H, 18-CH3). 13C-NMR 
(CDCl3) δ: 186.6 (C-3), 182.3 (C-26), 169.8 (C-5), 156.3 (C-1), 127.4 (C-

2), 123.7 (C-4), 56.0, 55.4, 52.3, 43.7, 42.6, 39.4, 39.2, 35.6, 35.5, 35.4, 
33.9, 33.7, 32.9, 28.1, 24.4, 23.6, 22.8, 18.6, 18.5, 16.7, 12.0 

VII 

26-Hydroxycholesterol 
(cholest-5-ene-3β,26-diol) (402) 

 

Rt (mobile phase acetonitrile:2-propanol:water 50:45:5 vol/vol/vol, λ 
200 nm) 3.9 min; Rt (mobile phase acetonitrile:water:acetic acid 

(60:40:0.01 vol/vol/vol, λ 200 nm) 78.9 min; HRMS-ESI (m/z): [M-H]+ 
calcd for C27H45O2 401,3420; found 401,3415. 1H-NMR (CDCl3) δ: 5.36 

(br. s., 1H, 6-H), 3.53 (m, 1H, 3α-H), 3.51 (dd, J = 6.0, 10.6 Hz, 1H, 
CH2OH), 3.43 (dd, J = 6.4, 10.6 Hz, 1H, CH2OH), 1.01 (s, 3H, 19-CH3), 
0.92 (d, J = 6.5 Hz, 3H, 21-CH3), 0.91 (d, J = 6.7 Hz, 3H, 27-CH3), 0.68 
(s, 3H, 18-CH3).  13C-NMR (CDCl3) δ: 140.8 (C-5), 121.7 (C-6), 71.8 
(C-3), 68.5 (C-26), 56.8, 56.1, 50.1, 42.32, 42.28, 39.8, 37.2, 36.5, 36.1, 
35.8, 35.7, 33.5, 31.9, 31.7, 28.2, 24.3, 23.4, 21.1, 19.4, 18.7, 16.5, 11.9 

VIII 

3β-Hydroxy-cholest-5-en-26-oic acid 
(416) 

 

Rt (mobile phase acetonitrile:2-propanol:water 50:45:5 vol/vol/vol, λ 
200 nm) 3.6 min; Rt (mobile phase acetonitrile:water:acetic acid 

(60:40:0.01 vol/vol/vol, λ 200 nm) 45.9 min; HRMS-ESI (m/z): [M-H]+ 
calcd for C27H43O3 415,3212; found 415,3217. 1H-NMR (CD3OD) δ: 
5.33 (d, J = 5.2 Hz, 1H, 6-H), 3.39 (m, 1H, 3α-H), 1.12 (d, J = 7.0 Hz, 
3H, 27-CH3), 1.01 (s, 3H, 19-CH3), 0.93 (d, J = 6.5 Hz, 3H, 21-CH3), 

0.71 (s, 3H, 18-CH3). 13C-NMR (CD3OD) δ: 180.8 (C-26), 142.2 (C-5), 
122.5 (C-6), 72.4 (C-3), 58.2, 57.5, 51.7, 43.5, 43.0, 41.2, 40.7, 38.6, 37.7, 

37.0, 35.4, 33.3, 33.0, 32.3, 29.3, 25.3, 24.8, 22.2, 19.9, 19.2, 17.6, 12.4 

O

COOH

O

COOH

HO

Rt (mobile phase acetonitrile:2-propanol:water 50:45:5 vol/vol/vol,
λ 240 nm) 7.2 min; MS (intensity,%) [M + H]+ (collision energy 33
eV): 383(90), 279(5), 365(55), 325(133), 271(15), 247(100), 175(40),

163(48), 135(11), 121(8)

IV

26-Hydroxycholest-4-en-3-one (400)
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(br. s., 1H, 4-H), 1.18 (s, 3H, 19-CH3), 1.17 (d, J = 7.0 Hz, 3H, 27-CH3), 
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(CDCl3) δ: 199.9 (C-3), 182.3 (C-26), 171.9 (C-5), 123.7 (C-4), 56.0, 55.8, 

53.8, 42.4, 39.6, 39.2, 38.6, 35.63, 35.56, 33.92, 33.86, 32.9, 32.0, 28.1, 
24.1, 23.6, 21.0, 18.5, 17.3, 16.7, 11.9 

VI 

3-Oxo-cholesta-1,4-dien-26-oic (412) 
COOH

O  

Rt (mobile phase acetonitrile:2-propanol:water 50:45:5 vol/vol/vol, λ 
240 nm) 3.3 min; Rt (mobile phase acetonitrile:water:acetic acid 

(60:40:0.01 vol/vol/vol, λ 240 nm) 32.2 min; HRMS-ESI (m/z): [M-H]+ 
calcd for C27H39O3 411,2899; found 411, 2903. 1H-NMR (CDCl3) δ: 

7.06 (d, J = 10.1 Hz, 1H, 1-H), 6.24 (dd, J = 1.9, 10.1 Hz, 1H, 2-H), 6.08 
(br. s., 1H. 4-H), 1.23 (s, 3H, 19-CH3), 1,17 (d, J = 7.0 Hz, 3H, 27-CH3), 

0.91 (d, J = 6.5 Hz, 3H, 21-CH3), 0.73 (s, 3H, 18-CH3). 13C-NMR 
(CDCl3) δ: 186.6 (C-3), 182.3 (C-26), 169.8 (C-5), 156.3 (C-1), 127.4 (C-

2), 123.7 (C-4), 56.0, 55.4, 52.3, 43.7, 42.6, 39.4, 39.2, 35.6, 35.5, 35.4, 
33.9, 33.7, 32.9, 28.1, 24.4, 23.6, 22.8, 18.6, 18.5, 16.7, 12.0 

VII 

26-Hydroxycholesterol 
(cholest-5-ene-3β,26-diol) (402) 

 

Rt (mobile phase acetonitrile:2-propanol:water 50:45:5 vol/vol/vol, λ 
200 nm) 3.9 min; Rt (mobile phase acetonitrile:water:acetic acid 

(60:40:0.01 vol/vol/vol, λ 200 nm) 78.9 min; HRMS-ESI (m/z): [M-H]+ 
calcd for C27H45O2 401,3420; found 401,3415. 1H-NMR (CDCl3) δ: 5.36 

(br. s., 1H, 6-H), 3.53 (m, 1H, 3α-H), 3.51 (dd, J = 6.0, 10.6 Hz, 1H, 
CH2OH), 3.43 (dd, J = 6.4, 10.6 Hz, 1H, CH2OH), 1.01 (s, 3H, 19-CH3), 
0.92 (d, J = 6.5 Hz, 3H, 21-CH3), 0.91 (d, J = 6.7 Hz, 3H, 27-CH3), 0.68 
(s, 3H, 18-CH3).  13C-NMR (CDCl3) δ: 140.8 (C-5), 121.7 (C-6), 71.8 
(C-3), 68.5 (C-26), 56.8, 56.1, 50.1, 42.32, 42.28, 39.8, 37.2, 36.5, 36.1, 
35.8, 35.7, 33.5, 31.9, 31.7, 28.2, 24.3, 23.4, 21.1, 19.4, 18.7, 16.5, 11.9 

VIII 

3β-Hydroxy-cholest-5-en-26-oic acid 
(416) 

 

Rt (mobile phase acetonitrile:2-propanol:water 50:45:5 vol/vol/vol, λ 
200 nm) 3.6 min; Rt (mobile phase acetonitrile:water:acetic acid 

(60:40:0.01 vol/vol/vol, λ 200 nm) 45.9 min; HRMS-ESI (m/z): [M-H]+ 
calcd for C27H43O3 415,3212; found 415,3217. 1H-NMR (CD3OD) δ: 
5.33 (d, J = 5.2 Hz, 1H, 6-H), 3.39 (m, 1H, 3α-H), 1.12 (d, J = 7.0 Hz, 
3H, 27-CH3), 1.01 (s, 3H, 19-CH3), 0.93 (d, J = 6.5 Hz, 3H, 21-CH3), 

0.71 (s, 3H, 18-CH3). 13C-NMR (CD3OD) δ: 180.8 (C-26), 142.2 (C-5), 
122.5 (C-6), 72.4 (C-3), 58.2, 57.5, 51.7, 43.5, 43.0, 41.2, 40.7, 38.6, 37.7, 

37.0, 35.4, 33.3, 33.0, 32.3, 29.3, 25.3, 24.8, 22.2, 19.9, 19.2, 17.6, 12.4 

O

COOH

O

COOH

HO

Rt (mobile phase acetonitrile:2-propanol:water 50:45:5 vol/vol/vol,
λ 240 nm) 3.9 min; Rt (mobile phase acetonitrile:water:acetic acid

(60:40:0.01 vol/vol/vol, λ 240 nm) 81.8 min; MS (intensity,%)
[M + H]+ (collision energy 33 eV): 401(100), 369(33). 1H-NMR

(CDCl3) δ: 5.73 (s, 1H, H-4), 1.18 (s, 3H, 19-CH3), 0.92 (d, J = 6.7 Hz,
3H, 21-CH3), 0.87 (d, J = 6.6 Hz, 3H, 26(27)-CH3), 0.86 (d, J = 6.6 Hz,

3H, 26(27)-CH3), 0.71 (s, 3H, 18-CH3)

V

3-Oxo-cholest-4-en-26-oic acid (414)
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240 nm) 3.9 min; Rt (mobile phase acetonitrile:water:acetic acid 
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(br. s., 1H, 4-H), 1.18 (s, 3H, 19-CH3), 1.17 (d, J = 7.0 Hz, 3H, 27-CH3), 

0.91 (d, J = 6.5 Hz, 3H, 21-CH3), 0.70 (s, 3H, 18-CH3). 13C-NMR 
(CDCl3) δ: 199.9 (C-3), 182.3 (C-26), 171.9 (C-5), 123.7 (C-4), 56.0, 55.8, 

53.8, 42.4, 39.6, 39.2, 38.6, 35.63, 35.56, 33.92, 33.86, 32.9, 32.0, 28.1, 
24.1, 23.6, 21.0, 18.5, 17.3, 16.7, 11.9 

VI 

3-Oxo-cholesta-1,4-dien-26-oic (412) 
COOH

O  

Rt (mobile phase acetonitrile:2-propanol:water 50:45:5 vol/vol/vol, λ 
240 nm) 3.3 min; Rt (mobile phase acetonitrile:water:acetic acid 

(60:40:0.01 vol/vol/vol, λ 240 nm) 32.2 min; HRMS-ESI (m/z): [M-H]+ 
calcd for C27H39O3 411,2899; found 411, 2903. 1H-NMR (CDCl3) δ: 

7.06 (d, J = 10.1 Hz, 1H, 1-H), 6.24 (dd, J = 1.9, 10.1 Hz, 1H, 2-H), 6.08 
(br. s., 1H. 4-H), 1.23 (s, 3H, 19-CH3), 1,17 (d, J = 7.0 Hz, 3H, 27-CH3), 

0.91 (d, J = 6.5 Hz, 3H, 21-CH3), 0.73 (s, 3H, 18-CH3). 13C-NMR 
(CDCl3) δ: 186.6 (C-3), 182.3 (C-26), 169.8 (C-5), 156.3 (C-1), 127.4 (C-

2), 123.7 (C-4), 56.0, 55.4, 52.3, 43.7, 42.6, 39.4, 39.2, 35.6, 35.5, 35.4, 
33.9, 33.7, 32.9, 28.1, 24.4, 23.6, 22.8, 18.6, 18.5, 16.7, 12.0 

VII 

26-Hydroxycholesterol 
(cholest-5-ene-3β,26-diol) (402) 

 

Rt (mobile phase acetonitrile:2-propanol:water 50:45:5 vol/vol/vol, λ 
200 nm) 3.9 min; Rt (mobile phase acetonitrile:water:acetic acid 

(60:40:0.01 vol/vol/vol, λ 200 nm) 78.9 min; HRMS-ESI (m/z): [M-H]+ 
calcd for C27H45O2 401,3420; found 401,3415. 1H-NMR (CDCl3) δ: 5.36 

(br. s., 1H, 6-H), 3.53 (m, 1H, 3α-H), 3.51 (dd, J = 6.0, 10.6 Hz, 1H, 
CH2OH), 3.43 (dd, J = 6.4, 10.6 Hz, 1H, CH2OH), 1.01 (s, 3H, 19-CH3), 
0.92 (d, J = 6.5 Hz, 3H, 21-CH3), 0.91 (d, J = 6.7 Hz, 3H, 27-CH3), 0.68 
(s, 3H, 18-CH3).  13C-NMR (CDCl3) δ: 140.8 (C-5), 121.7 (C-6), 71.8 
(C-3), 68.5 (C-26), 56.8, 56.1, 50.1, 42.32, 42.28, 39.8, 37.2, 36.5, 36.1, 
35.8, 35.7, 33.5, 31.9, 31.7, 28.2, 24.3, 23.4, 21.1, 19.4, 18.7, 16.5, 11.9 

VIII 

3β-Hydroxy-cholest-5-en-26-oic acid 
(416) 

 

Rt (mobile phase acetonitrile:2-propanol:water 50:45:5 vol/vol/vol, λ 
200 nm) 3.6 min; Rt (mobile phase acetonitrile:water:acetic acid 

(60:40:0.01 vol/vol/vol, λ 200 nm) 45.9 min; HRMS-ESI (m/z): [M-H]+ 
calcd for C27H43O3 415,3212; found 415,3217. 1H-NMR (CD3OD) δ: 
5.33 (d, J = 5.2 Hz, 1H, 6-H), 3.39 (m, 1H, 3α-H), 1.12 (d, J = 7.0 Hz, 
3H, 27-CH3), 1.01 (s, 3H, 19-CH3), 0.93 (d, J = 6.5 Hz, 3H, 21-CH3), 

0.71 (s, 3H, 18-CH3). 13C-NMR (CD3OD) δ: 180.8 (C-26), 142.2 (C-5), 
122.5 (C-6), 72.4 (C-3), 58.2, 57.5, 51.7, 43.5, 43.0, 41.2, 40.7, 38.6, 37.7, 

37.0, 35.4, 33.3, 33.0, 32.3, 29.3, 25.3, 24.8, 22.2, 19.9, 19.2, 17.6, 12.4 

O

COOH

O

COOH

HO

Rt (mobile phase acetonitrile:2-propanol:water 50:45:5 vol/vol/vol,
λ 240 nm) 3.7 min; Rt (mobile phase acetonitrile:water:acetic acid

(60:40:0.01 vol/vol/vol, λ 240 nm) 50.9 min; HRMS-ESI (m/z):
[M-H]+ calcd for C27H41O3 413,3056; found 413,3059. 1H-NMR

(CDCl3) δ: 5.73 (br. s., 1H, 4-H), 1.18 (s, 3H, 19-CH3), 1.17 (d,
J = 7.0 Hz, 3H, 27-CH3), 0.91 (d, J = 6.5 Hz, 3H, 21-CH3), 0.70 (s, 3H,
18-CH3). 13C-NMR (CDCl3) δ: 199.9 (C-3), 182.3 (C-26), 171.9 (C-5),
123.7 (C-4), 56.0, 55.8, 53.8, 42.4, 39.6, 39.2, 38.6, 35.63, 35.56, 33.92,

33.86, 32.9, 32.0, 28.1, 24.1, 23.6, 21.0, 18.5, 17.3, 16.7, 11.9

VI

3-Oxo-cholesta-1,4-dien-26-oic (412)
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3-Oxo-cholesta-1,4-dien-26-oic (412) 
COOH
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Rt (mobile phase acetonitrile:2-propanol:water 50:45:5 vol/vol/vol, λ 
240 nm) 3.3 min; Rt (mobile phase acetonitrile:water:acetic acid 

(60:40:0.01 vol/vol/vol, λ 240 nm) 32.2 min; HRMS-ESI (m/z): [M-H]+ 
calcd for C27H39O3 411,2899; found 411, 2903. 1H-NMR (CDCl3) δ: 

7.06 (d, J = 10.1 Hz, 1H, 1-H), 6.24 (dd, J = 1.9, 10.1 Hz, 1H, 2-H), 6.08 
(br. s., 1H. 4-H), 1.23 (s, 3H, 19-CH3), 1,17 (d, J = 7.0 Hz, 3H, 27-CH3), 

0.91 (d, J = 6.5 Hz, 3H, 21-CH3), 0.73 (s, 3H, 18-CH3). 13C-NMR 
(CDCl3) δ: 186.6 (C-3), 182.3 (C-26), 169.8 (C-5), 156.3 (C-1), 127.4 (C-

2), 123.7 (C-4), 56.0, 55.4, 52.3, 43.7, 42.6, 39.4, 39.2, 35.6, 35.5, 35.4, 
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VII 

26-Hydroxycholesterol 
(cholest-5-ene-3β,26-diol) (402) 

 

Rt (mobile phase acetonitrile:2-propanol:water 50:45:5 vol/vol/vol, λ 
200 nm) 3.9 min; Rt (mobile phase acetonitrile:water:acetic acid 

(60:40:0.01 vol/vol/vol, λ 200 nm) 78.9 min; HRMS-ESI (m/z): [M-H]+ 
calcd for C27H45O2 401,3420; found 401,3415. 1H-NMR (CDCl3) δ: 5.36 

(br. s., 1H, 6-H), 3.53 (m, 1H, 3α-H), 3.51 (dd, J = 6.0, 10.6 Hz, 1H, 
CH2OH), 3.43 (dd, J = 6.4, 10.6 Hz, 1H, CH2OH), 1.01 (s, 3H, 19-CH3), 
0.92 (d, J = 6.5 Hz, 3H, 21-CH3), 0.91 (d, J = 6.7 Hz, 3H, 27-CH3), 0.68 
(s, 3H, 18-CH3).  13C-NMR (CDCl3) δ: 140.8 (C-5), 121.7 (C-6), 71.8 
(C-3), 68.5 (C-26), 56.8, 56.1, 50.1, 42.32, 42.28, 39.8, 37.2, 36.5, 36.1, 
35.8, 35.7, 33.5, 31.9, 31.7, 28.2, 24.3, 23.4, 21.1, 19.4, 18.7, 16.5, 11.9 
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(416) 

 

Rt (mobile phase acetonitrile:2-propanol:water 50:45:5 vol/vol/vol, λ 
200 nm) 3.6 min; Rt (mobile phase acetonitrile:water:acetic acid 

(60:40:0.01 vol/vol/vol, λ 200 nm) 45.9 min; HRMS-ESI (m/z): [M-H]+ 
calcd for C27H43O3 415,3212; found 415,3217. 1H-NMR (CD3OD) δ: 
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VII

26-Hydroxycholesterol
(cholest-5-ene-3β,26-diol) (402)
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λ 200 nm) 3.9 min; Rt (mobile phase acetonitrile:water:acetic acid
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(CDCl3) δ: 5.36 (br. s., 1H, 6-H), 3.53 (m, 1H, 3α-H), 3.51 (dd, J = 6.0,
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Table 2. Cont.

Number Name and Chemical Structure (mol wt)
High-Performance Liquid Chromatography (HPLC),

Mass-Spectrometry (MS), 1H- and 13C- Nuclear Magnetic
Resonance Spectroscopy (1H- and 13C-NMR Spectroscopy) Data

VIII

3β-Hydroxy-cholest-5-en-26-oic acid (416)
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one; III, cholesta-1,4-dien-3-one; IV, 26-hydroxycholest-4-en-3-one; V, 3-oxo-cholest-4-en-26-oic acid; VI, 3-oxo-cholesta-
1,4-dien-26-oic acid; VII, 26-hydroxycholesterol; VIII, 3β-hydroxycholest-5-en-26-oic acid. Biochemical reactions: 1, 3β-
hydroxyl group dehydrogenation and ∆5→∆4-isomerization; 2, 3-oxo-4-ene-steroid 1(2)-dehydrogenation; 3, C26(27)-hy-
droxylation; 4, C26-alcohol hydroxylation; 5, oxidative side-chain degradation. 

Among the lithocholic acid bioconversion intermediates, the compounds with both 
the unmodified A-ring structure and the 3-keto-4-ene moiety were found (Supplementary 
Figure S31A,B). 

3.2. General Clustering of Steroid Catabolic Gene Homologs 
When analyzing the genome of S. hirsuta (DDBJ/ENA/GenBank accession no. 

VWPH00000000), the genes putatively involved in steroid catabolism were mainly 
grouped into three clusters: cluster 1 (F1721_32550-F1721_33735), cluster 2 (F1721_00675-
F1721_00760) and cluster 3 (F1721_28735-F1721_28770), and a number of genes were re-
vealed outside the clusters (Figure 4, Supplementary Tables S3 and S4). 

Figure 3. Scheme of cholesterol bioconversion by S. hirsuta VKM Ac-666T. Compounds: I, cholesterol; II, cholest-4-en-3-one;
III, cholesta-1,4-dien-3-one; IV, 26-hydroxycholest-4-en-3-one; V, 3-oxo-cholest-4-en-26-oic acid; VI, 3-oxo-cholesta-1,4-dien-
26-oic acid; VII, 26-hydroxycholesterol; VIII, 3β-hydroxycholest-5-en-26-oic acid. Biochemical reactions: 1, 3β-hydroxyl
group dehydrogenation and ∆5→∆4-isomerization; 2, 3-oxo-4-ene-steroid 1(2)-dehydrogenation; 3, C26(27)-hydroxylation;
4, C26-alcohol hydroxylation; 5, oxidative side-chain degradation.

3.2. General Clustering of Steroid Catabolic Gene Homologs

When analyzing the genome of S. hirsuta (DDBJ/ENA/GenBank accession no.
VWPH00000000), the genes putatively involved in steroid catabolism were mainly grouped
into three clusters: cluster 1 (F1721_32550-F1721_33735), cluster 2 (F1721_00675-F1721_00760)
and cluster 3 (F1721_28735-F1721_28770), and a number of genes were revealed outside
the clusters (Figure 4, Supplementary Tables S3 and S4).
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Figure 4. Organization of the S. hirsuta VKM Ac-666T genes putatively involved in cholesterol and cholic acid catabolism. 
For comparison, the organization of the corresponding genes of Mycobacterium tuberculosis H37Rv and Rhodococcus jostii 
RHA1 [5] is shown. Genes related to cholesterol or bile acid side chain degradation are shown in green; genes related to 
A/B-rings degradation are shown red (cholesterol catabolism) and orange (cholic acid catabolism); genes coding for C/D-
ring degradation are shown purple; blue color indicates genes coding for transport systems; regulatory elements are indi-
cated yellow. I, II, and III are the S. hirsuta gene clusters discussed in the text. 

Cluster 1 (Figure 4, Supplementary Tables S3 and S4) contains candidate genes re-
lated to a sterol side chain degradation pathway, A/B-ring oxidation, and the Mce4 system 
(operon mceABCDEF and the genes coding for two permease subunits YrbEa and YrbEb). 
In total, four mce loci (F1721_29585-F1721_29620, F1721_32550-F1721_32585, F1721_10830-
F1721_10865, F1721_13950-F1721_13915) were found in S. hirsuta. The choD, choE, and 
fadD3 genes, presumably encoding cholesterol oxidases and HIP-CoA synthetase, respec-
tively, were found out of the clusters in Ac-666T (Figure 4, Supplementary Tables S3 and 
S4). 

In Ac-666T, clusters 2 and 3 (Figure 4, Supplementary Tables S3 and S4) contain can-
didate genes related to the cholate degradation pathway, namely, orthologs of the kshA 
and kshB subunit genes; two orthologs of kstDs: kstD2 and kstD1; the A/B-ring opening 
operon hsaEGF and orthologs of hsaD3 and hsaB3; the ksdI steroid delta-isomerase gene; 
kstR3 for a predicted transcriptional regulator; and orthologs of the casACEHI genes, 
which determine degradation of the cholate side chain. 

Figure 4. Organization of the S. hirsuta VKM Ac-666T genes putatively involved in cholesterol and cholic acid catabolism.
For comparison, the organization of the corresponding genes of Mycobacterium tuberculosis H37Rv and Rhodococcus jostii
RHA1 [5] is shown. Genes related to cholesterol or bile acid side chain degradation are shown in green; genes related
to A/B-rings degradation are shown red (cholesterol catabolism) and orange (cholic acid catabolism); genes coding for
C/D-ring degradation are shown purple; blue color indicates genes coding for transport systems; regulatory elements are
indicated yellow. I, II, and III are the S. hirsuta gene clusters discussed in the text.

Cluster 1 (Figure 4, Supplementary Tables S3 and S4) contains candidate genes related
to a sterol side chain degradation pathway, A/B-ring oxidation, and the Mce4 system
(operon mceABCDEF and the genes coding for two permease subunits YrbEa and YrbEb).
In total, four mce loci (F1721_29585-F1721_29620, F1721_32550-F1721_32585, F1721_10830-
F1721_10865, F1721_13950-F1721_13915) were found in S. hirsuta. The choD, choE, and fadD3
genes, presumably encoding cholesterol oxidases and HIP-CoA synthetase, respectively,
were found out of the clusters in Ac-666T (Figure 4, Supplementary Tables S3 and S4).

In Ac-666T, clusters 2 and 3 (Figure 4, Supplementary Tables S3 and S4) contain
candidate genes related to the cholate degradation pathway, namely, orthologs of the kshA
and kshB subunit genes; two orthologs of kstDs: kstD2 and kstD1; the A/B-ring opening
operon hsaEGF and orthologs of hsaD3 and hsaB3; the ksdI steroid delta-isomerase gene;
kstR3 for a predicted transcriptional regulator; and orthologs of the casACEHI genes, which
determine degradation of the cholate side chain.
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Figure 5 shows the scheme proposed for cholesterol bioconversion with the participa-
tion of the candidate genes of S. hirsuta VKM Ac-666T.
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Figure 5. Biochemical scheme proposed for cholesterol catabolism in S. hirsuta VKM Ac-666T. Genes encoding respective
proteins are denoted. (A) Modification of 3β-ol-5-ene to 3-keto-4-ene moiety in the A-ring of the steroid core and degradation
of the sterol side chain to C19-steroids. (B) Steroid core modifications. (C) Steroid core degradation via the 9(10)-seco
pathway. I, cholesterol; II, cholest-4-en-3-one; IV, 26-hydroxy-cholest-4-en-3-one; V, 3-oxo-cholest-4-en-26-oic acid; VII,
cholest-5-ene-3β,26-diol; VIII, 3β-hydroxy-cholest-5-en-26-oic acid; IX, 3-oxo-cholest-4-en-26-oyl-CoA; X, 3-oxo-cholesta-4,24-
dien-26-oyl-CoA; XI, 24-hydroxy-3-oxo-cholest-4-en-26-oyl-CoA; XII, 3,24-dioxo-cholest-4-en-26-oyl-CoA; XIII, 3-Oxo-chol-4-
en-24-oyl-CoA; XIV, 3-oxo-chola-4,22-dien-24-oyl-CoA; XV, 22-hydroxy-3-oxo-chol-4-en-24-oyl-CoA; XVI, 3,22-dioxo-chol-4-
en-24-oyl-CoA; XVII, 3-oxo-4-pregnene-20-carboxyl-CoA; XVIII, androst-4-ene-3,17-dione (AD); XIX, androsta-1,4-diene-
3,17-dione (ADD); XX, 9α-hydroxy-AD; XXI, unstable 9α-hydroxy-ADD; XXII, 3β-hydroxy-9,10-seco-androsta-1,3,5(10)-
triene-9,17-dione (3βHSA); XXIII, 3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione (3,4-DHSA); XXIV, 4,5-9,10-
diseco-3-hydroxy-5,9,17-trioxoandrosta-1(10),2-diene-4-oic acid (4,9-DSHA); XXV, 2-hydroxyhexa-2,4-dienoic acid (2-HHD);
XXVI, 4-hydroxy-2-oxohexanoic acid; XXVII, 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid (DOHNAA) or 3aα-H-4α-
(3′-propanoate)-7aβ-methylhexahydro-1,5-indadione (HIP); XXVIII, 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oyl-CoA
(HIP-CoA); XXIX, 9-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid or 3aα-H-4α(3′-propanoate)-5α-hydroxy-7aβ-
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methylhexahydro-1-indanone (5-OH-HIP); XXX, 9-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostan-5-oyl-CoA (5-OH-HIP-
CoA); XXXI, 9-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrost-6-ene-5-oyl-CoA (5-OH-HIPE-CoA); XXXII, 7,9-Dihydroxy-
17-oxo-1,2,3,4,10,19-hexanorandrostan-5-oyl-CoA; XXXIII, 9-hydroxy-7,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oyl-
CoA; XXXIV,-9-hydroxy-17-oxo-1,2,3,4,5,6,10,19-octa-norandrostan-7-oyl-CoA or 3aα-H-4α(carboxylCoA)-5α-hydroxy-
7aβ-methylhexahydro-1-indanone (5-OH-HIC-CoA); XXXV, 9,17-dioxo- 1,2,3,4,5,6,10,19-octa-norandrostan-7-oyl-CoA;
XXXVI, 9-hydroxy-17-oxo-1,2,3,4,5,6,10,19-octa-norandrost-8(14)-en-7-oyl-CoA; XXXVII, 9,17-dioxo-1,2,3,4,5,6,10,19-octa-
norandrost-8(14)-en-7-oyl-CoA or 7a-methyl-1,5-dioxo-2,3,5,6,7,7a-hexahydro-1H-indene-4-carboxylic acid (HIEC-CoA);
XXXVIII, 9-oxo-1,2,3,4,5,6,10,19-octanor-13,17-secoandrost-8(14)-ene-7,17-dioic acid-CoA-ester or (R)-2-(2-carboxyethyl)-3-
methyl-6-oxocyclohex-1-ene-1- carboxyl-CoA (COCHEA-CoA); XXXIX, 6-methyl-3,7-dioxo-decane-1,10-dioic acid-CoA
ester; XL, 4-methyl-5-oxo-octane-1,8-dioic acid-CoA ester; XLI, 4-methyl-5-oxo-oct-2-ene-1,8-dioic acid-CoA ester (MOODA-
CoA); XLII, 3-hydroxy-4-methyl-5-oxo-octane-1,8-dioic acid-CoA ester; XLIII, 4-methyl-3,5-dioxo-octane-1,8-dioic acid-
CoA ester; XLIV, 2-methyl-3-oxo-hexane-1,6-dioic acid-CoA ester; XLV, succinyl-CoA; XLVI, propionyl-CoA. Adopted
from: [8,16,38–46].

3.3. BLAST Search for the Key Enzymes of Steroid Catabolism in 52 Thermophilic/
Thermotolerant Strains

The key steroid catabolism enzymes KstD, KshA, and KshB of M. tuberculosis H37Rv
were used as reference enzymes in a BLAST search carried out against several dozen
publicly available genomes of thermophilic bacteria of different phylogenetic positions
(Supplementary Table S1).

Among the 52 thermophilic/thermotolerant species tested, seven actinobacterial
strains were found to possess proteins of 41.6% to 64.2% similar to the M. tuberculosis
H37Rv enzymes: Thermomonospora curvata DSM 43183, Amycolatopsis granulosa DSM 45669,
Amycolatopsis methanolica strain 239T, Amycolatopsis thermalba strain 50.9b, Thermocatellispora
tengchongensis DSM 45615, Amycolatopsis ruanii strain 49.3e, and Microbispora siamensis
NBRC 104113 (Supplementary Table S5).

The genomes of two strains capable of performing some modifications of steroid
compounds (i.e., 6-hydroxylation, reduction of the 17/20-keto group or 4(5)-double bond,
and C17–C20 C3-side chain cleavage), Geobacillus kaustophilus and Parageobacillus thermoglu-
cosidasius, were screened for the steroid catabolism enzymes ChoD, ChoL, Ltp3-4, Hsd4A,
FadE26-30, ChsH1-2, FadD17, FadD19, EchA19, HsaA-E, KstD, KshAB, IpdAB, FadD3,
and EchA20 (Supplementary Table S2). Most of the proteins were absent in these strains
(Supplementary Table S6). On the other hand, enzymes with 47% and 45% similarity to the
reference FadA5 were revealed in G. kaustophilus and P. thermoglucosidasius, respectively;
and enzymes with 48% and 41% identity to HsaF and HsaE, respectively, were identified
in P. thermoglucosidasius (Supplementary Table S6).

4. Discussion

Several thermophilic bacterial species have been reported to carry out distinct struc-
tural modifications of steroids [19–21,47], while sterol degradation by thermophilic mi-
croorganisms has not been studied so far. As shown in this research, thermophilic S. hirsuta
transformed cholesterol (Figure 1). The cholesterol degradation pathway was predicted
(Figure 4) based on the time courses of the intermediates (Figure 1) and bioinformatics
analysis (Figure 4). The set and the order of the genes putatively involved in steroid
catabolism in S. hirsuta are similar to the clusters described for M. tuberculosis H37Rv and
R. jostii RHA1 [5] (Figure 4).

4.1. Cholesterol Oxidases (ChOs)

In many actinobacteria, the sterol degradation pathway is known to begin with the
modification of 3β-hydroxy-5-ene into the 3-keto-4-ene structure by cholesterol oxidases
(ChOs) or 3β-hydroxysteroid dehydrogenases (3β-HSDs) [48,49], while cytochrome P450-
mediated hydroxylation at C26(27) has been reported to be the initial reaction of sterol
degradation in Rhodococcus strains [50,51]. As evidenced from the time course of cholesterol
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conversion by S. hirsuta, the initial reactions of cholesterol degradation, i.e., modification
of the 3β-ol-5-ene-moiety and sterol side chain C26(27)-hydroxylation, occurred indepen-
dently (Figure 1).

ChOs are most likely involved in 3β-ol-5-ene-moiety modification in S. hirsuta since
no candidate genes coding for 3β-HSDs were found in Ac-666T [25]. Two candidate cho
genes, choD F1721_14655 and choE F1721_09795, were revealed in Ac-666T. Similar to other
cho in actinobacteria [51], both genes are out of the steroid catabolism clusters.

4.2. Cyp 125

The cleavage of the cholesterol/cholestenone side chain by actinobacteria begins with
hydroxylation of the terminal methyl group catalyzed by steroid 26(27)-monooxygenase to
form the corresponding 26(27)-alcohols [51]. As shown for R. jostii RHA1, the same enzyme
accounts for further oxidation to the corresponding C26-carboxylic acids [50]. Cytochrome
P450 monooxygenases encoded by cyp125 have been isolated and characterized from M.
tuberculosis [52] and R. jostii RHA1 [50]. Cyp125 from M. tuberculosis CDC1551 has been
shown to play a role in the oxidation of 26-hydroxycholest-4-en-3-one (IV) to cholest-4-en-
3-one-26-oic acid (V) [53]. Cyp125, cyp142, and cyp124 have been reported to encode the
enzymes that perform terminal C(26)27-hydroxylation [51].

The candidate cyp125 (F1721_32680) was identified in S. hirsuta (Supplementary Tables
S1 and S2). Cyp125 could be responsible for the formation of 26-hydroxycholestenone (IV),
3-oxocholest-4-ene-26-oic acid (V), 3-oxocholesta-1,4-diene-26-oic acid (VI), 26-hydroxycho-
lesterol (VII), and 3β-hydroxycholest-5-ene-26-oic acid (VIII) from the corresponding
precursors in Ac-666T (Figures 2–4). Probably, this strain possesses a steroid 26(27)-
monooxygenase capable of oxidizing the sterol side chain regardless of the 3β-hydroxy-5-
ene- or 3-oxo-4-ene-structure of the A-ring. No orthologs of cyp124 or cyp142 were found in
S. hirsuta.

4.3. Side Chain Degradation

As is well established for many actinobacteria, the aliphatic side chain of sterols is de-
graded by a cascade of reactions similar to the β-oxidation of fatty acids. The chsE4 (fadE26)
and chsE5 (fadE27) genes of M. tuberculosis H37Rv have been shown to encode acyl-CoA
dehydrogenases [42]. ChsE3 of M. tuberculosis catalyzes oxidation of 3-oxochol-4-ene-24-oil-
CoA in the second round of β-oxidation of the cholesterol side chain [42]. The orthologous
genes chsE1 (F1721_33645), chsE2 (F1721_32785), chsE3 (F1721_28750), chsE4 (F1721_32605),
and chsE5 (F1721_32610) were found in S. hirsuta (Supplementary Tables S3 and S4).

The phylogenetic analysis of acyl-CoA synthetases revealed four different types of
acyl-CoA synthetases from R. jostii RHA1 and M. tuberculosis H37Rv, which are specific to
the chain length of steroids [54]. FadD19 from M. tuberculosis H37Rv activates cholesterol
metabolites with the C8-side chain, whilst FadD17 from H37Rv acts in the case of the C5- or
longer side chains; and CasG from R. jostii RHA1, in the case of the cholate C5-side chain.
Metabolites with the C3-side chain are activated by the steroid-22-oyl-CoA synthetase CasI
during cholate oxidation by R. jostii RHA1 [54]. Orthologs of fadD19 (F1721_32635), fadD17
(F1721_32615), casG (F1721_02405), and casI (F1721_28770), which encode acyl-coenzyme
A synthases, were revealed in S. hirsuta (Supplementary Tables S3 and S4). Probably, the
presence of the homologous genes encoding various acyl-coenzyme A synthases in Ac-666T

contributes to the adaptation of the thermophilic microorganism in nature.
As shown for R. rhodochrous RG32, decomposition of the sterol C24-branched side

chain is mediated by aldol lyases encoded by ltp3 and ltp4 [55]. The candidate genes
ltp3 (F1721_32665) and ltp4 (F1721_32660) putatively involved in degrading sterols with
branched side chains were identified in S. hirsuta (Supplementary Tables S3 and S4).

Enoyl-coenzyme A is a hydratase encoded by echA19 that acts on 3-oxo-chol-4,22-
diene-24-oyl-CoA [56]. The product of the hsd4A gene from M. neoaurum ATCC 25795 is a
dual-function enzyme with both 17β-hydroxysteroid dehydrogenase and β-hydroxyacyl-
CoA dehydrogenase activities [57]. Recently, it has been shown that the ChsB1 from M.
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tuberculosis (Rv3502c) is stereospecific and catalyzes the dehydrogenation of 22S-hydroxy-
3-oxo-cholest-4-en-24-oyl-CoA rather than its 22R stereoisomer [46]. The candidate genes
echA19 (F1721_32640) and hsd4A (F1721_32600) were revealed in S. hirsuta (Supplementary
Tables S3 and S4).

The role of thiolase FadA5 in the last cycle of cholesterol side chain β-oxidation has
been demonstrated for M. tuberculosis H37Rv [58]. Orthologous fadA5 (F1721_32685) is
present in S. hirsuta (Supplementary Tables S3 and S4).

In M. tuberculosis strains, the operon containing genes for a putative lipid transfer pro-
tein (ltp2/Rv3540c), two MaoC-like hydratases (chsH1/Rv3541c, chsH2/Rv3542c), two acyl-
CoA dehydrogenases (fadE29/chsE2/Rv3543c, fadE28/chsE1/Rv3544c), and cytochrome
P450 (cyp125/Rv3545c) has been reported to be essential for virulence [39]. Recently, the
function of Ltp2 in complex with a hydratase ChsH2DUF35 was identified as an aldolase in
T. curvata DSM 43183 [59]. The orthologous genes ltp2 (F1721_32770), chsH1 (F1721_32775),
and chsH2 (F1721_32780) were found in S. hirsuta (Supplementary Tables S3 and S4).

4.4. Steroid Nucleus Degradation

The key reactions in steroid core degradation are 1(2)-dehydrogenation and 9α-
hydroxylation [4]. 1(2)-Dehydrogenation is catalyzed by 3-ketosteroid ∆1-dehydrogenases
(KstDs) [60]. The presence of several KstDs with distinct activities has been reported for
actinobacterial species [60–65]. Three putative KstDs were identified in Ac-666T (Supple-
mentary Tables S3 and S4). The candidate gene kstD3 is in cluster 1 (Figure 4). The two
other candidate kstDs, kstD2 and kstD1, are located side by side in cluster 2 (Figure 4).
As reported earlier, S. hirsuta efficiently transforms androst-4-ene-3,17-dione (AD), 3β-
hydroxy-5-en-17-one (DHEA), and 3β,7(α/β)-dihydroxy-5-ene-D-homo-lactones into the
corresponding 1(2)-dehydrogenated derivatives, thus evidencing high KstD activity [24].

In the present study, detection of the intermediates with a 3-keto-1,4-diene structure,
such as cholesta-1,4-dien-3-one (III) and 3-oxo-cholesta-1,4-diene-26-oic acid (VI), evi-
denced that 1(2)-dehydrogenation can take place at the early stages of sterol catabolism
in S. hirsuta (Figure 2). As shown for M. neoaurum DSM 1381, KstD1, KstD2, and KstD3
catalyze 1(2)-dehydrogenation of various steroid substrates at different stages of sterol
degradation [65]. The presence of several KstDs probably provides 1(2)-dehydrogenation
of various steroids in S. hirsuta.

The phylogenetic dendrogram with the KstD homologs demonstrates that KstD2 from
S. hirsuta is in close identity with KstD2 from N. simplex (= Pimelobacter simplex) (AIY19529.1)
(Figure 6). KstD from M. tuberculosis is in the same clade with KstD3 from S. hirsuta, while
KstD1 from S. hirsuta is more similar to the corresponding enzymes of N. simplex (Figure 6).

9α-Hydroxylation is carried out by 3-ketosteroid 9α-hydroxylase KshAB, which con-
sists of an oxygenase component (KshA) and a reductase component (KshB) [66]. Five differ-
ent paralogous genes have been reported to encode the KshA subunits in Mycolicibacterium
fortuitum VKM Ac-1817D (=Mycobacterium sp. VKM Ac-1817D) [61], thus providing for
9α-hydroxylation of steroid metabolites at various stages of sitosterol catabolism [67]. Sev-
eral KshAs with different substrate specificities have similarly been found in R. rhodochrous
DSM 43269: KshA1 was shown to participate only in the cholic acid catabolism, while
KshA5 could hydroxylate several substrates [68]. Two kshA orthologs (F1721_32745 and
F1721_00725) and two kshB orthologs (F1721_32755 and F1721_00735) were revealed in
S. hirsuta (Figure 4, Supplementary Tables S3 and S4). Most likely, these two KshABs might
differ on their substrate specificity in Ac-666T.

It should be noted that no C19-steroid intermediates, such as androstenedione, an-
drostadienedione, testosterone, or 1(2)-dehydrotestosterone, were detected during the
cholesterol transformation by S. hirsuta. This could be explained either by their rapid
degradation to concentrations below the detection level, or by disruption of the A/B-rings
in intermediates with a preserved side chain. For instance, 9,10-seco-steroid interme-
diates with partially degraded side chains form during bile acid transformation with
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Rhodococcus strains, evidencing that side chain degradation and B-ring opening occur
simultaneously [69,70].
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4.5. Steroid Core Degradation

The next step of steroid core destruction is hydroxylation of 3-hydroxy-9,10-seco-
androst-1,3,5(10)-triene-9,17-dione at C4 by flavin-dependent monooxygenase (HsaAB),
resulting in a 3,4-dihydroxy-derivative [71]. The characterization of HsaAB was performed
for the monooxygenase from M. tuberculosis [72]. The operon hsaBCDAFGE F1721_32700-
F1721_32730 presumably involved in degrading the A-ring fragments was identified in
S. hirsuta (Supplementary Tables S3 and S4). The candidate genes hsaA3 (F1721_00755),
hsaB3 (F1721_00745), hsaC3 (F1721_00760), and hsaD3 (F1721_00695), which are orthologous
to the R. jostii RHA1 hsaA3B3C3D3 genes, were found in Ac-666T (Figure 4, Supplementary
Tables S3 and S4). The candidate genes hsaF and hsaG encode HsaF and HsaG, which puta-
tively participate in the final stages of A-ring degradation (Supplementary Tables S3 and S4).

Degradation of the C/D-rings begins with the action of FadD3, whose physiological
role has been studied in M. tuberculosis [41]. Unlike in M. tuberculosis H37Rv and R. jostii
RHA1, in which fadD3 encoding HIP-CoA synthetase lies in the corresponding cluster, the
ortholog of fadD3 is out of the clusters in S. hirsuta (Figure 4).

IpdE1(FadE30) and IpdE2 (FadE33) of M. tuberculosis have been shown to form a
complex that catalyze the dehydrogenation of 5-OH-HIP-CoA to 5-OH-HIPE-CoA [44].
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Crotonase Ech20 is responsible for the hydrolytic C-ring cleavage to yield HIEC-CoA.
IpdAB hydrolytically cleaves the C-ring in the substrate COCHEA-CoA [43]. The candidate
genes ipdAB (F1721_33690-F1721_33695), ipdC (F1721_33700), fadE30 (F1721_33715), fadE33
(F1721_33735) and echA20 (F1721_33685) (cluster 1) are presumably involved in C/D-ring
degradation in S. hirsuta (Figure 4, Supplementary Tables S3 and S4).

The product of the opening of both of the C/D-rings is transformed by putative
thiolase FadA6 to yield acetyl-CoA and 4-methyl-5-oxo-octanedioyl-CoA [5]. The last
intermediate undergoes β-oxidation by acyl-CoA dehydrogenase FadE32 or the Fad31-
FadE32 complex in Mycobacterium [43]. Finally, the β-oxidation products acetyl-CoA and
2-methyl-β-ketoadipyl-CoA are released, followed by the formation of propionyl-CoA and
succinyl-CoA [5]. The orthologs of fadE31 (F1721_33725) and fadE32 (F1721_33730) were
detected in S. hirsuta (Figure 4, Supplementary Tables S3 and S4).

4.6. Search for the Key Genes of Steroid Catabolism in the Genomes of Thermophilic/
Thermotolerant Bacteria

In order to find out whether steroid degraders are widespread among thermophilic
bacteria, a BLAST search for the kstD and kshAB key genes of the steroid catabolic 9,10-seco-
pathway was performed using 52 publicly available genomes of thermophilic/
thermotolerant strains (Supplementary Table S1). Only seven actinobacterial strains
were identified as putative steroid degraders (Supplementary Table S5). The other ther-
mophilic/thermotolerant strains do not contain enzymes similar to KstD and KshAB of
M. tuberculosis H37Rv by more than 35% and, most likely, do not degrade steroids.

The thermophilic G. kaustophilus and P. thermoglucosidasius strains have been reported
to provide separate reactions of steroid modification [19,20]. The BLAST search for more
than 20 steroid catabolism enzymes (Supplementary Table S2) in these bacteria discovered
the putative proteins that are 47% and 45% similar to the reference FadA5, respectively,
and the P. thermoglucosidasius enzymes that are similar to HsaF and HsaE of M. tuberculosis
H37Rv by 48% and 41%, respectively (Supplementary Table S6). FadA5 is known ad-
ditionally to be involved in fatty acid β-oxidation; thus, the corresponding proteins of
G. kaustophilus and P. thermoglucosidasius may not be intended for steroid catabolism. HsaEF
participate in oxidation of the hydroxydiene derivative of hexanoic acid, meaning that
similar enzymes do not necessarily participate in the catabolism of steroid compounds.

5. Conclusions

The thermophilic strain Saccharopolyspora hirsuta VKM Ac-666T is capable of transform-
ing various steroids [23,24]. As confirmed in this study, the strain efficiently transforms
cholesterol and 26-alcohols with both 3β-ol-5-ene and 3-keto-4-ene A-ring structures being
key intermediates. The genes related to sterol metabolism and cholic acid catabolism were
for the first time identified in the genome of this thermophilic strain. The organization
of the steroid catabolism genes is generally similar to that in other actinobacteria, with
some differences related to individual genes and their grouping. Future transcriptomic
and proteomic studies are of significance for a clearer understanding of the peculiarities of
steroid catabolism in thermophilic actinobacteria.

The presence of key enzymes responsible for steroid core disruption was identified
only in seven of 52 thermophilic bacteria of various phylogenetic positions, thus suggesting
that steroid-degrading activity is not common in the thermophilic species.

The results contribute to the knowledge on the diversity of microbial steroid degraders
and the features of steroid catabolism by thermophilic actinobacteria and could be useful
for application in pharmaceutical and environmental steroid biotechnology.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/microorganisms9122554/s1, Supplementary Figures S1–S31: HPLC-, MS- and NMR- sup-
plementary data, Supplementary Table S1: List of thermophilic and thermotolerant bacteria to be
screened for the key genes of the steroid catabolic 9,10-seco-pathway, Supplementary Table S2: List
of enzymes of steroid catabolism for BLAST+ search, Supplementary Table S3: Candidate genes

https://www.mdpi.com/article/10.3390/microorganisms9122554/s1
https://www.mdpi.com/article/10.3390/microorganisms9122554/s1


Microorganisms 2021, 9, 2554 15 of 18

for steroid or bile acid degradation in S. hirsuta VKM Ac-666T, Supplementary Table S4: List of
homologous genes between S. hirsuta VKM Ac-666T, R. jostii RHA1, and M. tuberculosis H37Rv,
Supplementary Table S5: List of actinobacterial strains with the similar proteins to the reference
KshA, KshB, KstD of M. tuberculosis H37Rv, Supplementary Table S6: Result of BLAST search for
29 protein sequences of M. tuberculosis steroid catabolism enzymes in the Geobacillus kaustophilus
HTA426 and Parageobacillus thermoglucosidasius DSM 2542 genomes.
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