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Abstract

As the world’s population continues to age, it is estimated that degenerative joint disease disorders 

such as osteoarthritis will impact at least 130 million individuals throughout the globe by the year 

2050. Advanced age, obesity, genetics, gender, bone density, trauma, and a poor level of physical 

activity can lead to the onset and progression of osteoarthritis. However, factors that lead to 

degenerative joint disease and involve gender, genetics, epigenetic mechanisms, and advanced age 

are not within the control of an individual. Furthermore, current therapies including pain 

management, improved nutrition, and regular programs for exercise do not lead to the resolution 

of osteoarthritis. As a result, new avenues for targeting the treatment of osteoarthritis are 

desperately needed. Wnt1 inducible signaling pathway protein 1 (WISP1), a matricellular protein 

and a downstream target of the wingless pathway Wnt1, is one such target to consider that governs 

cellular protection, stem cell proliferation, and tissue regeneration in a number of disorders 

including bone degeneration. However, increased WISP1 expression also has been associated with 

the progression of osteoarthritis. WISP1 has an intricate relationship with a number of 

proliferative and protective pathways that include phosphoinositide 3-kinase (PI 3-K), protein 

kinase B (Akt), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), 

interleukin -6 (IL-6), transforming growth factor-β, matrix metalloproteinase, small non-coding 

ribonucleic acids (RNAs), sirtuin silent mating type information regulation 2 homolog 1 

(Saccharomyces cerevisiae) (SIRT1), and the mechanistic target of rapamycin (mTOR). Taken 

together, this complex association WISP1 holds with these signaling pathways necessitates a fine 

biological regulation of WISP1 activity that can offset the progression of degenerative joint 

disease, but not limit the cellular protective capabilities of the WISP1 pathway.
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The fine targeting of WISP1 for degenerative joint disease

Osteoarthritis is a chronic disorder that results from cartilage degeneration and mechanical 

stress imposed upon the skeletal system. Low bone mass and structural deterioration of bone 
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tissue eventually lead to bone fragility and increased susceptibility to fractures. As a result, 

individuals with this disorder have impaired mobility and pain that can occur in hip joints, 

the shoulder, spine, knees, feet, and hands. The most severe fracture that can result from 

osteoarthritis involves the hip that requires hospitalization and leads to permanent disability 

in 50% of individuals and fatality in another 20% of individuals.

In developed nations, osteoarthritis is considered to be one of the ten most common 

disabilities in aged individuals especially those that remain active in the workforce [1]. 

According to the World Health Organization [2], at least 15% of all adults over the age of 60 

are believed to suffer from this disorder with women having greater prevalence of 

osteoarthritis than men. It is estimated that worldwide 9.6% of men and 18.0% of women 

over the age of 60 suffer with osteoarthritis. With advancing age of the world’s population, 

the incidence of osteoarthritis is expected to increase. By the year 2050, at least 130 million 

people throughout the world may suffer from osteoarthritis.

Risk factors that can lead to the progression of osteoarthritis involve advanced age, obesity, 

genetics, gender, bone density, trauma, and a poor level of physical activity [3]. Preventive 

measures can be instituted to decrease the onset of osteoarthritis such as protective clothing 

and gait aides to avoid trauma, regular programs for exercise, and nutritional programs that 

address proper weight management. Yet, factors such as gender, genetics, and advanced age 

are beyond an individual’s control and therapies directed at pain management offer 

symptomatic relief at best. Furthermore, complex epigenetic mechanisms that oversee DNA 

methylation, small non-coding RNAs (microRNAs), post-translation protein modification, 

and histone deacetylation may present additional risk factors for the development of 

osteoarthritis.

One exciting therapeutic target for osteoarthritis that is emerging as a novel consideration is 

Wnt1 inducible signaling pathway protein 1 (WISP1), also known as CCN4 [4-6]. WISP1 is 

a matricellular protein and a downstream target of the wingless pathway Wnt1 [7]. In 

addition, WISP1 is a member of the CCN family of proteins. The CCN family of proteins 

contains six secreted extracellular matrix associated proteins. They are defined by the first 

three members of the family that include Cysteine-rich protein 61, Connective tissue growth 

factor, and Nephroblastoma over-expressed gene [8,9]. WISP1 is expressed in the brain, 

heart, kidney, lung, pancreas, placenta, epithelium, ovaries, small intestine, and spleen [9]. 

Of interest, WISP1 can govern cellular survival, metabolism, and stem cell proliferation and 

maintenance [10] and can modulate epigenetic pathways [9-11].

WISP1 may be important for tissue repair and regeneration during a number of diseases. For 

example, WISP1 can control induced pluripotent stem cell reprogramming [12,13] and is 

one of several genes that are over-expressed during pancreatic regeneration [14]. WISP1 

also can foster vascular regeneration during saphenous vein crush injury [15]. WISP1 

expression is increased during stem cell migration [16] and is repressed during hepatic 

differentiation in adipose-derived stem cells [17]. WISP1 leads to vascular smooth muscle 

proliferation that can assist with tissue repair during injury [18,19]. WISP1 also is tightly 

linked to metabolic homeostasis [14] and appears to have a modulatory role in cell 

senescence. WISP1 can control cellular senescence [20] to a degree that does not promote 
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excessive cellular proliferation in aging vascular cells [21] that could lead to atherosclerosis 

during diabetes mellitus.

In regards to the musculoskeletal system, WISP1 has been shown to promote mesenchymal 

cell proliferation and osteoblastic differentiation with the repression of chondrocytic 

differentiation to further bone development [22] and assist with fracture repair [23]. Bone 

formation after growth plate cartilage injury involves expression of the WISP1 gene [24]. 

WISP1 may increase osteogenesis activity through bone morphogenetic protein 2 [25] and 

be required for bone formation through parathyroid hormone treatment [26]. WISP1 also 

oversees bone morphogenetic protein-3 stimulated mesenchymal stem cell proliferation 

[27].

Given the ability of WISP1 to control cellular proliferation in the musculoskeletal system, 

WISP1 and related members of the CCN family have emerged as potential targets for 

disorders such as osteoarthritis and rheumatoid arthritis. CCN1, CCN2, CCN4, and CCN5 

have been found to be expressed to a greater extent in knee cartilage during osteoarthritis 

and rheumatoid arthritis when compared to normal controls [28]. In particular, WISP1 is 

considered a significant factor for the progression of osteoarthritis. In osteoarthritis synovial 

fibroblasts, WISP1 can activate αvβ5 integrin, phosphoinositide 3-kinase (PI 3-K), protein 

kinase B (Akt), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) 

pathways that result in the up-regulation of interleukin -6 (IL-6) production [29]. WISP1 

leads to chondrocyte hypertrophy through transforming growth factor-β (TGF-β) signaling 

and activin-like kinase (ALK)1/Smad 1/5/8 pathway [30]. In models of osteoarthritis, 

WISP1 controls chondrocyte and macrophage matrix metalloproteinase and aggrecanase 

expression that results in articular cartilage damage [31]. Furthermore, overexpression of 

WISP1 can lead to increased cartilage damage while blocking of the upstream canonical 

Wnt signaling pathway can limit cartilage damage [32]. Interestingly, the detrimental effects 

of WISP1 in arthritic disease somewhat parallel the ability of WISP1 to also promote 

fibrotic tissue injury. WISP1 expression has been tied to idiopathic pulmonary fibrosis 

possibly regulated by the microRNA miR-92a [33] and linked to fibrosis in models of liver 

fibrogenesis [34].

In light of the emerging knowledge of WISP1 signaling pathways, promoting the down-

regulation of WISP1 expression in arthritic joint disease appears to open new therapeutic 

strategies for this disabling disorder. Yet, WISP1 also is associated with a number of cellular 

pathways that are supportive of bone development and repair and protective against cell 

injury that include silent mating type information regulation 2 homolog 1 (Saccharomyces 

cerevisiae) SIRT1 [35] and mechanistic target of rapamycin (mTOR) (36). WISP1 can 

protect cells against oxidative stress [35,37], control pathways of apoptosis and autophagy 

[36,38], and prevent inflammatory cell injury during exposure to toxins such as β-amyloid 

[39,40]. Therefore, a careful targeted approach that limits WISP1 activity but does not 

negatively impact cellular protective pathways may be required for the development of 

WISP1 as a novel treatment for musculoskeletal disorders.
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