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Simple Summary: We utilized the 10× Genomics technology to obtain a reference whole-genome
sequence for assessing the genetic diversity and population structure of Rhizophora apiculata in Thai-
land. Using SNPs identified from the R. apiculata genome sequence, moderate genetic diversity and
high genetic differentiation were observed among 82 R. apiculata accessions collected along the coasts
of Thailand. Two subpopulations corresponding to the Gulf of Thailand and the Andaman Sea coasts
were clustered and confirmed from three approaches: population structure, PCA, and phylogenetic
analyses. The AMOVA result revealed that the percentage of variation within populations (76%) was
higher than that among populations (24%).

Abstract: Rhizophora apiculata is one of the most widespread and economically important mangrove
trees in the Indo-West Pacific region. Knowledge of the genetic variation of R. apiculata in Thailand
is limited. Here, we generated a whole-genome sequence of R. apiculata using the 10× Genomics
technology. R. apiculata genome assembly was 230.47 Mb. Based on its genome, 2640 loci of high-
quality biallelic SNPs were identified from 82 R. apiculata accessions collected from 17 natural
mangrove forests in Thailand to assess the genetic diversity and population structure among them. A
moderate level of genetic diversity of R. apiculata was observed. The average observed heterozygosity
(Ho = 0.48) was higher than the average expected heterozygosity (He = 0.36). Two subpopulations
were observed and confirmed from three approaches: population structure, PCA, and phylogenetic
analyses. They corresponded to the Gulf of Thailand and the Andaman Sea separated by the Malay
Peninsula. AMOVA analyses indicated that genetic variation was attributable to 76.22% within
populations and 23.78% among populations. A high level of genetic differentiation between the
two subpopulations (FST = 0.24, p < 0.001) was observed. This study evaluated the genetic diversity
and population structure of R. apiculata, providing useful information for sustainable mangrove
management in Thailand.

Keywords: mangrove; Rhizophora apiculata; Rhizophoraceae; whole-genome; genetic diversity;
population structure; SNP

1. Introduction

Mangroves generally grow in intertidal habitats, which are at the interface between
land and sea in tropical and sub-tropical regions [1]. They are the most important compo-
nent of coastal ecosystems and ecological services [2–6]. Mangrove trees protect against
coastal erosion, reduce the effects of strong winds and heavy waves on the coasts as well
as provide habitats, food, timber, and medicines [5,6]. In addition, mangrove trees can
serve as carbon sinks that mitigate greenhouse effects [2–4]. In the past decades, coastal
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regions have been changed by global climate change and anthropogenic activities (e.g.,
aquaculture encroachment and urban area extension) that affect the loss of habitat and
genetic variation of mangroves [7–9]. In Thailand, mangrove forest areas along the coasts
of the Gulf of Thailand and the Andaman Sea have dramatically decreased from 367,900
to 245,179 hectares in 1961 and 2000, respectively [10,11]. As a result, it is important to
implement strategies to protect, preserve, and reforest mangrove areas [12]. The study
of the genetic diversity and population structure of mangroves is important to manage
rehabilitation and sustainability in the future.

Rhizophora apiculata belongs to the family Rhizophoraceae and is a true mangrove
that is one of the most widespread and economically important plant species in tropical
regions [13]. It is distributed in the Indo-West Pacific (IWP) region, in countries such as
India, Indonesia, Malaysia, Myanmar, and Thailand [13,14]. It is used to make firewood
and charcoal [15]. In addition, its leaves, barks, and roots have medicinal uses, such as
antimicrobial, anticancer, antidiarrhea, and hemostatic properties [16–18]. Based on the
morphological structure of R. apiculata, the leaf shape is narrowly elliptic-oblong and the
bark is dark grey and vertically fissured [15]. Remarkably, prop and stilt roots (aerial roots)
are common in Rhizophora species (e.g., R. apiculata, R. mucronata, R. mangle, and R. stylosa)
for supporting respiration when their lower roots are submerged and elevating the plants
above the water. [19,20]. Notably, R. apiculata is one of the most regenerated mangrove
species in Thailand because seeds are easy to plant in nurseries [12,21].

Molecular markers, such as amplified fragment length polymorphisms (AFLPs), nu-
clear and chloroplast DNA sequences, microsatellites, and single nucleotide polymor-
phisms (SNPs), have been used to study population genetics in mangroves [22–32]. For
evaluating genetic diversity and population genetic structure, microsatellites are widely
used [24,26,28,29]; however, SNPs generated from next-generation sequencing approaches,
such as genotyping by sequencing (GBS) and restriction site-associated DNA sequenc-
ing (RAD-seq) [33], have recently become a favorable molecular marker in plants due
to high-throughput genetic data and the most abundant genetic polymorphisms across
genomes [27,30–32]. Several studies on genetic diversity and structure have been con-
ducted on R. apiculata populations using various molecular markers [23–29]. For example,
an earlier assessment of 31 R. apiculata individuals in three collection sites (Bangkok, Surat
Thani, and Trang) in Thailand revealed low genetic variation and a significant genetic
differentiation between populations based on five nuclear genes and two chloroplast DNA
regions [23]. Population structure consists of two clusters, Bangkok-Surat Thani and
Trang [23]. In contrast to the Indo-Malaysian region, eleven R. apiculata populations based
on 81 nuclear loci showed high genetic diversity and various levels of genetic differentiation
among populations [25]. They were separated into three clusters; East Indian Ocean, South
China Sea, and Australasia [25]. Using microsatellite markers, the genetic diversity and
population structure of R. apiculata populations were studied in several regions, such as the
Greater Sunda Islands of Indonesia [24], the IWP region [26], Malaysia [28], and China [29].
The genetic diversity of R. apiculata was low in the IWP region and Malaysia but high
in China [26,28,29]. High genetic differentiation between populations was found in the
Greater Sunda Islands of Indonesia, the IWP region, and Malaysia [24,26,28]. Intermediate
genetic diversity was revealed between the Hainan Island-Gulf of Thailand and the west
coast of Thailand based on SNP data [27].

The genetic diversity and population structure of R. apiculata across the range of
Thailand coasts has not been evaluated. To obtain a whole-genome reference sequence
R. apiculata in Thailand, the whole genome of R. apiculata was sequenced and assembled as
a reference sequence for this study. Based on our R. apiculata reference genome, numerous
variants were identified from 82 R. apiculata accessions collected from 17 natural mangrove
forests in Thailand. The variants were filtered to identify high-quality biallelic SNPs that
were used to assess the genetic diversity and population structure of R. apiculata in Thailand.



Biology 2022, 11, 1449 3 of 14

2. Materials and Methods
2.1. Samples

For reference genome sequencing, one R. apiculata individual was chosen as a repre-
sentative species in this study. It is in the natural mangrove forest in the Ranong province
(9◦52′36.1′′ N 98◦36′11.5′′ E) under the protection of the Department of Marine and Coastal
Resources. The morphology of R. apiculata as a reference genome is presented in Figure 1.
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(E) Aerial roots.

For genetic diversity and population structure analysis, a total of 82 R. apiculata
accessions were collected from natural mangrove forests in 17 provinces of Thailand
(Figure 2). The seventeen collection sites were Chachoengsao (CCO), Chumphon (CMP),
Chanthaburi (CTI), Nakhon Si Thammarat (NST), Narathiwat (NWT), Phetchaburi (PBI),
Prachuap Khiri Khan (PKN), Phuket (PKT), Phang-nga (PNA), Pattani (PTN), Ranong
(RNG), Samut Sakhon (SKN), Surat Thani (SNI), Samut Prakan (SPK), Satun (STN), Trang
(TRG), and Trat (TRT). The collection sites of CCO, CMP, CTI, NST, NWT, PBI, PKN, PTN,
SKN, SNI, SPK, and TRT represent locations on the Gulf of Thailand coast. In addition, the
collection sites of PKT, PNA, RNG, STN, and TRG represent locations on the Andaman Sea
coast. These two coastal regions were regionally separated by the Malay Peninsula. The
geographic map was created to locate collection sites using the QGIS software v3.24.2 [34].
The general characters of R. apiculata accessions have large and tall trees, a narrowly elliptic
leaf shape, brown to dark grey bark, and prop and stilt roots.
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Figure 2. The geographical location of 82 R. apiculata accessions in Thailand. Collection sites in
17 provinces are Chachoengsao (CCO), Chumphon (CMP), Chanthaburi (CTI), Nakhon Si Thammarat
(NST), Narathiwat (NWT), Phetchaburi (PBI), Prachuap Khiri Khan (PKN), Phuket (PKT), Phang-nga
(PNA), Pattani (PTN), Ranong (RNG), Samut Sakhon (SKN), Surat Thani (SNI), Samut Prakan (SPK),
Satun (STN), Trang (TRG), and Trat (TRT). Red dots indicate collection sites at which the accessions
were collected.

2.2. DNA Extraction and Sequencing

The fresh leaves of all R. apiculata accessions were stored in liquid nitrogen. The
standard CTAB (Cetyl Trimethyl Ammonium Bromide) method was used to extract ge-
nomic DNA from the R. apiculata leaves [35]. One R. apiculata accession as a reference
sequence was sequenced using the 10× Genomics technology with linked-read sequencing,
which is a microfluidics-based method to generate long-range information from short-read
sequencing data (10× Genomics; https://www.10xgenomics.com (accessed on 5 January
2022)). The 10× genomics library was constructed from approximately 1 ng of high quality,
high molecular weight DNA using the Chromium Genome Library Kit & Gel Bead Kit
v2, the Chromium Genome Chip Kit v2 and the Chromium i7 Multiplex Kit according to
the manufacturer’s instructions (10× Genomics) and was sequenced using the Illumina
HiSeq X Ten (paired-end reads at 150 bp). Furthermore, the 82 R. apiculata accessions
were sequenced using MGI technology with restriction site-associated DNA sequencing
(RAD-seq), which is one of the most genomic library preparations to reduce representation
sequencing [33]. For each sample, a RAD-seq library was created with approximately 1 µg

https://www.10xgenomics.com
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of DNA following the MGIEasy RAD Library Prep Kit Instruction Manual (MGI Tech).
Libraries were pooled and sequenced using the MGISEQ-2000RS sequencing platform with
a 150 bp paired-end cycle kit following the manufacturer’s protocol. High-quality reads
were obtained from the MGISEQ-2000RS sequencer.

2.3. Genome Assembly and Comparative Genome Analysis

The whole genome of R. apiculata was assembled to link read data using SuperNova
v2.1.1 with default settings (https://support.10xgenomics.com/de-novo-assembly/software/
pipelines/latest/using/running (accessed on 10 January 2022); 10× Genomics; [36]). All con-
tigs were scaffolded with the previously reported R. apiculata genome (GCA_900174605.1 in
the European Nucleotide Archive (ENA), [37]) using RagTag v1.1.0 [38]. Redundant and mi-
tochondrial contigs were removed using BLAST with 100% identity and 100% coverage [39].
Our R. apiculata genome was assessed with the previous R. apiculata genome [37] using
QUAST and Busco [40,41]. The genome assembly of R. apiculata has been deposited in
the National Center for Biotechnology Information (NCBI) under the project accession
number PRJNA846534.

2.4. SNP Identification

To identify single nucleotide polymorphisms (SNPs), paired-end reads of each ac-
cession were mapped to our genome sequences of R. apiculata using BWA v0.7.17-r1188
(https://github.com/lh3/bwa (accessed on 2 February 2022)) with default settings. Se-
quence alignment map (SAM) files were converted to a binary format (BAM) that were
sorted and indexed using samtools v1.9 [42]. Mapping statistics were also obtained using
samtools. Variants were called from each sorted BAM file using GATK v4.1.4.1 with haplo-
type caller [43]. Individual variant call format (VCF) files were merged to a single VCF file
using GATK v4.1.4.1. All variants, including SNPs and indels (insertions and deletions) of
accessions, were called from the single VCF file, and only SNPs were extracted using GATK.
Multiallelic sites of SNPs were excluded from further analysis using bcftools v1.12 [44].
SNPs were filtered using vcftools v0.1.16 [45] with a minimum read depth ≥ 10, maxi-
mum read depth < 200, missing data < 0.05, and minor allele frequency (MAF) ≥ 0.05 [46].
Finally, SNPs on scaffolds were selected for further analysis.

2.5. Population Structure and Principal Component Analysis

The population structure analysis of R. apiculata was examined using the STRUCTURE
program v2.3.4 with a Bayesian clustering approach via the Markov Chain Monte Carlo
(MCMC) estimation [47,48]. To prepare input data for STRUCTURE, the final VCF file was
converted to the STRUCTURE file format using PGDSpider v2.0.9.2 [49]. Then, the analysis
was performed using twenty replicate runs in each number of clusters (K) from 1 to 10, an
MCMC burn-in period length of 10,000, and a run length of 10,000 [32]. The most probable
K value (the number of subpopulations) was determined by comparing delta K (∆K) based
on the rate of change in the log-probability of the data [LnP(D)] between successive K
values using the Structure Harvester v0.6.7 [50,51]. Based on the best K value, clustering
from 1000 replicates in STRUCTURE was summarized using CLUMPP version 1.1.2 [52].

To determine the proportion of variation explained by each principal component, eigen-
values of the filtered SNPs were generated using PLINK v1.9 [53]. Principle component
analysis was performed using PCA in R [54]. The first and second principal components
were plotted using R software v3.3.4 with the library tidyverse and the package ggplot [55].

2.6. Data Analysis

Gene diversity (heterozygosity), polymorphism information content, and minor allele
frequency were carried out using PowerMarker v3.25 [56]. Additionally, basic genetic
diversity parameters, including the effective number of alleles (Ne), Shannon’s information
index (I), observed (Ho) and expected (He) heterozygosity, the percentage of polymorphic
loci (PPL), and the inbreeding coefficient (F), were generated using GenAlEx v6.502 [57].

https://support.10xgenomics.com/de-novo-assembly/software/pipelines/latest/using/running
https://support.10xgenomics.com/de-novo-assembly/software/pipelines/latest/using/running
https://github.com/lh3/bwa
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The analysis of molecular variance (AMOVA) and the genetic differentiation coefficient
(FST) was conducted using Arlequin v3.5.2.2 [58]. An FST value was greater than 0.15,
indicating the genetic differentiation between populations [59].

2.7. Phylogenetic Analysis

To assess the phylogenetic relationships among the 82 R. apiculata accessions, phyloge-
netic analysis was performed using a maximum likelihood (ML) method based on SNPs.
The SNPs in all accessions were aligned using MUSCLE with default in MEGA X [60].
To be the best fit model for the SNP dataset, the K2 + G model was identified using the
find best DNA/protein model tool in MEGA X. A ML phylogenetic tree was constructed
using MEGA X with the K2 + G model. A bootstrap consensus tree with 1000 replications
was carried out. The phylogenetic tree was visualized using the interactive Tree of Life
(iTOL) [61].

3. Results
3.1. Genome Assembly and SNP Data

For the whole-genome sequencing of R. apiculata, a total of 110.04 Gb of 150 bp paired-
end reads were obtained and assembled. The de novo assembly contained 22,267 contigs
with the longest scaffold, N50 length, and N90 length of 1,917,847, 144,278, and 3785 bp, re-
spectively (Table S1). The contigs were further scaffolded based on the previous R. apiculata
genome by merging homology sequences and reconciling genome assembly scaffolds [37].
The final R. apiculata genome assembly contained 133 scaffolds and 10,427 contigs with an
aggregate size of 230.47 Mb (Table S1). The longest scaffold, N50, and N90 were 12,839,107;
4,834,853; and 74,632 bp in length, respectively (Table S1). The size of our R. apiculata
genome (231 Mb) is similar to the size of the previously reported R. apiculata genomes
(232 Mb) in China [37,62], which covered 84% of the estimated R. apiculata genome based
on flow cytometry (274 Mb) [37]. The BUSCO (benchmarking universal single-copy ortho-
logues) result revealed that all scaffolds (208 Mb, Table S1) covered approximately 97% of
predicted R. apiculata genes (Figure S1) [37].

To generate SNPs data, 82 R. apiculata accessions in natural mangrove forests in
17 provinces of Thailand (Figure 2) were sequenced using RAD-seq. A total of 226.04 Gb
of 150 bp paired-end reads were generated (Table S2). A total of 1,745,767 SNPs were
identified among 82 R. apiculata accessions. Numerous SNPs with missing data > 0.05
(1,395,365 SNPs) and minimum read depth < 10 in each accession (313,981 SNPs) were
removed. After filtering SNPs using the criteria mentioned in the Materials and Methods
Section, 2640 high-quality biallelic SNPs were obtained.

3.2. SNP Characterization

The distributions of values for genetic diversity, polymorphic information content
(PIC), and minor allele frequency (MAF) of the 2640 SNPs estimated on the 82 R. apiculata
accessions are shown in Figure 3. The SNP diversity ranged from 0.16 to 0.50 with an
average of 0.39 with the vast majority (96%) falling between 0.21 and 0.50 (Figure 3A;
Table S3). The PIC values ranged from 0.15 to 0.38 with a mean PIC value of 0.31 (Figure 3B;
Table S3). Approximately 60% of the SNPs had PIC values exceeding 0.30, suggesting high
polymorphic data. The MAF values varied from 0.09 to 0.50, with an average value of 0.31
(Figure 3C; Table S3).
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3.3. Population Structure and Principal Component Analysis

To classify subpopulations, the population structure and principal component analysis
(PCA) of R. apiculata in Thailand was performed (Figure 4). The Bayesian clustering
algorithm was used to analyze the population structure. The largest delta K was observed
at K = 2 (Figure 4A), suggesting the presence of two subpopulations. The first subpopulation
(orange in Figure 4B) consists of accessions collected from TRT, CTI, CCO, SPK, SKN, PBI,
PKN, CMP, SNI, NST, PTN, and NWT, and the second subpopulation (blue in Figure 4B)
consists of accessions from STN, TRG, PKT, PNA, and RNG. The analysis demonstrated
two distinct genetic clusters corresponding to two geographic regions, the Gulf of Thailand
(TRT, CTI, CCO, SPK, SKN, PBI, PKN, CMP, SNI, NST, PTN, and NWT) and the Andaman
Sea (STN, TRG, PKT, PNA, and RNG). In addition to the population structure, the PCA
of R. apiculata was conducted across the 82 R. apiculata accessions (Figure 4C) where the
first two components explained 70.46% of the total genetic variation (67.60% and 2.86%,
respectively). According to the first two components, the accessions were divided into two
groups: the Gulf of Thailand (TRT, CTI, CCO, SPK, SKN, PBI, PKN, CMP, SNI, NST, PTN,
and NWT) and the Andaman Sea (STN, TRG, PKT, PNA, and RNG).
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Figure 4. Clustering results of 82 R. apiculata accessions. (A) The mean estimated delta K values
for different numbers of populations assumed K ranging from 1 to 10 in the STRUCTURE analysis.
(B) Structure plot of R. apiculata individuals for K = 2. Each vertical bar represents an individual.
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3.4. Genetic Diversity and Genetic Differentiation

At the population level, the average number of effective alleles (Ne), Shannon’s in-
formation index (I), observed heterozygosity (Ho), expected heterozygosity (He), and the
percentage of polymorphic loci (PPL) were estimated (Table 1; Table S4). All diversity
parameters were similar in the two subpopulations. The PPL value in the two subpopula-
tions was over 99%, indicating high genetic diversity within them. Remarkably, average
Ho values were higher than average He values, which resulted in a negative inbreeding
coefficient value (F = −0.199), indicating an excess of heterozygosity.

Table 1. Genetic diversity parameters of two genetic clusters of 82 R. apiculata accessions in Thailand
based on 2640 SNPs.

Population N Ne I Ho He PPL F

The Gulf of Thailand 53 1.622 ± 0.007 0.553 ± 0.004 0.456 ± 0.006 0.351 ± 0.003 99.92% −0.140 ± 0.010
The Andaman Sea 29 1.662 ± 0.007 0.573 ± 0.004 0.500 ± 0.006 0.370 ± 0.003 99.05% −0.258 ± 0.008

Overall 82 1.642 ± 0.005 0.563 ± 0.003 0.478 ± 0.004 0.360 ± 0.002 99.49% −0.199 ± 0.007

Notes. N: number of samples; Ne: number of effective alleles; I: Shannon’s information index; Ho: observed.
heterozygosity; He: expected heterozygosity; PPL: percentage of polymorphic loci; F: inbreeding coefficient.

To assess genetic differences, AMOVA (analysis of molecular variance) analyses of
the accessions with the two subpopulations revealed that 23.78% of the total genetic
variation was attributable to differences among subpopulations, and 76.22% of the total
genetic variation was attributable to differences among accessions within populations
(Table 2). The fixation index (FST) was 0.24 (p < 0.001), suggesting significant high genetic
differentiation between the subpopulations.



Biology 2022, 11, 1449 9 of 14

Table 2. Analysis of molecular variance (AMOVA) of 82 R. apiculata accessions in Thailand.

Source of Variation df Sum of Squares Variance Components Percentage of Variation F-Statistics

Among populations 1 10768.22 137.70 23.67 FST = 0.24 ***
Within populations 162 71948.59 444.13 76.33

Total 163 82716.81 581.83

Notes. degree of freedom (df), *** statistically significant (p < 0.001).

3.5. Population Phylogenetic Relationship

To understand relationships among 82 R. apiculata accessions, a maximum likelihood
(ML) tree was conducted (Figure 5). Bootstrap values at all branches are high (bootstrap
value ≥ 82; mostly equal to 100), indicating that the ML tree was highly reliable. The ML
tree shows that 82 R. apiculata accessions are divided into two main clusters. Forty-seven
accessions from the Gulf of Thailand coast are comprised in cluster I (as shown in the yellow
clades in Figure 5), and thirty-four accessions (28 accessions from the Andaman Sea coast
and six accessions from the Gulf of Thailand coast) are comprised in cluster II (as shown
in the blue clades in Figure 5). Nonetheless, an accession (SNI 04) collected in the Surat
Thani province is not in the two clusters of the ML tree. The branching structure of the ML
tree is similar to STRUCTURE analysis, in which cluster I accessions are labeled in red text
(as shown in orange for group 1 in the STRUCTURE analysis; Figure 4B), whereas cluster
II accessions are labeled in blue text (as shown in blue for group 2 in the STRUCTURE
analysis; Figure 4B) (Figure 5). In addition, cluster I and II of the ML tree are concordant
with the PCA analysis that most of the accessions are divided into two groups: the Gulf of
Thailand and Andaman Sea with 67.60% of PC1 (Figure 4C).
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R. apiculata according to the STRUCTURE analysis, respectively. Blue and yellow highlights indicate
collection sites at the Andaman Sea and the Gulf of Thailand, respectively.
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4. Discussion

Because of the loss of mangrove forest areas, an understanding of R. apiculata genetic
diversity and population structure is necessary for mangrove management strategies. In
the present study, 82 R. apiculata accessions (Rhizophoraceae) collected from 17 natural
mangrove forests in Thailand were evaluated using SNP markers. Gene diversity (GD)
and polymorphic information content (PIC) values have been used to evaluate the level of
genetic variation in populations [63]. Based on 2640 SNPs with the MAF values of ≥5%,
GD values ranged from 0.16 to 0.50 and PIC values ranged from 0.15 to 0.38, representing
moderate to high levels of genetic variation in R. apiculata. In addition, the PIC value is
commonly used to measure the informativeness of genetic markers [63]. Following the
criteria of Botstein et al. [63], 77% (2027 SNPs) of the SNPs were observed to be highly
informative markers (0.5 > PIC > 0.25) and 23% (613 SNPs) of the SNPs were less informative
markers (PIC < 0.25) (Figure 3; Table S3).

To examine the population structure of 82 R. apiculata accessions, the Bayesian model-
based clustering method and PCA were carried out. Using the STRUCTURE software,
the result is shown for the best K = 2, revealing two subpopulations that are divided
along the Malay Peninsula between the Gulf of Thailand and the Andaman Sea coasts.
In addition, PC1 and PC2 separated the R. apiculata accessions into the Gulf of Thailand
and the Andaman Sea coasts. These results are concordant with a previous study that
reported two groups of R. apiculata between the Gulf of Thailand (Bangkok and Surat Thani)
and Andaman Sea (Trang) [23]. In contrast, the population of R. mucronata in Thailand,
which is a sympatric mangrove species with R. apiculata, was not clustered into two groups
between the Gulf of Thailand and Andaman Sea [23]. Hence, R. apiculata in Thailand were
shown to independently adapt to their own environments, probably due to the Malay
Peninsula barrier that prevents the movement among R. apiculata subpopulations between
the Gulf of Thailand and Andaman Sea coasts. Based on SNP markers, 63 accessions of
Bruguiera parviflora (a mangrove species in the family Rhizophoraceae) were also clustered
in two subpopulations, the Gulf of Thailand (Surat Thani and Trat) and the Andaman Sea
(Phang-nga, Ranong, and Satun) [32]. Furthermore, the population structure of Ceriops tagal
(one of the mangrove species in the family Rhizophoraceae) was evaluated in Thailand and
China and it was shown that populations from the eastern coastline of Thailand were more
genetically similar to populations from the South China Sea coast than to populations from
the western coastline of Thailand, using inter-simple sequence repeat [64]. The population
structure of R. apiculata and other mangrove species in the family Rhizophoraceae is
conceptually consistent with the land barrier hypothesis of the Malay Peninsula [23].

Interestingly, genetic admixture was found in several accessions in both subpopu-
lations in the Gulf of Thailand (CCO, CMP, SNI, NST, PTN and NWT) and Andaman
Sea (STN, TRG, PKT, PNA and RNG) (Figure 4B), which was concordant with previous
studies that reported the genetic admixture of R. apiculata in Thailand (such as R. apiculata
populations in Krabi, Phuket, and Ranong), in Indonesia, and in Malayia as well as the
genetic admixture of relative Rhizophora species in some parts of the IWP region [26,28].
The genetic admixture of R. apiculata in Thailand reflected higher levels of genetic diversity
with admixed alleles from the two subpopulations.

Genetic diversity and genetic differentiation in the R. apiculata population in Thai-
land were evaluated. Moderate genetic diversity (mean He = 0.39) was observed in the
R. apiculata population along coastlines in Thailand. This is concordant with the study
of R. apiculata populations in the Hainan Island, Gulf of Thailand, and the west coast
of Thailand [27] as well as the breeding system of R. apiculata by mixed mating or pre-
dominantly outcrossing, which maintains the level of genetic diversity [26]. In general,
both natural and environmental factors, such as mating systems, habitat fragmentation,
climate change, and anthropogenic activities, affect the genetic diversity of mangrove
species [28,29]. Low genetic diversity was reported in numerous studies on mangrove
species, particularly the Rhizophora species [24–26,28,37,64–66]. Furthermore, a high degree
of genetic differentiation among two subpopulations (FST = 0.24, p < 0.001) was similarly
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observed in several studies of R. apiculata populations, such as in the Strait of Malacca
between the east coast (Hainan Island and Gulf of Thailand) and the west coast (Gulf of
Thailand) of the Indo-Malayan region (FST = 0.48 (SNPs)) [27], in Thailand between the
Bangkok and Trang provinces (FST = 0.875 (five nuclear genes) and FST = 0.688 (two cpDNA
regions)) [23], in the Greater Sunda Islands of Indonesia (FST = 0.381 (five microsatel-
lite markers)) [24], in the Indo-Malaysian region between Thailand’s western coast and
other regions (FST = 0.242–0.532 (SNPs)) [25], and in Malaysia (FST = 0.315 (three nuclear
microsatellite markers)) [28].

The ML tree showed that 81 R. apiculata accessions were grouped into two genetic clus-
ters (the Gulf of Thailand and the Andaman Sea) corresponding to the two subpopulations
of the STRUCTURE and PCA clustering. Our tree topology is consistent with others [28,66].
For example, the phylogenetic tree by UPGMA (unweighted pair group method with
arithmetic mean) revealed the two clusters of R. apiculata between the western and eastern
regions of Peninsular Malaysia based on microsatellite markers [28]. Using nuclear and
chloroplast regions, the NJ (Neighbor-joining) tree of R. apiculata populations in the Malay
Peninsula regions showed two clusters, the west and south of the Malay Peninsula, and the
east of the Malay Peninsula [66]. These support the existence of two genetic patterns in the
R. apiculata population in Thailand that were geographically isolated on the Gulf of Thai-
land coast on the east and the Andaman Sea coast on the west. In addition, one accession
(SNI 04) from Surat Thani province is separated between cluster I and II based on the ML
tree. The STRUCTURE analysis has shown genetic admixture in this accession (Figure 4B).
SNI 04 is in the middle of the PCA plot, no cluster with other accessions (Figure 4C). These
results suggest that the accession is an admixed individual that combines genetic variation
from two genetically differentiated source subpopulations (Gulf of Thailand and Andaman
Sea), leading to an increase in the genetic variation within the population of R. apiculata
in Thailand.

5. Conclusions

This study was addressed to examine the genetic diversity and population structure of
R. apiculata (Rhizophoraceae) along coastlines in Thailand based on SNP markers. Moderate
genetic diversity and high genetic differentiation were observed. The results showed
two subpopulation differentiations, indicating genetic discontinuity between the coast of
the Gulf of Thailand and the Andaman Sea. An AMOVA indicating 76% of variation found
within populations and 24% of variation found among populations corroborated these
results. Genetic diversity after the divergence of the R. apiculata populations might have
been caused by geographic isolation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biology11101449/s1, Figure S1: Genome assembly evaluation of
Rhizophora apiculata using BUSCO; Table S1: Statistical assembly of Rhizophora apiculata; Table S2:
Statistical mapping of R. apiculata; Table S3: List of 2640 SNPs of R. apiculata and marker characteristics;
Table S4: Summary of genetic parameters of two genetic clusters in 82 R. apiculata accessions based
on 2640 SNPs.
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