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Using solution-coating methods for the fabrication of organic light-emitting devices
(OLEDs) offers a tremendous opportunity for enabling low-cost products and new
applications. The electroluminescence (EL) stability of solution-coated (SOL) OLEDs,
however, is significantly lower than that of vacuum-deposited (VAC) OLEDs, causing
their operational lifetimes to be much shorter—an issue that continues to hamper their
commercialization. The root causes of the lower EL stability of these devices remain
unclear. This article briefly reviews and summarizes some of the work that has been done
to-date for elucidating the root cause of the lower EL stability of SOL OLEDs, giving special
attention to studies where side-by-side comparisons of SOL and VAC devices of the same
materials have been conducted. Such comparisons allow for more-reliable conclusions
about the specific effects of the solution-coating process on device stability to be made.
The mini-review is intended to introduce the work done to-date on the causes of lower
stability in SOL OLEDs and to stimulate further work for the purpose of closing the existing
knowledge gap in this area and surmounting this long-standing challenge in the SOLOLED
technology.
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INTRODUCTION

Organic light-emitting devices (OLEDs) are increasingly being used in commercial flat display
products from mobile phones and smart watches to televisions (Reineke, 2015). Although OLEDs
have become a recognizable product to consumers only recently, their exceptional potential over
competing display technologies—liquid crystal displays (LCDs) primarily—has been
demonstrated for decades (Reineke, 2015; Shin et al., 2016). While LCDs use back lighting,
OLEDs are self-emissive, making it possible for each pixel to be turned on or off individually,
resulting in lower power draw and deeper black levels (Reineke, 2015; Shin et al., 2016; Chen et al.,
2018). Perhaps one of the most unique properties of OLEDs arises from their low-temperature
fabrication process, which allows for the use of flexible plastic substrates and thus inexpensive
large-scale processing (Shin et al., 2016). Further down the line, the possibility of fabricating
OLEDs via solution-coating processes presents an opportunity for lower-cost applications,
especially solid-state lighting products (Reineke, 2015).
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There have been several phases in OLED development, from
the first demonstration of a fluorescent material-based device by
Tang and Van Slyke (1987) to the much more efficient
phosphorescent material-based devices used in today’s
commercial products. Recently, the use of thermally activated
delayed fluorescence (TADF) materials, which can offer
comparable efficiencies to phosphorescent materials without
the use of heavy metals, is emerging as a third generation in
this technology (Tao et al., 2014). Throughout these
developments, the ability to realize OLEDs with sufficiently
high electroluminescence (EL) stability has always lagged
behind the progress in efficiency (Kondakov et al., 2007).

From a fabrication standpoint, OLEDs can be made via one of
two approaches: vacuum-deposition or solution-coating. In
vacuum-deposition, the various layers of an OLED (each
typically a few 10 s of nms in thickness at most) are formed
by thermal evaporation of the materials (usually in a powder or
granular form initially) in a low pressure environment to produce
a thin film of the material on the substrate. Production-scale
vacuum-deposition systems come in two basic configurations:
cluster, where the chambers are around a central substrate-
handling robot, and in-line, where the chambers are in a line
and the substrate moves from one end to the other. Both cluster
and in-line approaches are currently used in the manufacturing of
commercial OLED products since they allow for making
complicated multiple-layer devices and give excellent device
performance (Tang and VanSlyke, 1987; Burroughes et al.,
1990; D’Andrade and Forrest, 2004; Forrest, 2004; Shirota,
2005; Tao et al., 2008; Reineke et al., 2009; Jou et al., 2010;
Kamtekar et al., 2010; Ye et al., 2010; Zhang et al., 2010; Cai et al.,
2011; Coya et al., 2012; Wang et al., 2012; Zhang et al., 2012;
Chang and Lu, 2013; Fu et al., 2013; Liu et al., 2014; Ho et al.,
2015; Liu et al., 2015; Liu et al., 2019). Vacuum-deposition-based
approaches, however, have major drawbacks such as high
equipment cost, high vacuum requirements, and complicated
color patterning processes (Shirota, 2005; Kim et al., 2007).
Cluster systems also suffer from inefficient utilization of
materials. Solution-coating, in contrast, involves forming the
layers via a wet-coating method (e.g., spin coating, blade
coating, or inkjet printing) after dissolving the materials in a
suitable organic solvent, capitalizing on the uniqueness of organic
materials to offer soluble electroluminescent materials. These
techniques, especially inkjet printing and blade coating,
provide significant advantages in terms of material utilization
and fabrication costs, especially for large-area products (Forrest,
2004; Duggal et al., 2007; Hou et al., 2008; Kim et al., 2008; Duan
et al., 2010; Hou et al., 2010; Singh et al., 2010; Zhong et al., 2011;
Minakata et al., 2016). Inkjet printing also allows for easy color
patterning, offering additional advantages in reducing fabrication
costs (Klauk, 2006).

Early generations of solution-coated (SOL) OLEDs were made
primarily using polymeric semiconductors, which, in comparison
to conjugated small-molecule materials, are generally easier to
dissolve (Burroughes et al., 1990). However, difficulties with
obtaining very high purities, narrow molecular weight
polydispersity, and batch-to-batch reproducibility in polymers
have spurred an interest in developing soluble small-molecule

materials (Duan et al., 2010; Yook and Lee, 2014). Because of the
significant progress in this front over the last decade, small-
molecule OLEDs with very impressive efficiencies, made by
solution-coating, are now possible (Jou et al., 2010; Yook and
Lee, 2011; Lee et al., 2013; Yook and Lee, 2014; Cho et al., 2015;
Han et al., 2016). Despite this progress, the EL stability of SOL
OLEDs continues to be significantly lower in comparison with
their vacuum-deposited (VAC) counterparts (Lee et al., 2009;
Duan et al., 2010; Cai et al., 2011; Yook and Lee, 2011; Zhang
et al., 2012; Cho et al., 2016; Han et al., 2016; Cho et al., 2017; Stolz
et al., 2017). The short lifetime is currently the main obstacle
preventing the commercialization of low-cost OLEDs via
solution-coating.

In general, failure in OLEDs is caused by various degradation
mechanisms that can be classified into two categories: ambient-
induced degradation and electrical stress-induced degradation
(Kondakov et al., 2007; Sudheendran Swayamprabha et al., 2021).
Ambient-induced degradation appears in the formation of
localized defects, induced by various ambient-driven reactions,
that lead to the growth of non-emissive areas in the device
(i.e., dark spots) over time and often also leading to electrical
shorts (Burrows et al., 1994; Burrows and Forrest, 1994).
Electrical-stress-induced degradation, in contrast, appears in
the form of a gradual decrease in the internal quantum
efficiency (IQE) of the devices, without any visible defects. The
behavior is caused by various physical and chemical changes that
take place in the materials under electrical stress, induced by the
flow of charges or by the resulting excitons. These changes can be
influenced by factors including the device architecture and
fabrication process (Rothberg and Lovinger, 1996; Aziz et al.,
1999; Matsumura et al., 1999; Kondakov et al., 2003; Kondakov,
2005; Kondakov et al., 2007; Luo et al., 2007; Giebink et al., 2008;
Giebink et al., 2009; Wang and Aziz, 2013; Wang et al., 2014;
Wang and Aziz, 2015a; Wang and Aziz, 2015b; Zhang and Aziz,
2016; Dong et al., 2017). Although degradation mechanisms in
OLEDs have been extensively studied and are relatively well-
understood, the root causes of the lower stability of SOL OLEDs
relative to their VAC counterparts remain largely unclear at this
time. Closing this knowledge gap is critical for successfully
surmounting the poor stability challenge of SOL OLEDs and
propelling the technology toward commercialization.

Several factors uniquely affect SOL OLEDs and may
contribute to their lower stability. These factors can generally
be divided into extrinsic and intrinsic. Extrinsic factors, broadly
defined as external to the specific material(s) or layer(s) being
coated by the solution-coating process, include 1) the negative
effects of the solvents used in the layer(s) being coated on other
device layers, especially pre-coated ones, and 2) the unintentional
introduction of impurities into the device from either the solvents
or the coating environment. Intrinsic factors, in contrast, can be
defined as inherent to the nature of the layer(s) made by solution-
coating such as specific characteristics in their 1) morphologies
and 2) chemical reactivity, both of which may lead to lower device
stability. Figure 1 maps out the extrinsic and intrinsic factors
behind the lower EL stability in SOL versus VAC OLEDs.

This article briefly reviews and summarizes some of the work
that has been done to-date directed at elucidating the root causes
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of the shorter operational lifetime of SOL OLEDs, giving special
attention to studies that perform side-by-side comparisons of
SOL versus VAC devices made of the same materials, and thus
allow for more-reliable conclusions about the specific effects of
the solution-coating process on device stability to be made. The
first part reviews some of the work that has focused on
understanding and addressing extrinsic factors and covers
solvent damage of pre-coated layers and chemical impurities,
whereas the second part covers some of the investigations into the
intrinsic factors, covering the morphological and chemical
stability differences between the SOL and VAC OLEDs. The
mini-review is intended to serve as an introduction to efforts so
far on addressing the question of the causes of the lower stability
of SOL OLEDs and to stimulate further work for the purpose of
closing the existing knowledge gap in this area.

EXTRINSIC FACTORS

Solvent Damage of the Pre-coated Layers
Unlike in the case of vacuum-deposition, where the coating of one
layer does not significantly disturb other precoated layers,
solution-coating involves coating a layer with a liquid solution
of the material in a solvent, which makes it easier to disturb or
alter the other layers that have been precoated on the asubstrate.
The solvent can penetrate into the underlying layers causing
swelling and/or morphological changes in them, or even their
partial (or complete) removal. Significant mixing along the
boundary between the layers can also occur. Such changes to
the underlying layers would obviously negatively affect the device
performance and contribute to lower stability as was reported
previously (Lin et al., 2015; Lan et al., 2019; Zheng et al., 2020).

One approach to avoid or mitigate the effects of solvent
damage to underlying layers is to use chemically cross-linkable
materials in these layers, utilizing thermal or photochemical
cross-linkers (Gather et al., 2007; Rehmann et al., 2007; Huang
et al., 2008; Köhnen et al., 2009; Liaptsis et al., 2013; Liaptsis and
Meerholz, 2013; Wang et al., 2020). Using cross-linkable 4.4′, 4″-
tris-(N-carbazolyl)-triphenlyamine (TCTA) derivatives, Liu et al.
showed that the present efficiency of devices with a SOL-hole
transport layer (HTL) could be preserved (Liu et al., 2008). A
similar observation was reported by Niu et al., (Niu et al., 2007).

While photo cross-linking is generally more efficient and can be
used for creating more robust layers more quickly, its reliance on
the use of photoacids makes it inevitable for a residual amount of
side products or initiators to remain in the final layer, which
might impair the device efficiency and stability. Thermal cross-
linking is therefore considered to be a better option, especially for
device stability (Ho et al., 2015; Chao et al., 2019). Using
PLEXCORE®, a thermally cross-linked HTL, Xiang et al.
demonstrated OLEDs with efficiency and stability comparable
with those with a VAC 4,4′-bis [N-(1-naphthyl)-N-
phenylamino]biphenyl (NPB)-based HTL (Xiang et al., 2014).
The light emission layer (EML) of these devices was, however,
made by vacuum-deposition in both cases. A similar effect was
observed in devices with thermally cross-linked 9,9-bis{4-[(4-
ethenylphenyl)methoxy]phenyl}-N2,N7-di-1-naphthalenyl-
N2,N7-diphenyl-9H-fluorene-2,7-diamine (VB-FNPD) HTLs,
where exposing the layers to solvents was found to have no
detrimental effect on device efficiency or stability (Samaeifar
et al., 2021).

Another approach for avoiding solvent damage to the
underlying layers is to use, in the different layers, materials
that are only soluble in orthogonal solvents (Gong et al., 2005;
Ye et al., 2011; Aizawa et al., 2014; Wang et al., 2020). The
search for suitable pairs of solvents can be aided by determining
their Hansen solubility parameters (Hansen, 2007). However,
recent work has shown that even nonsolvents (i.e., solvents that
can dissolve only insignificant amounts of the layers
underneath) could still change the surface of the substrate on
which the layers were coated and affected interlayer interfaces
(Fujii et al., 2009; Yu and Aziz, 2021). In fact, other work has
shown that even in cases where the underlying layers remained
intact, exposure to solvents may still alter their surface
properties such as work function, sheet resistance or
roughness (Wang Q et al., 2011; Wang et al., 2013; Yun
et al., 2016). While the exact implications of these
phenomena on the performance of SOL OLEDs remain to be
worked out, one could expect changes at the interlayer
interfaces to affect charge injection or transport, and, as a
result, charge balance (Aziz et al., 1999; Xia et al., 2007;
Davidson-Hall and Aziz, 2020; Yu and Aziz, 2021). Changes
in charge balance can lead to charge accumulation at various
device interfaces such as the HTL/EML and the electron

FIGURE 1 | Extrinsic and intrinsic factors behind the lower EL stability in SOL versus VAC OLEDs.
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transport layer (ETL)/EML interfaces, where they can facilitate
non-radiative processes. (Kim et al., 2007; Lee et al., 2009;
Reineke et al., 2013).

Chemical Impurities
By virtue of their nature, the low-pressure environments used in
vacuum-deposition naturally allow for a better avoidance of
unintentional contaminants that may get introduced into the
materials during OLED fabrication and negatively affect the
efficiency and stability (Fujimoto et al., 2016; Kaur et al., 2016;
Fujimoto et al., 2020). Also, many OLEDmaterials are sensitive to
oxygen andmoisture, and although inert gas environments can be
used to provide some protection, the lower-pressure
environments of the alternative are more effective for avoiding
ambient species (Aziz and Popovic, 2004; Baldacchini et al., 2005;
Knox et al., 2006). High-vacuum environments also help
minimize the particle contamination, caused by the movement
of gases in the solution-coating environment during device
fabrication (Gotthold, 2015). Such particle contamination,
which is more common in solution-coating processes, can
induce undesired pathways for current leakage, causing device
efficiency to deteriorate over time (Gather et al., 2007; Oostra,
2016). Such leakage currents also facilitate the formation of
microscopic shorts in the devices when under electrical stress,
resulting in hot spots, possibly leading to catastrophic device
failure (Oostra et al., 2014). Controlling the impurity and particle
levels in the solution-coating environment is therefore critical for
improving SOL OLEDs’ performance and stability. Another
source of impurities in SOL OLEDs could be the solvents
(Gaspar and Polikarpov, 2015). Therefore, special attention
needs to be paid not only to the solubility and purity of the
OLEDmaterials (Becker et al., 2010; Duan et al., 2010), but also to
the purity of the solvents used for solution-coating. Liu et al.
revealed that impurities in the solvents used in preparing the SOL
EMLs may have a leading role in the short operational lifetime of
these devices. Therefore, in order to fabricate SOL OLEDs with
longer operational lifetimes, solvents with ultra-high purity levels
are necessary (Liu et al., 2016).

INTRINSIC FACTORS

Morphological Factors
Several studies have investigated the differences between small-
molecule SOL and VAC films in regards to density, molecular
orientation, surface roughness, and glass transition temperature.
Kim et al. reported that SOL films of the N,N′-Di(1-naphthyl)-
N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB):2,2′,2"-
(1,3,5-benzenetriyl)-tris [1-phenyl-1H-benzimidazole] (TPBi):
tris(1-phenylisoquinoline)iridium (Irpiq)3 composite had a
lower refractive index than their VAC counterparts, despite
having similar average roughness values. The lower refractive
index was attributed to the lower molecular packing density in the
former, which was also believed to be the cause of the higher
driving voltage of these devices (Kim et al., 2007). Similarly, Lee
et al. showed that the densities of 2-(t-butyl)-9,10-bis(20-
naphthyl)anthracene (TBADN) doped with 4,4′-bis{2-[4-(N,N-

diphenylamino)phenyl]vinyl} (DPAVBi) films processed from
toluene and chlorobenzene solutions were much lower than
those of VAC films of the same materials. They also observed
that the root-mean square roughness values of SOL films were
quite similar to those of VAC films (Lee et al., 2009). We have
shown that the VAC film and SOL film using toluene exhibited
similar surface topography, whereas films using dichloromethane
and chloroform exhibited higher roughness values (Cho and
Aziz, 2018). Xing et al. showed that VAC TCTA films had a
highly oriented molecular arrangement with face-to-face π−π
stacking, whereas SOL films had a much more randommolecular
morphology (Xing et al., 2013). In a systematic study covering a
large number of small molecular materials, Shibata et al. found
that the film density, glass transition temperature, and degree of
horizontal molecular orientation were lower in SOL films than
the corresponding VAC ones. They also showed that the glass
transition temperature and molecular orientation of SOL films of
glassy materials were identical to those of “deteriorated” VAC
films that had experienced a transition induced by heating
(Shibata et al., 2015).

The lower glass transition temperature of SOL systems can be
expected to directly lead to a lower thermal and temporal
morphological stability in these systems (Tokito et al., 1997).
Naturally, any morphological changes that occur in device layers
after fabrication can negatively affect the device performance, as
they would lead to structural defects and non-homogeneities in
charge transport that can, in turn, accelerate degradation
processes. We may, therefore, conclude that the lower EL
stability of devices made by solution-coating may—at least in
part—be due to reduced morphological stability in these systems
(Shirota and Kageyama, 2007).

Aside from the lower glass transition temperature of SOL
systems, which would reduce their structural stability, differences
in film density, molecular orientation, and surface roughness can
also be expected to affect the intermolecular charge transport and
energy transfer in these systems (Yokoyama, 2011), in turn, also
affecting device stability (Luo et al., 2007; Giebink et al., 2009).
While SOL TCTA films were shown to have a lower hole
transport mobility compared with their VAC counterparts
(Xing et al., 2013), an opposite effect was observed in SOL
N,N′-bis(3-methylphenyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-
diamine (TPD) films. OLEDs utilizing a SOL TPD layer as an
HTL showed significantly higher currents and luminance levels at
any given voltage relative to devices with a VAC TPD layer (Feng
et al., 2011). A similar observation was reported by Ishihara et al.
in OLEDs with SOL TPD or N,N′-di (p-biphenyl-4-yl)-N,N′-
diphenyl-(1,1′-biphenyl)-4,4′-diamine (p-BPD) HTLs (Ishihara
et al., 2004). Despite some variations in the observations (Mao
et al., 2011; Wang et al., 2011a; Wang et al., 2011b; Lee and Lee,
2013; Mangalore et al., 2019; Kuznetsov et al., 2021), there is
broad agreement that SOL and VAC films exhibit significant
differences in their charge transport characteristics.

Liu et al. investigated the degradation mechanisms in small-
molecule phosphorescent OLEDs with SOL versus VAC EMLs
and found that SOL EML devices were more prone to hole-
induced degradation, especially in the presence of excitons. They
also found that the degradation rate in SOL devices depended on
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the initial hole injection/transport properties. Follow-up studies
revealed that good hole injection and transport properties were
required in SOL OLEDs to suppress interfacial degradation (Liu
et al., 2016). However, Lee et al. suggested that using materials
with enhanced hole-blocking and electron-transporting
properties was essential for improving the efficiency and
stability in SOL EML devices in order to offset the higher hole
mobility and electron trapping characteristics in these layers
relative to VAC systems (Lee et al., 2009).

We have studied degradation mechanisms in single organic-
layer devices and found that SOL layers had more charge traps.
With a higher concentration of charge traps, exciton–polaron
interactions and exciton quenching by polarons become
more efficient, which accelerates the deterioration in device
EL output. SOL layers were also found to exhibit more
significant electromer formation. The increased formation of
electromers points to increased morphological and structural
defects in these films relative to those in their VAC
counterparts, possibly arising from non-homogeneities in the
extent of intermolecular interactions and/or molecular packing
density from one location to another within the film (Cho et al.,
2017).

While differences in the initial morphology in SOL versus
VAC films are believed to play a role in the lower stability of the
former, other studies have shown that SOL films may also be
more susceptible to aggregation while under electrical stress,
driven primarily by exciton–polaron interactions (Cho et al.,
2016). The phenomenon is facilitated by the relatively lower
molecular packing density and larger free volume in SOL films,
both of can which allow for less-restricted molecular
reorganization and mobility.

A recent work has shown that exciton stress leads to larger
losses in PL quantum yield and in host-to-guest (H→G) energy
transfer in host: guest (H: G) EML systems fabricated by
solution-coating. In a well-dispersed H: G system, most host
molecules will be located within a few angstroms of a guest
molecule and can therefore transfer energy efficiently to the

guest, which reduces the exciton concertation in the host.
Solution-coating produces film morphologies with some
initial phase separation into guest-rich and guest-deficient
domains, and the host/guest aggregation accelerates the
formation of guest-deficient domains. As a result, it is more
difficult for excited host molecules in these domains to lose their
excitation energy to guest molecules as quickly, in turn, making
them more susceptible to exciton-induced degradation and
aggregation (Samaeifar and Aziz, 2022). Photoluminescence
images showing the increased H: G phase separation and
aggregation in SOL versus VAC 4,4′-bis-(carbazol-9-yl)
biphenyl (CBP) films doped with various phosphorescent
guests are reproduced in Figure 2A (Yu and Aziz, 2020). As
can be seen, SOL films show much more extensive crystalline
features after UV-irradiation. The higher susceptibility to
crystallization indicates that SOL films have host/guest
aggregates initially, which can act as nucleation sites for
host/guest crystallization. The findings revealed the influence
of the initial film morphologies produced by the different
fabrication methods on energy transfer and material stability
under exciton stress.

More recently, we found that the less efficient H→ G energy
transfer in H:G systems can also be detected in their EL
characteristics (some of those observations are reproduced in
Figure 2B). As seen, the relative intensity of the host emission
band (here CBP at around 400 nm) increases after electrical
driving in both devices. The increase is, however, larger in the
case of the SOL EML device, despite the shorter electrical stress
time. Since the detection of host emission points to incomplete
H → G energy transfer, the observations suggest that energy
transfer was initially somewhat less efficient in the case of SOL
EML. This phenomenon was found to play a direct role in the
lower stability of phosphorescent OLEDs based on H:G systems
made by solution-coating (Samaeifar and Aziz, 2022). The
observations again pointed to differences in molecular
distribution or morphology in the case of SOL layers, with
more H:G phase separation compared with their VAC

FIGURE 2 | (A) Fluorescence microscopy images of neat and guest-doped CBP films subjected to UV irradiation for 18 h and of non-irradiated control films.
2,2′,2″-(1,3,5-benzinetriyl)tris(1-phe-nyl-1H-benzimidazole) [Ir (ppy)3] and tris(1-phenylisoquinoline)iridium [Ir (piq)3] used as guests. All films were thermally annealed at
100°C for 10 min to enhance crystallization. Reprinted with permission from Yu and Aziz (2020). Copyright 2020 American Chemical Society. (B) EL spectra (normalized
to the guest emission peak intensity) collected initially (i.e., at t = 0) and after reaching the LT50 point of SOL or VAC EML devices. Reprinted with permission from
Samaeifar et al. (2021). Copyright 2021 American Chemical Society.
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counterparts. Solubility limitations could be playing a role in
this increased H:G phase separation, resulting in the less-
efficient H → G energy transfer in these systems (Samaeifar
et al., 2021).

While a significant amount of effort has been devoted to
studying and comparing the morphology in SOL versus VAC
films and its effect on the differences in charge transport and
exciton dynamics between these systems, it should be noted that,
in many cases, the findings are material- and process-dependent
(Mao et al., 2011; Wang et al., 2011a; Wang et al., 2011b; Lee and
Lee, 2013; Mangalore et al., 2019; Kuznetsov et al., 2021). For
example, although several studies reported that SOL films have
lower density and glass transition temperature, Feng et al.
observed that SOL TPD films were more compact and had a
higher density than their VAC counterparts (Feng et al., 2011).
Similarly, Kuznetsov et al. found that the density of tta: 2-
thenoyltrifluoroacetone, DPPZ: dipyrido(3,2-a:2′c,3′c-c)
phenazine [Eu (tta)3DPPZ]: CBP films made by solution-
coating was higher than that obtained with vacuum-deposition
(Kuznetsov et al., 2021). These observations show that, while
there may be some morphological commonalities between SOL
films, the strong dependence of the morphology on the specific
materials and process conditions makes it difficult to generalize
phenomena observed in one material system to another without
direct verification.

Chemical Stability Factors
While morphology plays a significant role in the lower stability
of SOL OLEDs, chemical stability may also be another
contributory factor. It should also be pointed out that
differences in morphology may themselves lead to differences
in chemical stability (Ito et al., 2012; Ahmadi and Wu, 2019;
Geng et al., 2020). For example, in their studies of various solar-
cell polymers, Mateker et al. observed a clear correlation
between polymer-packing density and its photo-stability.
They also showed that the rate of degradation becomes
slower upon increasing film density, and that, regardless of
the choice of the materials, films with crystalline morphology
generally exhibited a higher photo-stability (Mateker et al.,
2015). One may therefore similarly expect the lower
molecular-packing density in SOL films to reduce their
chemical stability.

We investigated and compared SOL and VAC OLED films
under prolonged excitation using UV irradiation to determine
if the lower lifetime of SOL devices is primarily due to the
aggregation in the films or if chemical degradation also
contributed to this effect. The results showed that the SOL
film had more UV-induced chemical by-products formed
under the irradiation conditions, indicating that chemical
decomposition was faster relative to the VAC counterpart.
Interestingly, the lower stability of SOL films was not due to
any new (additional) chemical reactions or decomposition
routes that occur in SOL films, suggesting that the faster
chemical decomposition of SOL films by the UV irradiation

has its origins in the different morphological make-up of these
systems which makes the molecules less chemically stable
relative to those in their VAC counterparts. We also found
that the degradation rate also depends on the choice of
solvents used in the solution-coating process (Cho and
Aziz, 2018). The changes in the stability with the type of
solvent is due to the formation of different polymorphs
(Gleason et al., 2014). More work must be done in this
area to better understand the effect of chemical stability on
the shorter lifetime of SOL devices versus their VAC
counterparts.

CONCLUSION

In summary, we have reviewed some of the work to-date on
elucidating the root causes of the lower EL stability of SOL
OLEDs relative to their VAC counterparts, addressing certain
factors at play. These factors can generally be classified into
extrinsic and intrinsic ones. The former involves factors that are
external to the material(s) or layer(s) being coated, such as
contamination by impurities or solvent-damage effects. The
intrinsic factors, in contrast, involve phenomena that are
inherent to the nature of the layer(s) produced by solution-
coating such as differences in their morphologies or chemical
stability that in turn negatively affect the device stability. While
the extrinsic factors can generally be controlled via corrective
measures, our understanding of the intrinsic factors seems to be
more elusive. Among the intrinsic factors, morphology seems
to play a major role as it affects several factors that directly
affect stability, such as charge transport (and therefore
charge balance), H → G energy transfer, and degradation by
excitons. However, other intrinsic factors, especially the
question of reduced chemical stability, need to be
investigated further. This mini-review is intended to serve as
an introduction to work done to-date on addressing the causes
of the lower stability of SOL OLEDs and to stimulate further
work directed at closing the existing knowledge gap in this area
and surmounting this long-standing challenge in SOL OLED
technology.
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