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Mycobacterium tuberculosis and related mycobacteria species are unique in that the acid-fast bacilli possess a highly lipid-rich cell
wall that not simply confers resistance to treatment with acid alcohol, but also controls their survival and virulence. It has recently
been established that a fraction of the cell wall lipid components of mycobacteria can function as antigens targeted by the acquired
immunity of the host. Human group 1 CD1 molecules (CDla, CD1b, and CDIc) bind a pool of lipid antigens expressed by
mycobacteria and present them to specific T cells, thereby mediating an effective pathway for host defense against tuberculosis. The
contrasting and mutually complementary functions of CD1a and CD1b molecules in terms of the repertoire of antigens they bind
have been well appreciated, but it remains to be established how CD1c may play a unique role. Nevertheless, recent advances in our
understanding of the CD1c structure as well as the biosynthetic pathway of a CD1c-presented antigen, mannose-1, -phospho-
mycoketide, expressed by pathogenic mycobacteria now unravel a new aspect of the group 1 CD1 biology that has not been appre-

ciated in previous studies of CD1a and CD1b molecules.

1. Introduction

The human immune system utilizes multiple maneuvers in
both innate and adaptive phases of host defense to fight
against the deadly pathogen, M. tuberculosis. Inmunologists
may easily realize this by recollecting the fact that studies
of immune responses against Mtb resulted in milestone dis-
coveries of key molecules and pathways of the immune sys-
tem. Lectins, such as DC-SIGN and Mincle, and Toll-like
receptors (TLRs), such as TLR2 and TLRY, prominently
interact with ligands derived from Mtb, which is profoundly
associated with the innate immunity-stimulating activity
observed for the Freund’s adjuvant. Classical CD4" helper
and CD8* cytotoxic T cells bearing the a8 T-cell receptor
are activated during Mtb infection, and their differentiation
into those of a memory type provides a cellular basis for the
prototypic hypersensitivity response classified as the delayed-
type hypersensitivity or the type IV allergy. Furthermore, T
cells that recognize Mtb-derived antigenic compounds also
include V§2*ydT cells, group 2 CD1 (CD1d)-restricted natu-

ral killer T cells and group 1 CD1 (CD1a, CD1b, and CDI1c)-
restricted T cells. Activation of many of these T-cell subsets
is not limited to Mtb infection and occurs prominently in
response to infections with other bacteria, fungi, and viruses.
In this respect, it is noteworthy that virtually all group 1
CD1-presented microbial antigens identified after two deca-
des of extensive studies are derived from Mtb or other related
mycobacteria species [1], suggesting the possibility that the
group 1 CD1 system may function effectively in the interface
between the host immunity and the pathogenic mycobac-
teria. Indeed, mycolic acids, a mycobacteria-specific long-
chain fatty-acid species, appear to be accommodated per-
fectly into the antigen-binding structure by utilizing all the
A’, C', and F’ pockets and the T’ tunnel elaborated in the
human CD1b molecule to elicit specific cytotoxic T-cell res-
ponses [2].

Mice and rats, that are highly useful animals for analyzing
many aspects of immune responses, have deleted genes-
encoding group 1 CD1 proteins, making it difficult to assess
their role in host defense against tuberculosis. However,
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in vitro studies as well as analysis of the guinea pig model of
human tuberculosis have detected key features of the group
1 CD1 biology. The human group 1 CD1 molecules are exp-
ressed constitutively in most dendritic cell subsets, and
their expression is induced in macrophages after Mtb infec-
tion [3, 4]. Therefore, the two major host cell types for Mtb
infection, namely, dendritic cells and macrophages, are capa-
ble of expressing group 1 CD1 molecules. Phagocytosed
mycobacteria-derived lipidic antigens are sampled by CD1
molecules differentially in CD1a" early-recycling endosomes
and CD1b" lysosomes. Subsequently, antigen-bound CD1
molecules are transported to the plasma membrane for anti-
gen presentation to specific T cells. The lipid-specific, group
1 CD1-restricted T-cell population contains potent cytotoxic
T cells that recognize Mtb-infected cells and lyse them.
Importantly, immunization of guinea pigs with the Mtb-
derived lipids confers protection against subsequent chal-
lenge with pathogenic mycobacteria [5, 6], and thus, all of
these results collectively underscore group 1 CD1-dependent
pathways of the acquired immunity against tuberculosis.

Whereas many biological aspects have been unraveled
for CDla and CD1b, less is known about CDIlc. The
CD1c molecules are expressed on CDla~ CD1b™ B cells as
well as dendritic cells and macrophages and can broadly
sample endocytic compartments including those only inef-
ficiently sampled by CD1a and CD1b molecules. These im-
mediately implicate a unique role for CDIc in lipid antigen
presentation and host defense against tuberculosis. Man-
nose-1, B-phosphomycoketide (MPM) is the only CDlc-
presented natural antigen so far identified that is produced
by slow-growing (pathogenic), but not rapidly-growing (less
pathogenic) mycobacteria. Thus, the clarification of how
MPM is synthesized by mycobacteria and how it is recog-
nized by the host immune system sheds light on distinct
aspects of human tuberculosis that have never been appre-
ciated in previous studies of CDla~, CD1b~ and MHC-
restricted T-cell responses. In this paper, we describe the dis-
covery of MPM, its biosynthetic pathway, functions of MPM-
specific T cells, and potential impact of mycoketides on dise-
ases.

2. Discovery of CD1c-Restricted T Cells and
Their Antigens

The first and the best characterized Mtb-specific, CD1c-
restricted T-cell line was reported in 1999 [7]. Whereas most
CD1b-restricted T-cell lines that had been established before
then were CD4~ CD8~ (double negative), the CDlc-res-
tricted T-cell line was positive for the expression of CD8« and
CD85 molecules, and thus, the T-cell line was termed “CD8-
1” The CD8-1 T-cell line was obtained by stimulating CD4~
T cells derived from the circulation of a healthy subject with
Mtb sonicates. Retrospectively, the successful establishment
of the T-cell line appears almost miraculous considering
the low precursor frequency of such T cells in uninfected
individuals and extremely low abundance of the antigen
recognized by CD8-1 (discussed below). As the surface exp-
ression of CD8« and CD8p heterodimers implies, the CD8-1
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T cells are those containing intracellular cytotoxic granules
[8]. Upon interaction with Mtb-infected dendritic cells, the
T cells released granulysin and lyse both the infected host
cells and the intracellular microbes. Furthermore, the T cells
produced IFN-y, suggesting their role in host defense against
tuberculosis.

Identification of the antigen recognized by CD8-1 turned
out to be a challenging task because its expression level in
mycobacteria appeared very low (less than 1ppm of dry
weight of the bacilli), which contrasted sharply with other
CD1-presented antigens [9]. By combining a series of lipid
fractionations and a sensitive bioassay with CD8-1, Moody
et al. [10] finally determined the structure of the CDlc-
presented, M. avium-derived antigen. The antigenic com-
pound contained a long-chain alcohol with 5 methyl bran-
ches at every 4 carbons, which was coupled with a phospho-
rylated mannose. This is a reminiscent of mannosyl phos-
phopolyprenol (MPP), a carrier of sugar moieties utilized
in bacteria. Since the polyprenol compound is a polymer
of isoprene units, this CD1c-presented antigen was initially
designated “mannose phosphoisoprenoid (MPI).” In fact,
MPP compounds were able to stimulate CD8-1 although
their antigenic activity was less prominent than the natural
antigen. Using the MPP compound with a Css alkyl chain
as a reference antigen, they detected the circulating CD1c-
restricted, antigen-specific T cells in active tuberculosis pa-
tients, but not in healthy individuals. Nevertheless, the Css
MPP is a compound that is not found in Mtb, and there
was an enigma regarding the molecular classification of the
CD8-1 antigen as isoprenoid. A known natural compound
that is most comparable to the alkyl chain of MPI is phytol,
an isoprenoid derivative in plant chlorophyll. Whereas the
methyl branch closest to the hydroxyl group of the “isopre-
noid” backbone of MPI is placed at the §-position, natural
isoprenoids always have this first methyl branch at the y-
position (Figure 1(a)). The presence of this extra one carbon
can never be accounted for by the biosynthetic pathway of
isoprenoids.

3. Biosynthesis of MPM

The “extra-one-carbon” issue pointed to the fact that the
alkyl backbone of the CD8-1 antigen was biosynthesized via
totally different mechanisms. The later study [9] smartly pos-
tulated a sequential and repeated elongation pattern of a C3
carbon unit and a C2 carbon unit, in which the C3 unit adds
the methyl branch to the elongation site of the carbon chain,
followed by the addition of the C2 unit (Figure 1(b)). Five
cycles of this chain elongation sequence would result in the
formation of the §-methyl group and the methyl branches
sticking out at every 4 carbons of the fully saturated alkyl
backbone. This chain elongation mechanism was predicted
for the specific polyketide synthase (Pks)-catalyzing reac-
tions, and mutated Mtb strains with the loss of the Pks12 en-
zyme failed to produce the CD8-1 antigen [9]. These results
provided direct evidence that the alkyl backbone of the CD8-
1 antigen should be classified not as isoprenoid but as polyke-
tide, and therefore, this polyketide backbone produced by
mycobacteria was renamed “mycoketide”.
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FIGURE 1: Biosynthesis of MPM. (a) Structures of mycoketide and phytol. Note that the first methyl branch of mycoketide is positioned at
the §-carbon whereas that of phytol, an isoprenoid compound, is located at the y-carbon of phytol. (b) A predicted biosynthetic pathway of
MPM. The chain elongation of mycoketide occurs on the Pks12 enzyme, followed by its release mediated by a yet unidentified hydrolase
enzyme. (c) Schematic structure of Pks12 enzyme. Pks12 contains two tandemly aligned sets of catalytic domains (KS: ketosynthase; AT:
acyltransferase; DH: dehydrogenase; ER: enoyl reductase; KR: ketoreductase; ACP: acyl carrier protein). The first set functions for a C3 unit
elongation using methylmalonyl-CoA as a substrate and the second set for a C2 unit elongation using malonyl-CoA, which is controlled by
the substrate specificities of the AT domains. Note that, unlike FAS enzymes, Pks12 lacks thioesterase domains.

The Pks12 enzyme is a huge multifunctional polypeptide
(~430kDa) containing two complete sets of fatty acid syn-
thase (FAS)-like catalytic domains. These include ketosyn-
thase (KS), acyltransferase (AT), dehydrogenase (DH), enoyl
reductase (ER), ketoreductase (KR), and acyl carrier protein
(ACP) domains (Figure 1(c)), all of which are indispensable
for the elongation process of the mycoketide chain. As pre-
dicted by the elongation mechanisms postulated above, the
AT domain located closer to the N-terminus of the Pks12

enzyme utilizes a methylmalonyl-CoA substrate for the C3
unit elongation, whereas the other AT domain favors a
malonyl-CoA substrate for the C2 unit elongation [9, 11].
After 5 cycles of C3 and C2 chain elongation, the con-
structed alkyl chain is released from the enzyme by hydrol-
ysis, resulting in generation of a carboxylic acid, termed
mycoketidic acid (Figure 1(b)). The mycoketidic acid is met-
abolized by a reduction reaction to the corresponding long-
chain alcohol, mycoketide, which is finally phosphorylated



and mannosylated to generate MPM. None of the enzymes
that catalyze the hydrolysis, reduction, phosphorylation, and
mannosylation steps have been identified, but it is predic-
table, based on the structural properties shared between
mycoketide and isoprenoid, that the mannose transferase
mediating the biosynthesis of MPP may also function for the
MPM synthesis.

4. Differential Expression of MPM and Pks12
among Mycobacteria Species

The CD8-1-reactive MPM can be detected in several strains
of Mtb (H37Rv, H37Ra, and CDC1551), M. bovis Bacillus
Calmette-Guerin (BCG), and M. avium, but not in other
mycobacteria (M. smegmatis, M. phlei, and M. fallax) [9].
In addition, strain-specific structural variations have been
noted for mycoketides. For example, the H37Rv strain pro-
duces MPM with Cs, mycoketide, predominantly, but the
CDCI1551 strain mainly synthesizes C3y mycoketide although
these variations are not critical for presentation by CDlc
molecules. Besides the MPM-expressing mycobacteria
strains listed above, pksI2 genes have also been found in
other Mtb strains (F11 and KZN1435), M. bovis, M. africa-
num, M. canetti, M. marinum, M. ulcerans, and M. avium
subsp. paratuberculosis (Table 1). It should be noted that
all the mycobacteria expressing Pksl2 are slow growers,
while the pksi2 gene has not been found in any of the non-
pathogenic rapidly-growing mycobacteria so far analyzed,
suggesting a potential relevance of Pks12 to virulence.

5. Binding of MPM to Human CD1c Molecule

Since the expression level of MPM produced by mycobacteria
is extremely low, MPM purification from cultured bacteria
is unpractical for testing its biological functions. The total
organic synthesis of MPM was made possible by Crich and
Dudkin [12], but the synthetic material was a mixture of
MPM molecular species with differential chirality at the
methyl-branched 5 stereocenter carbons of the mycoketide.
The synthetic MPM exhibited a reduced potential to stimu-
late the CD8-1 T cells, indicating that T cells could react to
MPM only with the authentic chirality. On the basis of the
elongation sequence of mycoketide mediated by the Pks12
enzyme, the stereocenter carbons should be derived from
methylmalonyl-CoA in the condensation step, predicting
that these methyl branches are all-S isoform [13]. The chiral
synthesis of MPM was achieved by van Summeren et al. [14],
and indeed, the all-S form of MPM showed a CD8-1 stimu-
lating activity that was comparable with the natural com-
pound.

Success of the total organic synthesis of the authentic
MPM has now made the CD1c-presented antigen available in
an amount that is sufficient for determining how CD1c¢ cap-
tures mycoketide [15]. The overall structure of human CD1c
is similar to that of the other CD1 members and the MHC
class I molecule, in which a1, a2, and a3 extracellular do-
mains of the heavy chain associate noncovalently with 2-
microglobulin. The a1 and «2 domains of the CD1 molecule
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mainly constitute a ligand-binding platform with two ligand-
binding cavities, termed A" and F' pockets. The high degree
of hydrophobicity achieved on the inner surface of these cavi-
ties favors interaction with a hydrophobic alkyl chain of the
lipid ligands. The crystal structure of the MPM-bound CD1c
molecule indicated that the ligand could be accommodated
stably in the A" pocket with the 2nd, 3rd, 4th and 5th methyl
groups significantly contributing to the most suitable posi-
tioning of MPM in the A" pocket.

Unlike the other CD1 molecules, the F' cavity construc-
ted in the CD1c protein opens to the solvent, and thus, it
is not a pocket but a groove. Although the precise role of
the F' structure in ligand binding is unclear, presence of two
hydrophobic cavities indicates that CD1c molecules have a
potential for binding a ligand with two alkyl chains. In fact,
sulfatide, an endogenous lipid in humans, has been shown to
be captured by CD1c and presented to specific T cells isolated
from multiple sclerosis patients [16]. Recently, a CDlc-
restricted T-cell clone was established from a human immun-
odeficiency virus (HIV)-infected individual that reacted to
an N-acylated 12-mer peptide (lipo-12) [17]. The peptide
sequence of the lipo-12 antigen partially matched with that
of the HIV Nef protein, but an amino acid modification
(presumably, tryptophan to kynurenine) was detected at the
center of the peptide. In addition, the acyl chain attached to
the N-terminus of the peptide was a stearoyl group (C18),
which contrasted sharply with the N-myristoylated genuine
Nef protein. Since the cavities of CDI1c are proposed to
interact only weekly with a straight alkyl chain that lacks
methyl branches [15], it is presumed that reinforcing mole-
cular interactions may exist between the lipo-12 and the
CDIc protein, leading to a model proposed by Scharf et al.
[15], in which the peptide portion of lipo-12 penetrates
through the F’ channel of the CD1 protein. In support of this
assumption, MPM and lipo-12 showed comparable affinities
to the CD1c protein, but the reduction of the peptide length
of lipo-12 from 12-mer to 6-mer resulted in diminished affi-
nity.

6. Proposed Biological Functions
of Mycoketides

Several lines of evidence obtained from studies with pksI2
mutated microbes have pointed to the possibility that myco-
ketides might function as virulence factors. An initial report
indicated that Mtb virulence was reduced by the pksI2 gene
disruption in a mouse infection model [18]. However, this
mutant appears to have lost the expression of a known viru-
lence factor, phthiocerol dimycocerosates, simultaneously in
a pksi2-independent manner [9]. In M. marinum, disruption
of pksi2 gene by the transposon mutagenesis also resulted
in the attenuation of the microbe in gold fish [19]. In both
studies with Mtb and M. marinum, careful interpretation of
the data would be required until appropriate complementa-
tion experiments are performed. Separately, recent evidence
has suggested that the pksI12 gene of the M. avium 104 strain
is involved in the virulence of the microbe in mice [20]. In
this study, the gene complementation resulted in recovery of
its virulence, and a role for the Pks12 protein in suppressing
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TasLE 1: Distribution of pksI2 gene in mycobacteria species®.
Mycobacteria strains Gene Amino acid residues Identity® (%) MPM¢
M. tuberculosis H37Rv Rv 2048¢ 4151 100 +
H37Ra MRA_2063 4151 99.9 +
CDC1551 MT2108 4151 99.7 +
F11 TBFG_12085 4151 99.7 n.d.
KZN1435 TBMG_01933 4152 99.4 n.d.
M. bovis AF2122/97 Mbo2074c 4151 99.4 n.d.
BCG Tokyo 172 JTY_2062 4151 99.6 n.d.
BCG Pasteur 1173P2 BCG_2067¢ 4151 99.6 +
M. africanum GM041182 MAF_20630 4151 99.9 n.d.
M. canetti CIPT140010059 MCAN_20711 4154 99.0 n.d.
M. marinum ATCC BAA-535 MMAR_3025 4187 83.1 n.d.
M. ulcerans Agy99 MUL_2266 4191 82.7 n.d.
M. avium 104 MAV 2450 4171 80.8 +4
M. avium subsp. paratuberculosis k10 MAP1796¢ 4170 80.4 n.d.

"The criteria for identifying the pks12 gene is that the encoded Pks protein contains two tandem sets of FAS catalytic domains (KS, AT, DH, ER, KR, and ACP)
on one polypeptide and that the two AT domains show substrate specificities for methylmalonyl-CoA and malonyl-CoA, respectively (Figure 1(c)). Without
any of these, complete mycoketide structure would not be generated. The PKS database (http://www.nii.res.in/nrps-pks.html) is very useful to predict the

catalytic domains and substrate specificity of a Pks enzyme.
bIdentities to the Rv2048c¢ protein in the aminoacid sequences.

“The MPM was determined by a bioassay using the CD8-1 T cells (n.d. not determined).
4The MPM production was determined with M. avium serovar 4 strain (ATCC35767).

phagosomal acidification was proposed [20]. These results as
well as the fact that the pksI2 gene is conserved only in
slow-growing pathogenic mycobacteria strongly indicate that
mycoketides may significantly control their virulence. Never-
theless, a striking difference exists between mycoketides and
other defined virulence factors in terms of their quantities
produced by mycobacteria, underscoring totally distinct
virulence-controlling mechanisms for mycoketides.

In addition, disruption of the pksI12 gene in a M. avium
strain resulted in increased susceptibility to antibiotics func-
tioning against distinct molecular targets [21]. This suggests
that the Pks12 protein may contribute to the common drug-
transporting capacities through the cell wall that functions in
multidrug-resistant M. avium complex (MAC).

One possibility that accounts for these observations is
that, by analogy to the structurally related polyprenol, myco-
ketide may function as a carrier of sugar moieties. The second
possibility is that mycoketide may function as a surrogate for
the prenyl moiety of isoprenoid compounds, which is known
to be utilized during the biosynthesis of menaquinone
[22] and carotenoid [23], but this model does not reason-
ably explain why isoprenoids produced by pksi2-mutated
microbes fail to compensate for the defect. Alternatively,
mycoketides may be used for a substitute of farnesyl or gera-
nylgeranyl moieties of the prenylated proteins. Although it
has not yet been demonstrated that mycobacteria have their
own prenyltransferases, some bacterial proteins are reported
to be prenylated by borrowing the host-derived transferases
[24]. If this is the case with mycobacteria, some myco-
bacterial proteins could potentially be “mycoketidated” in
the host cells. It would be also possible that the released
mycoketide may be used for undesired modification of the

host phagosomal proteins with mycoketides, resulting in per-
turbation of the host defense mechanisms.

On the basis of the extremely low abundance of mycoke-
tides in mycobacteria, one might also consider the possi-
bility that they might function as bioactive compounds for
inducing biological signals. The amount of MPM produced
in the standard liquid culture is within the range of ~1nM
concentration, one-third of which is detected outside the
bacteria. It should be noted that the Pks12-related metabo-
lites function as lipidic secondary metabolites [25], and that
a significant fraction of microbial secondary metabolites can
serve as signaling factors even in very low concentrations
[26]. Therefore, the released MPM may be detected by a spe-
cific sensor of the microbes themselves or the neighboring
microbes, transmitting signals that regulate the rate of their
cell division, survival; or virulence.

7. Conclusions and Perspectives

Only a few CD1c-presented antigens have been identified by
now, and the molecular requirements for their interaction
with CDlc and presentation to T cells remain to be fully
elucidated. Nevertheless, the crystal structure of the synthetic
MPM bound CDI1c molecules as well as the identification
of a new type of CDlc-presented lipopeptide antigen (lipo-
12) have disclosed unique properties that distinguish CD1c
from other CD1 molecules. A single alkyl chain with multiple
methyl branches fits well into the A" pocket. By utilizing
the opened F’ structure, lipopeptides with a long peptide
chain coupled with a single alkyl chain may also sit
comfortably in the chair. Like sulfatide, glycolipids with
two relatively short carbon chains may also be accepted.
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Structure-based selection of CDlc ligands from a huge
array of mycobacteria-derived lipidic molecules would be
a tough task, but molecular modeling with the crystallized
CD1c molecules may allow us to identify a pool of CDlc
ligands in nonwet experiments. Furthermore, testing T-cell
reactivity to these ligands in mycobacteria-infected patients
would help us to understand how CD1c-reactive T cells may
function to control infections. In this respect, it is note-
worthy that the CD1c-presented MPM antigen is expressed
primarily in pathogenic mycobacteria, suggesting that MPM-
specific, CD1c-restricted T cell could potentially discrimi-
nate pathogenic mycobacteria from nonpathogenic environ-
mental mycobacteria.

The precise function of mycoketides remains to be deter-
mined, but it is intriguing to reasonably speculate that they
may control the notorious multidrug resistance acquired
naturally by MAC. Our pilot study detects a correlation bet-
ween MPM production and drug resistance in clinically iso-
lated MAC strains, also supporting the hypothesis. Thus, this
line of study may raise the possibility that mycoketides may
be the new molecular target for antibiotics that can control
not only Mtb but also multi-drug resistant MAC.
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