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Podocyte injury and podocyte loss are common features in
diabetic kidney disease (DKD). Podocyte detachment and
decreased podocyte numbers occur in patients with type 1
or type 2 diabetes and correlate with the progression of
renal disease (1–5).

Podocytes play a critical role in the maintenance of the
glomerular tuft and the filtration barrier. Foot processes of
adjacent podocytes interdigitate to form narrow filtration
slits that are bridged by the slit diaphragm (6–9). Podocyte
foot processes form the final barrier to protein loss by cre-
ating the porous membrane slit diaphragm. Progressive in-
jury and loss of podocytes result in loss of protein in the
urine. The resulting microalbuminuria can progress to mac-
roalbuminuria, glomerulosclerosis, and progressive loss of
glomerular filtration rate that are hallmarks of DKD (10,11).

The actin cytoskeleton plays an essential role in main-
taining podocyte cell structure and interactions with
structural molecules in the slit diaphragm. Alterations in
the actin cytoskeleton therefore play an important role in
podocyte membrane dynamics, podocyte morphology, and
podocyte dysfunction (7,12–15).

Monogenic mutations of proteins that regulate podocyte
actin dynamics are associated with renal diseases. Examples
of these include actinin a 4 (ACTN4) (16), r GDP dissoci-
ation inhibitor a (ARHGDIA) (17), r GTPase-activating pro-
tein 24 (ARHGAP24) (18), inverted formin 2 (INF2) (19,20),
fat cadherin 1 (FAT1) (21), KN motif and ankyrin repeat
domains 2 (KANK2) (22), anillin actin binding protein
(ANLN) (23), the actin binding protein ezrin (14), and
intraflagellar transport 139 homolog (IFT139) (tetratrico-
peptide repeat domain 21B [TTC21B]) (24). In addition, slit
diaphragm and actin cytoskeleton interactions, including
CD2-associated protein (CD2AP) (25), nephrin (NPHS1)
(26), and podocin (NPHS2) (27), are associated with renal
disease, including nephrotic syndrome and focal segmental
glomerulosclerosis (FSGS).

In this issue of Diabetes, Pan et al. (28) identified yet
another protein that regulates podocyte cytoskeleton dynamics.

They analyzed the transcriptional profile of renal biopsy
from patients with type 2 DKD and control donors,
and among several proteins, they identified SLIT-ROBO
rGTPase-activating protein 2a (SRGAP2a) as one of the
main “hub” genes that are strongly associated with protein-
uria and glomerular filtration rate in type 2 DKD patients.
Immunofluorescence staining and Western blot analysis
revealed that human and mouse SRGAP2a primarily local-
ized at podocytes and largely colocalized with synaptopodin.
They found that podocyte SRGAP2a is decreased in
DKD patients and in db/db mice. In addition, SRGAP2a
is also decreased in podocytes cultured in the presence
of tumor growth factor-b (TGF-b) or high concentration
of glucose. In contrast, exogenous SRGAP2a protected
the podocytes from the deleterious effects of TGF-b
and high concentration of glucose. A critical role for
SRGAP2a in podocyte function was also demonstrated
in zebrafish, in which knockdown of SRGAP2a, a SRGAP2
ortholog in zebrafish, resulted in podocyte foot process
effacement.

SRGAP2a knockdown in podocytes rearranged the
podocyte cytoskeleton and increased podocyte motility.
Functional and mechanistic studies showed that SRGAP2a
suppressed podocyte motility through inactivating RhoA
and Cdc42 but not Rac1. RhoA, Cdc42, and Rac1 are small
GTPases that have been shown to modulate cytoskeletal
dynamics through actin nucleation factors. Furthermore,
increasing podocyte SRGAP2a level in db/db mice via admin-
istration of adenovirus-expressing SRGAP2a significantly
decreased podocyte injury and proteinuria (Fig. 1).

These results demonstrate that SRGAP2a protects podo-
cytes via suppressing podocyte migration and further
illustrate the importance of the podocyte cytoskeleton
in kidney injury and disease. Future studies need to
determine if SRGAP2a also plays an important role in
podocyte injury and loss associated with FSGS, a com-
mon glomerular lesion also encountered in DKD, and if
there are practical means of restoring SRGAP2a levels
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and function in the podocytes of human subjects with
DKD and/or FSGS.
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Figure 1—SRGAP2a suppresses podocyte motility through inactivating RhoA/Cdc42.
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