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Abstract: Hesperidin is a flavanone abundantly found in citrus fruits for which health beneficial
effects have been reported. However, hesperidin shows a low bioavailability among individuals. The
aim of this study was to evaluate the effects of the micronization process and 2R- and 2S-hesperidin
diastereoisomers ratio on hesperidin bioavailability. In a first phase, thirty healthy individuals
consumed 500 mL of orange juice with 345 mg of hesperidin, and the levels of hesperidin metabolites
excreted in urine were determined. In the second phase, fifteen individuals with intermediate
hesperidin metabolite levels excreted in urine were randomized in a crossover, postprandial and
double-blind intervention study. Participants consumed 500 mg of the hesperidin-supplemented
Hesperidin epimeric mixture (HEM), the micronized Hesperidin epimeric mixture (MHEM) and
micronized 2S-Hesperidin (M2SH) in each study visit with 1 week of washout. Hesperidin metabolites
and catabolites were determined in blood and urine obtained at different timepoints over a 24 h period.
The bioavailability—relative urinary hesperidin excretion (% of hesperidin ingested)—of M2SH
(70 ± 14%) formed mainly by 2S-diastereoisomer was significantly higher than the bioavailability
of the MHEM (55 ± 15%) and HEM (43 ± 8.0%), which consisted of a mixture of both hesperidin
diastereoisomers. Relative urinary excretion of hesperidin metabolites for MHEM (9.2 ± 1.6%) was
significantly higher compared to the HEM (5.2 ± 0.81%) and M2SH (3.6 ± 1.0%). In conclusion, the
bioavailability of 2S-hesperidin extract was higher compared to the standard mixture of 2S-/2R-
hesperidin extract due to a greater formation of hesperidin catabolites. Furthermore, the micronization
process increased hesperidin bioavailability.

Keywords: hesperidin; hesperetin; bioavailability; metabolites; catabolites; urinary excretion; hes-
peridin diastereoisomers; micronization
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1. Introduction

The flavonoid hesperidin (hesperetin-7-O-rutinoside) is the β-glycosylated form of
the flavanone hesperetin (aglycone form). This polyphenol is abundantly found in citrus
fruits and is the major flavonoid present in sweet oranges (Citrus sinensis) and orange
juice [1]. Hesperidin has been reported to provide health beneficial effects—including
anticarcinogenic [2], antioxidant [3], anti-inflammatory [4,5], hypocholesterolemic [3,5]
and hypoglycemic [6] properties—as well as beneficial effects for several diseases such as
cancer and neurodegenerative and cardiovascular diseases [2–4,6–9].

Hesperidin has a chiral carbon in position 2 that generates two diastereoisomers, 2R-
and 2S-. The predominant form in nature of hesperidin is the 2S-diastereoisomer, with
a ratio of 8/92 for 2R-/2S-hesperidin diastereoisomers in fresh fruit products [10]. How-
ever, most current hesperidin products are commercially available as a mixture of both
diastereoisomers due to the process of extracting hesperidin from natural fruit
sources [11,12]. Several studies have reported that the two hesperidin diastereoisomers
may present differences in transport, metabolism, biological effects [10,11] and kinetics in
plasma and urine [12,13].

The hesperidin molecule is conjugated to the rutinose disaccharide formed by the sugar
molecules rhamnose and glucose. The presence of a rutinose moiety is responsible for
most of the ingested hesperidin having to be metabolized and absorbed in the colon since
it cannot be hydrolyzed by the β-glucosidases of the small intestine [14,15]. In the colon,
hesperidin is metabolized and hydrolyzed by the intestinal microbiota—mainly to the agly-
cone form hesperetin—before being absorbed by the colonocytes [15]. Once absorbed, hes-
peretin in the colon is metabolized by phase II enzymes—UDP-glucuronosyl transferases and
sulfotransferases—to be conjugated with glucuronic acid or sulphate and other subsequent
conjugations, and to finally be released into the bloodstream [16,17]. In addition, a substan-
tial proportion of hesperetin is further metabolized by the microbiota present in the colon,
generating bioavailable and highly specific hesperetin catabolites such as 3-(3′-hydroxy-4′-
methoxyphenyl) propanoic acid (HMPPA) and also less specific catabolites such as hippuric
acid, 4-hydroxyhippuric acid and 3-Hydroxy-3-(3′-hydroxyphenyl) propanoic acid, which are
also formed from other phenolic compounds [16–18].

The results of several interventional clinical studies evaluating the bioavailability
of hesperidin show a low bioavailability and highly variable among individuals [18–20].
In fact, it has been proposed individuals may be stratified as high-, intermediate- or
low-hesperidin metabolite excretors [21–25]. However, several studies show that the
bioavailability of hesperidin increases considerably if catabolites generated by the intestinal
microbiota are considered [18,22,26,27]. Furthermore, hesperidin presents a low solubility
that may affect its absorption and therefore its bioavailability [28]. In this sense, hesperidin
micronization—through the reduction in hesperidin particle size—has been demonstrated
to increase hesperidin bioavailability [21].

The hypothesis of the study was that bioavailability of 2S-hesperidin would be greater
than the bioavailability of a mixture of 2S-/2R-hesperidin and that a micronization process
would increase hesperidin bioavailability. Thus, the aim of the present study was to evaluate
the effects of the micronization process and the 2R- and 2S-hesperidin diastereoisomers ratio
on hesperidin bioavailability. To that end, we performed a nutritional intervention study to
determine and compare the bioavailability and pharmacokinetics parameters of three sweet
orange (Citrus sinensis)-derived hesperidin supplements formed by a 2S-diastereoisomer-
enriched hesperidin and a racemic mixture of the 2R- and 2S- diastereoisomers, to which
the micronization process had been applied or not.
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2. Materials and Methods
2.1. Hesperidin Supplements

The three hesperidin supplements were Hesperidin epimeric mixture (HEM), mi-
cronized Hesperidin epimeric mixture (MHEM) and micronized 2S-Hesperidin (M2SH;
Cardiose®) and consisted of two capsules with 250 mg of a natural sweet orange hes-
peridin extract and maltodextrin as a carrier. All three hesperidin extracts were supplied by
HealthTech BioActives (HTBA, Murcia, Spain) with approximately 90% of the extract being
hesperidin with different proportions of 2S-/2R- diastereoisomers, and the remaining 10%
being hesperidin-related compounds, with different particle sizes (Table 1). The capsules
with the hesperidin extracts were manufactured by the Mireia Valls pharmacy (Cambrils,
Tarragona, Spain).

Table 1. Products of the clinical study.

Product Amount
(mg) -S/-R (%) Particle <

10 µm (%)
Hesperidin

(%)
Water

(%)
Hesperidin

(mg)

HEM 500 56/44 10 94.4 2.10 462.1
MHEM 500 55/45 90 94.10 1.80 462.0
M2SH 500 93/7 90 92.60 2.50 451.4

HEM: Hesperidin epimeric mixture; MHEM: micronized Hesperidin epimeric mixture; M2SH: micronized
2S-Hesperidin.

HEM is the conventional hesperidin obtained from sweet orange through alkaline
extraction conditions, with part of the diastereoisomer 2S- transformed into the diastereoiso-
mer 2R- due to extraction process. The particle size of the hesperidin extract obtained was
approximately less than 100 µm for 90% of the particles and less than 10 µm for 10% of
the particles.

MHEM was obtained as explained for HEM with the difference being that the extract
was subjected to a micronization process so that 90% of the hesperidin particles were less
than 10 µm in size.

M2SH is a natural extract of sweet orange that, due to its unique manufacturing
process, contains a high content of the natural hesperidin diastereoisomer 2S-, and which
has been subjected to a micronization process, with 90% of the particles of hesperidin
having a size of less than 10 µm.

The three treatments were similar in appearance and were differentiated only by a
code (HESP-01, HESP-02 and HESP-03) assigned by an independent researcher not related
to the study to guarantee blinding.

2.2. Participants

Healthy subjects from the general population were recruited by means of news in the
newspapers, tableaux advertisements and social networks at the Hospital Universitari Sant
Joan (HUSJ)-Eurecat, Reus, Spain, between 12 June and 1 August 2019.

From 32 subjects assessed for eligibility, 30 individuals were recruited to carry out
the first phase of the study, of which 15 participants carried out the postprandial study.
Participants were men and women aged ≥18 years willing to provide informed consent
before the initial screening visit. The exclusion criteria were: use of multivitamin supple-
ments or supplements or phytotherapeutic products that interfere with the treatment under
study up to 30 days before the start of the study; use of antibiotics up to 30 days before
the start of the study; active smoking; present intolerances and/or food allergies related to
hesperidin; subjects diagnosed with chronic gastrointestinal disease; the presence of some
chronic diseases with clinical manifestation; being vegetarian; being pregnant or intending
to become pregnant; being in the breastfeeding period; and current or past participation in
a clinical trial or nutritional intervention study in the last 30 days prior to study enrolment.

Participants signed informed consent prior to their participation in the study, which
was approved by the Clinical Research Ethical Committee of Institut d’Investigació sanitaria
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Pere Virgili (Ref. CEIM: 070/2019), Reus, Spain. The protocol and trial were conducted
in accordance with the Helsinki Declaration and Good Clinical Practice Guidelines of the
International Conference of Harmonization (GCP ICH) and reported as CONSORT criteria.
The trial was registered at Clinical-Trials.gov: NCT03984916.

2.3. Study Design

The study consisted of two phases. In the first phase, 30 volunteers consumed 500 mL
of orange juice (OJ) with 345 mg of hesperidin [9], and the levels of hesperidin excreted in
urine were determined. The OJ used in the first phase of the study was the hesperidin OJ
used in previous studies conducted by our group [9]. The objective of this first phase of the
study was to select volunteers with intermediate hesperidin metabolite levels excreted in
urine to reduce the variability in the results in the second phase of the study [21,23].

The second phase of the study was a randomized, crossover, postprandial, double-
blind intervention study. The participants selected from the first phase of the study were
randomly divided into 6 groups of sequences. The randomization plan was generated
by using the website Randomization.com (http://www.randomization.com) accessed on
8 January 2020. Because all participants received all interventions (HEM, MHEM or M2SH),
restrictions such as blocking were unnecessary. Participant assignment to each treatment
was at a ratio of 1:1:1. Participants, researchers and the statistician remained blinded to the
type of product administered in each study visit.

During the study, participants performed a total of five visits consisting in a pre-
selection visit to check inclusion/exclusion criteria and—in the case of satisfying the
eligibility criteria—a visit in the first phase of the study and—for the participants selected
to perform the second phase of the study—three visits in the postprandial study for each of
the hesperidin supplements.

For the first phase of the study—after at least 8 h of fasting—the participants’ urine
was collected before the intake of 500 mL of OJ (basal urine) and after the intake of the OJ for
24 h, accumulated in a single volume urine (Figure 1). Urine samples were homogenized
and centrifuged at 1900 g for 10 min at 4 ◦C, and the supernatant was collected and
subdivided into aliquots which were stored at −80 ◦C until analysis.
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Figure 1. Schematical representation of the clinical study.

For the postprandial study, participants consumed each of the three hesperidin sup-
plements in each study visit according to the randomization sequence. The washout period
between each visit was one week. In each of the three visits, 10 mL of blood was drawn
before consuming the hesperidin supplement (basal blood) and at the following time points
after the consumption of the supplement: 2 h, 3 h, 4 h, 5 h, 6 h, 7 h, 8 h and 24 h (Figure 1).
Serum was obtained from each blood sample by centrifugation at 1700× g for 15 min at

http://www.randomization.com
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20 ◦C and subdivided into aliquots which were stored at −80 ◦C until analysis. Further-
more, the participant collected a fresh urine sample in the morning before consuming the
corresponding hesperidin supplement (basal urine) an after consuming it over the time
periods 0–3 h, 3–6 h, 6–8 h and 8–24 h, in urine collection flasks (Figure 1). The total volume
of each urine fraction was recorded, and urine samples were processed as explained above.

Each of the hesperidin supplements was consumed by the study participants along
with a light breakfast without flavonoid or phenolic compounds. No other food or drink
except for water was allowed for the next 5 h. Five hours after consuming the hesperidin
supplement, participants ate a light meal without flavonoid or phenolic compounds fol-
lowing recommendations made by nutritionists, based on 200 mL of vegetables broth, 42 g
of white rice, 60 g of tuna canned in sunflower oil, 125 mL of whole-fat yogurt and water
as a drink. Eight hours after consuming the hesperidin supplement, participants were
instructed to go home and to continue following a diet low in flavonoids and phenolic
compounds—by avoiding phenolic compound-rich fruits and vegetables, high-fibre prod-
ucts and beverages such as tea, coffee, fruit juices and wine—up to 24 h after consumption
of the hesperidin supplement, where blood and urine samples were collected.

In order to homogenize the postprandial response in the bioavailability of hesperidin
for the two days prior to each of the study visits, the first phase visit and each of the
postprandial visits—and up to 24 h after having consumed the OJ or the hesperidin
supplement—the participants were asked not to practice exercise or consume alcohol
and to follow a diet low in flavonoids and phenolic compounds.

2.4. Outcomes

Relative urinary hesperidin excretion values (% of hesperidin ingested) obtained in
the first phase of the study were used to select the participants for the second phase of
the study. It was calculated by the ratio between the sum of hesperidin metabolites and
the amount of hesperidin consumed by the participants (345 mg). With these values,
18 volunteers with intermediate relative urinary hesperidin excretion values were selected
for the second phase.

The main outcome of the study was the hesperidin bioavailability determined by
means of relative urinary hesperidin excretion (% of hesperidin ingested) considering the
sum of hesperidin metabolites and catabolites.

The secondary outcomes were the relative urinary hesperidin excretion considering
only hesperidin metabolites and considering only hesperidin catabolites; the area under
the curve (AUC) of the serum sum of hesperidin metabolites and catabolites, of serum
hesperidin metabolites and of serum hesperidin catabolites; the pharmacokinetic parameter
time to reach peak concentration (Tmax); peak concentration (Cmax); and the elimination
half-time (t 1

2
) of serum sum of hesperidin metabolites and catabolites, of serum hesperidin

metabolites and of serum hesperidin catabolites.
To obtain the main and secondary outcomes, the urinary levels of hesperidin metabo-

lites and catabolites at baseline—before consuming the hesperidin supplement—and up
to 24 h after consuming the hesperidin supplement in four urine fractions (0–3 h; 3–6
h; 6–8 h; 8–24 h) were determined [19,29]. In addition, the serum levels of hesperidin
metabolites and catabolites at baseline and at 2 h, 3 h, 4 h, 5 h, 6 h, 7 h, 8 h and 24 h after
consuming the hesperidin supplement were quantified [19,24,29]. To obtain the relative
urinary hesperidin excretion in the first phase of the study, the urinary levels of hesperidin
metabolites before consuming the OJ and in the 24 h urine after consuming the hesperidin
supplement were determined.

Descriptive outcomes including anthropometric parameters and blood pressure were
measured as previously described by our group [30]. In addition, blood parameters—including
serum levels of glucose, total cholesterol, HDL-cholesterol, LDL-cholesterol and triglycerides—
were measured by standardized methods in a Cobas Mira Plus autoanalyzer (Roche Diagnosis
Systems, Madrid, Spain).
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2.5. Determination of Hesperidin Metabolites and Catabolites in Urine and Serum Samples

Hesperetin and related metabolites were determined in urine and serum samples
by liquid chromatography coupled to triple quadrupole mass spectrometry (LC-QqQ)
using a UHPLC 1290 Infinity II Series coupled to a QqQ/MS 6490 Series (Agilent Tech-
nologies, Palo Alto, CA, USA) and an ACQUITY UPLC BEH C18 (100 × 2.1 mm; 1.8 µm)
column (Waters, Milford, MA, USA). Mobile phase A was 100% water with 0.5% acetic
acid and 10 mM ammonium acetate, and mobile phase B was 100% methanol. The column
temperature was set at 45 ◦C and the injection volume was 5 µL. The triple quadrupole
operated in negative electrospray ionization mode (ESI-). The source conditions were set
at 25 psi for the nebulizer gas, 240 ◦C for the gas temperature, 17 L/min for the gas flow,
250 ◦C for the sheath gas temperature, 12 L/min for the sheath gas flow, 3500 V for the
capillary voltage and 0 V for the nozzle voltage. The standards used for quantification
purposes were: Hesperetin and Hesperidin (Extrasynthese, Genay, France); Hesperetin
7-O-beta-D-glucuronide, Hesperetin 3-O-beta-D-glucuronide and Hesperetin 7,3′-di-O-
beta-D-glucuronide (Toronto Research Chemicals; North York, ON, Canada); Hesperitin
7-O-sulfate (Santa Cruz Biotechnology, Dallas, TX, USA). Hesperitin-d3 and Diosmetin
7-O-β-D-Glucuronide-d3 (Toronto Research Chemicals; North York, ON, Canada) were
used as internal standards.

Hesperidin catabolites were determined in urine and serum samples by liquid chro-
matography coupled to quadrupole time of flight mass spectrometry (LC-qTOF) using a
UHPLC 1290 Infinity II Series coupled to a qTOF/MS 6550 Series (Agilent Technologies)
and a Zorbax Eclipse C18 (150 × 2.1 mm; 1.8 µm) column (Agilent Technologies). Mobile
phase A was 100% water with 0.2% acetic acid, and mobile phase B was 100% methanol.
The column temperature was set at 45 ◦C, and the injection volume was 5 µL. Data acquisi-
tion was carried out in a full-scan over a mass-range of 50–1200 m/z, and the fragmentation
studies were carried out at 10 V of collision energy. The source conditions were set at
25 psi for the nebulizer gas, 240 ◦C for the gas temperature, 17 L/min for the gas flow,
250 ◦C for the sheath gas temperature, 12 L/min for the sheath gas flow, 3000 V for the
capillary voltage and 1500 V for the nozzle voltage. The standards used for quantification
purposes were: 4′-Hydroxyphenylacetic acid, Hippuric acid, 4′-Hydroxycinnamic acid, 3-
(4′-hydroxyphenyl)propanoic acid, 4′-Hydroxy-3′-methoxyphenylacetic acid, 3′-Hydroxy-
4′-methoxyphenylacetic acid, 3′-hydroxyphenylacetic acid, 2-Hydroxy-2-(4′-hydroxy-3′-
methoxyphenyl)acetic acid, 3′,4′-Dimethoxyphenylacetic acid, 3-Hydroxy-3-
(3′-hydroxyphenyl)propanoic acid, 3,4-Dihydroxybenzoic acid, 3′,4′-Dihydroxyphenylacetic
acid, 3-(3′,4′-dihydroxyphenyl)propanoic acid, 3-Hydroxy-4-methoxybenzoic acid, Pheny-
lacetic acid and 3-Phenylpropionic acid (Sigma Aldrich; San Luis, MO, USA); 3-(3′-methoxy-
4′-hydroxyphenyl)propanoic acid, 3-(4-hydroxy-3′-methoxyphenyl)propanoic acid-4′-sulfate,
2-Hydroxy-2-(4′-hydroxyphenyl)acetic acid, 3-(3′-hydroxy-4′-methoxyphenyl)propanoic
acid, 4′-hydroxycinnamic acid 4-O-Glucuronide, 4′-Hydroxyhippuric acid, 3′- methoxycin-
namic acid-4′-O-glucuronide, 3-(4-hydroxy 3′-methoxyphenyl)propanoic acid-4′-O- glu-
curonide and Caffeic acid-3′-O-glucuronide (Toronto Research Chemicals, Ontario, Canada).
(+\−)-2-Hydroxy-2-(4′-hydroxy-3′-methoxyphenyl)acetic acid D3 (ring-D3) (Sigma Aldrich;
San Luis, MO, USA); 3-Hydroxyhippuric Acid-13C2

15N and Diosmetin 7-O-β-D-Glucuronide-
d3 (Toronto Research Chemicals, ON, Canada); (4-Hydroxy-3-methoxyphenyl-d3) acetic-
alpha,alpha-d2 acid and (4-Hydroxyphenyl-2,3,5,6-d4) acetic-2,2-d2 Acid (Cluzeau Info Labo,
Sainte-Foy-la-Grande, France); and 3-(3-hydroxy-4-methoxyphenyl)propanoic acid-d3 (Santa
Cruz Biotechnology; Dallas, TX, USA), were used as internal standards.

Urine samples were thawed at 4 ◦C. Fifty microliters of urine was mixed with 887.5 µL
of water with 0.1% formic acid containing the internal standards (15 ng/mL of Hesperetin-
d3, 120 ng/mL of Diosmetin 7-O-glucuronide-d3, 10 ng/mL of 2-Hydroxy-2-(4′-hydroxy-
3′-methoxyphenyl)acetic acid -d3, (4-Hydroxy-3-methoxyphenyl-d3) acetic-alpha,alpha-d2
acid, (4-Hydroxyphenyl2,3,5,6-d4) acetic-2,2-d2 acid, 3-Hydroxyhippuric acid-13C2, 15N
and 3-(3-hydroxy-4methoxyphenyl)propanoic acid-d3). Then, the mixture was vortexed
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and centrifuged for 5 min at 4 ◦C and 15,000 rpm. The supernatant was transferred to a
glass vial for its analysis.

Serum samples were thawed at 4 ◦C. Then, 87.5 µL of serum was mixed with 525 µL
of methanol containing the internal standard (400 ng/mL of Diosmetin 7-O-glucuronide-d3
and 20 ng/mL of Hesperetin-d3, 2-Hydroxy-2-(4′-hydroxy-3′-methoxyphenyl)acetic acid -
d3, (4-Hydroxy-3-methoxyphenyl-d3) acetic-alpha,alpha-d2 acid, (4-Hydroxyphenyl-2,3,5,6-
d4) acetic-2,2-d2 acid, 3Hydroxyhippuric acid-13C2

15N and 3-(3-hydroxy-4-methoxyphenyl)
propanoic acid-d3). Then, the mixture was vortexed and centrifuged for 5 min at 4 ◦C and
15,000 rpm. The supernatant was transferred to a new tube and evaporated to dryness in
the SpeedVac at 45 ◦C. Samples were reconstituted with 100 µL of methanol: 1% formic
acid in water (25:75, v/v) and transferred to a glass vial for its analysis.

The assignment of the metabolites and catabolites was performed by direct com-
parison with the commercial standards available or by bibliographic information using
chromatographic behaviour, molecular ion ([M-H]-) and fragmentation patterns [16,18,22].
The obtained calibration curves were used for the quantification of their corresponding
metabolites/catabolites. For the rest of compounds, the analysis was semi-quantitative. The
behaviour of each compound was evaluated, and the calibration curve chosen to calculate
its concentration was the one of the metabolites/catabolites that behaved more alike.

2.6. Sample Size

The sample size was calculated using the GPower 3.1 software, considering relative
urinary hesperidin excretion values (% of hesperidin ingested) as the main variable. To
detect differences between the hesperidin supplements (HEM, MHEM and M2SH) of 20%,
a mean and a standard deviation of 4.9% and 1.8%, respectively [14,19,24,25,29,31], a power
of 90% and a confidence level of 95%, the sample size was 13 participants.

Considering that most of the population presents an intermediate excretion level of
hesperidin in urine [21,22], the number of individuals considered to carry out the first
phase of the study was 30.

2.7. Statistical Analysis

The parametricity of the variables was examined by Kolmogorov–Smirnov tests,
analyses of skewness and kurtosis were performed, and logarithmic transformation was
performed if required. Wilcoxon tests or general linear models for repeated measures
with Bonferroni correction were performed for assessing the time changes in hesperidin
metabolites and phenolic catabolites in urine and serum. Comparison between formulations
was assessed by Student’s t test or Wilcoxon tests for related samples. When plasma
concentrations were lower than the low limit of quantification of the analytical method, half
of the detection limit was used as a value. Missing values were imputed by linear regression
analyses. Observed plasma pharmacokinetic parameters were directly extracted from
plasma concentrations over time curve: maximum peak concentrations (Cmax), time to reach
peak concentrations (Tmax), half-life elimination (t 1

2
) and areas under the concentrations–

time curves between 0 h and 24 h (AUC0–24h). AUCs were calculated using the linear
trapezoidal rule.

The level of statistical significance was set at p < 0.05. Data were analyzed using the
SPSS software version 26.

3. Results
3.1. Study Population

From the 32 eligible participants, 30 were included for the first phase of the study and,
from these, 2 participants were excluded because no 24 h urine values were available. From
the 28 participants, 21 were intermediate excretors of hesperidin and 6 participants declined
to take part in the second phase of the study. Therefore, 15 participants were randomized
for the second phase of the study. Of these 15 participants, 1 participant presented problems
with blood extraction during the second postprandial study, obtaining samples for the first
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postprandial and up to 6 h after consumption of the hesperidin supplement for the second
postprandial. Another participant only completed two postprandial studies due to the
restrictions caused by the SARS-CoV-2 pandemic. Finally, data from 14 participants in the
HEM group, 14 participants in the MHEM group and 14 participants in the M2SH group
were available. A CONSORT flowchart of the study is described in Figure 2.
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MHEM; Sequence 3: MHEM, HEM, M2SH; Sequence 4: MHEM, M2SH, HEM; Sequence 5: M2SH,
HEM, MHEM; Sequence 6: M2SH, MHEM, HEM.

The baseline characteristics from the 30 participants included in the study are de-
scribed in Supplementary Table S1. Mean relative urinary hesperidin excretion determined
as hesperetin or hesperetin conjugates in urine was 2.67 ± 1.79%. The range of relative
hesperidin excretion levels was 0.64–8.07%, and participants could be classified into low, in-
termediate and high urinary hesperidin excretors with values of relative urinary hesperidin
excretion of 0.74 ± 0.11%, 2.31 ± 1.01% and 6.06 ± 1.46%, respectively (Supplementary
Table S1). These results are similar to those obtained in other studies [14,18–20,24,29].

3.2. Hesperidin Bioavailability: Relative Urinary Hesperidin Excretion

Supplementary Tables S2–S4 show the quantities of hesperidin metabolites and catabo-
lites in urine before and after the intake of each of the three hesperidin supplements. A
portion of the catabolites detected and quantified in urine were non-specific hesperidin
catabolites that were also products of endogenous pathways unrelated to hesperidin sup-
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plements intake and, therefore, could interfere in the results. Therefore, the analysis of
relative urinary hesperidin excretion was carried out considering only the urinary hes-
peridin catabolites that could be specific of hesperidin metabolism on the basis of the
data described by Pereira-Cano et al. [16,22,27] and also those catabolites that showed a
similar pattern to 3-(3′-hydroxy-4′-methoxyphenyl)propionic acid (HMPPA), as it has been
described as a specific hesperidin catabolite [18].

The quantity of the sum of hesperidin metabolites and hesperidin catabolites increased
linearly from baseline to 8–24 h in all treatments. The 0–24 h urinary excretion of hesperidin
metabolites and catabolites was significantly higher after M2SH supplement intake than
after the intake of the other two hesperidin supplements (Table 2). Therefore, the overall
amount of hesperidin excreted in urine, the relative urinary hesperidin excretion and
the bioavailability were significantly higher for M2SH than for the other two hesperidin
supplements.

Table 2. Quantities of Hesperidin metabolites and Hesperidin catabolites in urine before and af-
ter Hesperidin epimeric mixture (HEM), micronized Hesperidin epimeric mixture (MHEM) and
micronized 2S-Hesperidin (M2SH) intake.

Change from Baseline

Variable/
Intervention Baseline (0 h) 0–3 h 3–6 h 6–8 h 8–24 h p for Linear

Trend
Total Change a

(0 h Post-24 h)

Total
Relative to
Intake (%)

Total metabolites b, µmol
HEM (n = 13) 0.035 (0.01) 0.080 (0.005) * 0.613 (0.22) † 7.04 (2.43) † 31.35 (5.15) † <0.001 39.1 (6.1) 5.2 (0.81)

MHEM (n = 14) 0.022 (0.003) 0.111 (0.01) † 0.691 (0.23) † 17.05 (5.13) † 49.84 (9.75) † <0.001 68.5 (13) ‡ 9.2 (1.6) ‡

M2SH (n = 14) 0.077 (0.05) 0.130 (0.03) * 1.03 (0.34) † 5.08 (1.36) † 20.25 (6.16) † 0.005 24.9 (7.8) ‡ 6= 3.6 (1.0) § 6=

Total specific catabolites c, µmol
HEM (n = 13) 23 (8.6) 31 (15) 8.6(2.8) * 29 (17) 205 (33) † <0.001 284 (61) 37 (8.0)

MHEM (n = 14) 25 (16) 40 (27) * 37 (28) 39 (15) * 230 (47) † <0.001 346 (114) 46 (15)
M2SH (n = 14) 27 (18) 37 (19) * 36 (21) 67 (29) † 339 (43) † <0.001 488 (107) ¥ 6= 66 (14) ¥ 6=

Total metabolites plus specific
catabolites, µmol

HEM (n = 13) 23 (8.6) 31 (15) 9.2 (2.9) * 36 (19) 237 (32) † <0.001 326 (60) 43 (8.0)
MHEM (n = 14) 25(16) 40 (27) * 37 (28) 56 (17) * 280 (47) † <0.001 414 (113) 55 (15)
M2SH (n = 14) 27 (18) 38 (19) * 37 (21) 72 (29) † 360 (42) † <0.001 515 (106) ‡ 70 (14) ‡ 6=

Data expressed as mean (standard error). One participant had only a few urine data, making data imputation
impossible. a Intertreatment comparisons (total change minus baseline). b Total urinary metabolites = Hes-
peretin (Hesp), 7, 3′ di-O-glucuronide (gluc)+ Hesp 7-O-gluc+ Hesp 3-O-gluc+ Hesp 7-O-sulfate+ Hesp. c Total
urinary specific catabolites = 4′-Methoxycinnamic acid-3′ -glucuronide + 3-(3′- hydroxy- 4′-methoxyphenyl)
propanoic acid + 3-(3′- hydroxy 4′-methoxyphenyl) propanoic acid-3′-sulfate+ 3-(3′- hydroxy 4′-methoxyphenyl)
propanoic ac-id-3′-O-glucuronide + 3′-(3′-hydroxyphenyl) propanoic acid-4′-sulfate + 3′-(4′-hydroxyphenyl)
propanoic acid-3′-sulfate + 3′-(3′-hydroxyphenyl) propanoic acid-4′-O-glucuronide + 3′-(4′-hydroxyphenyl)
propanoic acid-3-O-glucuronide + 3′-Hydroxy-3-(3′-hydroxyphenyl) propanoic acid + 3′-Hydroxy-3-(3′-hydroxy-
4′-methoxyphenyl)propanoic acid. Intratreatment comparison by Wilcoxon test. * p < 0.05, † p < 0.005 versus
its baseline. Significant results in bold and borderline ones (p > 0.05 and <0.1) in italic bold. Intertreatment
comparisons (total change minus baseline) by Wilcoxon test: § p = 0.055, ‡ p < 0.05, ¥ p < 0.01 versus HEM
treatment; 6= p < 0.05 versus MHEM treatment.

Concerning hesperidin metabolites, relative urinary hesperidin excretion values ob-
served for the three hesperidin supplements are in accordance with the results reported
by other authors considering only hesperidin metabolites for hesperidin bioavailability
quantification [18,19,29,31,32]. Urinary hesperidin metabolites quantities also increased
linearly from baseline to 8–24 h in all treatments (p < 0.005). The higher 0–24 h urinary
hesperidin metabolites excretion, however, was observed after MHEM intake, which was
significantly higher than after the other two treatments. Furthermore, the lower relative
urinary hesperidin excretion was observed after M2SH intake, which was significantly
lower than MHEM treatment and showed a tendency to be lower than HEM treatment
(Table 2).

The quantity of hesperidin catabolites also increased linearly from baseline to 8–24 h in
all treatments. In this case, the overall amount of hesperidin excreted in urine and therefore
the bioavailability was significantly higher after M2SH supplement intake than after the
intake of the other two hesperidin supplements (Table 2).
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3.3. AUC and Pharmacokinetic Parameters

Tables S5–S7 show the concentration of hesperidin metabolites and catabolites in
serum before and after the intake of each of the three hesperidin supplements. For the
same reasons discussed above for the urine values, AUCs and pharmacokinetic parameters
were calculated considering only the serum hesperidin catabolites that could be specific of
hesperidin metabolism [16,18,22,27].

Table S8 and Figure 3A show the time–response curves of the sum of serum hesperidin
catabolites and metabolites for the three hesperidin supplements. Curves were similar
for the three hesperidin supplements, reaching the maximal values between 7 and 8 h.
Higher concentrations were observed after M2SH and MHEM treatments. Table 3 shows
the pharmacokinetic parameters obtained. Cmax and AUC0–24h were higher after M2SH
and MHEM intake than after HEM intake, showing the M2SH supplement led to higher
values in the percentage of change compared to the HEM supplement than the MHEM
supplement. Moreover, AUC0–24h for the M2SH supplement showed a tendency to be
higher than that for the MHEM supplement. Tmax was lower after M2SH intake compared
to after HEM intake with a borderline significance.

The time–response curves of serum hesperidin metabolites’ maximal values were
shown 7–8 h, as reported by other authors [14,25]. Hesperidin metabolites began to appear
in serum approximately between 4 h and 5 h after hesperidin supplement consumption.
These results indicate that hesperidin absorption occurs mainly in the colon, as has been
previously described [18]. Curves were similar for the three hesperidin supplements, but
higher concentrations were obtained after MHEM intake (Table S9 and Figure 3B). Cmax and
AUC0–24h were higher after MHEM intake than after the intake of the other two hesperidin
supplements. Values of Tmax and t 1

2
were similar in all groups (Table 4).
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Table 3. Non-compartmental single-dose kinetics of Hesperidin metabolites plus Hesperidin catabo-
lites after Hesperidin epimeric mixture (HEM), micronized Hesperidin epimeric mixture (MHEM)
and micronized 2S-Hesperidin (M2SH) treatments.

Parameter Treatment p for Treatments % of Change *

HEM (n = 13) MHEM (n = 13) M2SH (n = 13) MHEM
vs. HEM

M2SH vs.
HEM

M2SH vs.
MHEM

MHEM vs.
HEM

M2SH vs.
HEM

M2SH vs.
MHEM

Dose, mg 462.1 462 451.4

AUC0–24
(nmol.h−1)

13,510 ± 4638
a 13,680

(11,294; 17,294)

23,114 ± 11,579
a 25,288

(10,497; 34,502)

28,096 ± 13,344
a 21,775

(19,653; 39,712)
0.012 † <0.001 † 0.084

74 ± 83
a 58

(2.5; 138)

118 ± 99
a 77

(43; 244)

40 ± 67
a 24

(−13; 80)

Cmax,
nmol

1022 ± 366
a 971

(751; 1288)

2296 ± 1190
a 2478

(949; 3433)

2497 ± 1373
a 2181

(891;3412)
0.001 † <0.001 † 0.489

139 ± 118
a 133

(48; 198)

163 ± 119
a 140

(66; 252)

37 ± 95
a −3.6

(−32; 102)

Tmax, h
15.0 ± 8.7

a 8.0
(7.0; 24)

12.7 ± 7.8
a 8.0

(7.5; 24)

10.4 ± 6.0
a 8.0
(8; 8)

0.233 0.079 0.231
−8.7 ± 28

a 0.00
(0.00; 0.00)

−17.5 ± 37
a 0.00

(−67; 14)

−8.0 ± 26
a 0.00

(0.00; 0.00)

t 1
2

(h) b
14.5 ± 5.3

a 14.6
(9.8; 19)

NC NC _ _ _ _ _

Data expressed as mean ± standard deviation and a median (25–75th). * % of Change, percentage of change.
AUC0–24, area under the curve 0–24 h. Cmax, plasma maximal concentration; Tmax,, time to maximal concentration;
t 1

2
, elimination half-life, b data from only 5 individuals undergoing HEM treatment. NC, non-computable, data

could not be calculated because Cmax was at 8 h or 24 h in the most part of the individuals. Student’s t test for
related samples or Wilcoxon test. † After logarithmic transformation of the data. Significant results in bold and
borderlines ones in italic bold.

Table 4. Non-compartmental single-dose kinetics of Hesperidin metabolites after Hesperidin epimeric
mixture (HEM), micronized Hesperidin epimeric mixture (MHEM) and micronized 2S-Hesperidin
(M2SH) treatments.

Parameter Treatment p for Treatments % of Change *

HEM
(n = 14)

MHEM
(n = 14)

M2SH
(n = 14)

MHEM
vs. HEM

M2SH vs.
HEM

M2SH vs.
MHEM

MHEM vs.
HEM

M2SH vs.
HEM

M2SH vs.
MHEM

Dose, mg 462.1 462 451.4

AUC0–24
(nmol.h−1)

4730 ± 3333
a 3993

(2547; 5602)

8264 ± 5722
a 7462

(3773; 13,509)

4550 ± 3941
a 3137

(2192; 5494)
0.024 0.644 0.013

87 ± 139
a 80

(−23; 141)

−9.5 ± 83
a −24

(−56; 72)

−41 ± 281
a −33

(−73; 29)

Cmax, nmol
406 ± 229

a 392
(229; 562)

971 ± 722
a 911

(323; 1529)

458 ± 325
a 358

(237; 527)
0.006 † 0.775 0.007 †

146 ± 174
a 146

(−5.2; 186)

28.8 ± 106
a −13.7

(−45; 87)

−22.6 ± 61
a −54

(−74; 36)

Tmax, h 10.8 ± 7.1
a 7.5 (7; 12)

9.7 ± 6.1
a 8.0

(7; 8.0)

8.6 ± 4.5
a 8.0 (7; 8.0) 1.00 0.347 0.349

10.7 ± 60.1
a 0.00

(−7; 14)

−4.6 ± 23.2
a 0.00

(−6; 0.00)

−3.9 ± 22.7
a 0.00

(−12; 14)

t 1
2

(h) b
4.85 ± 3.7

a 3.3
(2.7; 5.5)

6.02 ± 5.6
a 3.7

(2.4; 12)

4.62 ± 5.5
a 2.4

(2.2; 5.9)
0.465 0.345 0.655

2.67 ± 15.8
b 2.53

(−12; 18)

−18.1 ± 27.9
b −22.2
(−39; 5)

−0.16 ± 16.0
b −0.16

(−11; 11)

Data expressed as mean ± standard deviation and a median (25–75th). * % of Change, percentage of change.
AUC0–24, area under the curve 0–24 h. Cmax, plasma maximal concentration; Tmax,, time to maximal concentration;
t 1

2
, elimination half-life, b data from only 5 individuals undergoing HEM and M2SH treatments, and 4 individuals

undergoing MHEM treatment. In the rest of the cases, data could not be calculated because Cmax was at 8 h or
24 h, or because 24 h data were greater than those at 8 h. Student’s t test for related samples or Wilcoxon test. †

After logarithmic transformation of the data. Significant results in bold.

For hesperidin catabolites, the time–response curves after the ingestion of the three
hesperidin supplements showed that the maximum values were reached between 8 and
24 h. Curves were similar for the three hesperidin supplements, but higher concentrations
were obtained after M2SH intake (Table S10 and Figure 3C). AUC0–24h was higher after
M2SH intake than after the intake of the other two hesperidin supplements, whereas no
significant differences were observed between MHEM and HEM supplements. Cmax was
higher after M2SH intake and MHEM intake than after HEM intake. Furthermore, Cmax
for the M2SH supplement was higher than that for the MHEM supplement although with
borderline significance. Values of Tmax were similar in all groups (Table 5).
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Table 5. Non-compartmental single-dose kinetics of Hesperidine catabolites after Hesperidin epimeric
mixture (HEM), micronized Hesperidin epimeric mixture (MHEM) and micronized 2S-Hesperidin
(M2SH) treatments.

Parameter Treatment p for Treatments % of Change *

HEM (n = 13) MHEM (n = 13) M2SH (n = 13) MHEM
vs. HEM

M2SH vs.
HEM

M2SH vs.
MHEM

MHEM vs.
HEM

M2SH vs.
HEM

M2SH vs.
MHEM

Dose, mg 462.1 462 451.4

AUC0–24
(nmol.h−1)

8438 ± 3583
a 8511

(6171; 10,010)

14,596 ± 9445
a 15,095

(7522; 22,322)

23,674 ± 4332
a 18,104

(11,404; 36,270)
0.117 † <0.001 † 0.004 †

82 ± 97
a 94

(5.8; 172)

183 ± 139
a 144

(60; 288)

103 ± 126
a 45

(20; 154)

Cmax,
nmol

674 ± 270
a 670

(500; 843)

1364 ± 846
a 1240

(818; 1982)

2085 ± 1344
a 1840

(891; 3111)
0.007 0.002 0.075

113 ± 103
a 94

(39; 196)

220 ± 171
a 196

(78; 337)

136 ± 319
a 29

(−4; 133)

Tmax, h
15.1 ± 8.6

a 8.0
(7.0; 24)

12.3 ± 7.7
a 8.0

(7.7; 24)

12.8 ± 4.5
a 8.0

(8; 24)
0.111 0.665 0.581

−15.1 ± 31
a 0.00

(−46; 0.00)

3.6 ± 70
a 0.00

(−50; 14)

13.9 ± 60
a 0.00

(0.00; 7.1)

t 1
2

(h) b
47 ± 34

a 39
(17; 86)

NC NC _ _ _ _ _ _

Data expressed as mean ± standard deviation and a median (25–75th). * % of Change, percentage of change.
AUC0–24, area under the curve 0–24 h. Cmax, plasma maximal concentration; Tmax, time to maximal concentration;
t 1

2
, elimination half-life, b data from only 5 individuals undergoing HEM treatment. NC, non-computable, data

could not be calculated because Cmax was at 8 h or 24 h. Student’s t test for related samples or Wilcoxon test.
† After logarithmic transformation of the data. Significant results in bold and borderlines ones in italic bold.

4. Discussion

Results from several clinical trials evaluating the bioavailability of hesperidin from
hesperidin extracts [33,34] and from natural sources [18,19,22,24,29,31] show a low bioavail-
ability for hesperidin that may be due to various factors, including the predominance
of 2R-hesperidin diastereoisomer in the hesperidin extracts, the low water solubility of
hesperidin and the limited amount of hesperidin metabolites considered for hesperidin
bioavailability quantification. In this study, the effect of stereochemistry and particle size
on hesperidin bioavailability was evaluated by comparing the bioavailability of three
hesperidin supplements with different proportions of the diastereoisomers 2S-/2R- and
different particle size. Furthermore, both hesperidin metabolites and hesperidin catabolites
were analysed and quantified in urine and serum samples after consumption of each of the
three supplements to determine hesperidin bioavailability.

In order to exert its health effects, hesperidin must be bioavailable and absorbed from
the gastrointestinal tract into the circulatory system. In our study, serum concentrations of
hesperidin metabolites over time were in accordance with hesperidin metabolization in
the colon [19]. It has been described that an amount of consumed hesperidin by humans
is absorbed in the small intestine. However, the 70% of ingested hesperidin reaches the
large intestine, where it must be hydrolyzed by microbial α-rhamnosidase activity in
the colon into hesperetin aglycone prior to its absorption. Once absorbed, hesperetin
can be conjugated into glucuronidated and sulfonated metabolites [22,35,36]. Hesperetin
released through colonic bacteria can be further subjected to ring fission by the resident
microbiota and broken down to yield a family of low-molecular-weight phenolic catabolites,
which could be additionally metabolized before entering the systemic circulation [16,36,37].
According to the results reported by other authors [14,18–20,22,24,27,29], we observed a low
hesperidin bioavailability when only hesperidin metabolites were considered, with relative
hesperidin urinary recoveries between 5.2% and 9.2%. When hesperidin metabolites and
catabolites were considered, the bioavailability of hesperidin increased markedly for the
three hesperidin supplements, with relative hesperidin urinary recoveries between 43%
and 70%. Overall, our results reinforce the idea that intestinal microbiota have a crucial role
in the metabolism and absorption of hesperidin, including the production of metabolites
and also catabolites of this flavanone [36–38].

Although the 2S-diastereoisomer of hesperidin is dominant in nature, current com-
mercial hesperidin extracts are available as a mixture of both diastereoisomers due to the
transformation of the 2S-diastereoisomer to the 2R-diastereoisomer during the industrial
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extraction process [11]. Interestingly, the results of our study show that the bioavailability
of M2SH supplement—formed mainly by 2S-diastereoisomer and therefore a supplement
with a hesperidin form closer to the natural hesperidin—was higher than the bioavailability
of MHEM and HEM, which consist of a mixture of both hesperidin diastereoisomers, with
a relative urinary hesperidin excretion of 70%, 55% and 43%, respectively. Furthermore,
it is important to highlight that the higher bioavailability of hesperidin observed for the
M2SH supplement was due to the greater formation of hesperidin catabolites compared
to the other two hesperidin supplements. On the other hand, relative urinary excretion of
hesperidin metabolites was higher for MHEM and HEM supplements than for the M2SH
supplement. Serum results obtained in the study are in accordance with the results obtained
in urine, with the M2SH supplement being the one that showed the higher AUC0–24h and
Cmax values when considering hesperidin metabolites and catabolites or only hesperidin
catabolites, whereas when only hesperidin metabolites were considered, the supplement
with the higher AUC0–24h and Cmax was MHEM. These results are in accordance with other
studies showing that the two hesperidin diastereoisomers may display distinct kinetic and
bioavailability properties [11] and support the importance of considering the chirality of hes-
peridin in studies evaluating the bioavailability of this flavonoid. In this sense, in an in vivo
study, after intravenous administration of racemic hesperetin to rats, R-diastereoisomer
showed a significant 3.2-fold higher AUC compared to S-diastereoisomer [12]. In that study,
catabolites were not considered for hesperidin absorption measurements. Our results
support the hypothesis that 2S- and 2R-diastereoisomers of hesperidin present a differential
metabolism by colonic microbiota. It has been demonstrated that intestinal microbiota are a
key factor in the metabolism and absorption of hesperidin. However, the research has been
mainly centred on the α-L-rhamnosidase bacterial activity, studying the ability of intestinal
microbiota to hydrolyze hesperidin and establishing the species responsible for this activity,
such as Bifidobacterium catenulatum and Bifidobacterium pseudocatenultum [39]. However,
these studies did not consider the influence of hesperidin stereochemistry in microbiota
metabolism. On the other hand, it is known that flavonoids can influence the quantity
and quality of the intestinal microbiota in the colon and indirectly influence their own
metabolism and bioavailability [37], although no studies have been carried out evaluating
the influence of flavonoids’ stereochemistry on these processes.

The results obtained in our study demonstrate the importance of considering hes-
peridin catabolites not only in bioavailability studies, but also in studies evaluating the
biological effects of this flavonoid, for several reasons. Firstly, and according to the re-
sults obtained in our study and also by other authors [18,26,27], hesperidin catabolites are
the major contributors of hesperidin bioavailability values. Secondly, if only hesperidin
metabolites are considered, it is likely that the results obtained in studies comparing the
hesperidin bioavailability of different natural sources or hesperidin extracts may not be
completely conclusive. Finally, the results obtained in this study suggest that the three
hesperidin supplements M2SH, MHEM and HEM may present different bioactive effects
due to their different bioavailability, related to a different contribution of the metabolism
by the intestinal microbiota. Although the three hesperidin supplements share the same
metabolites and catabolites, they differ in the contribution of these metabolites and catabo-
lites to the overall amount of absorbed compounds. Recently, much attention has been paid
to the bioavailability and physiological actions of polyphenol catabolites due to the high
absorption level and, therefore, the potential physiological actions of these compounds [36].
For instance, urolithins—which are catabolites of ellagitannin—show higher antioxidant,
anti-inflammatory and anti-proliferation activities than ellagitannin and ellagic acid [40–42];
3,4-dihydroxybenzoic (protocatechuic) acid (PCA), which is a catabolite derived from the
metabolism of several polyphenols such as procyanidins and various anthocyanins, exerts
a wide range of biological effects, such as antioxidant, anti-inflammatory, anticarcinogenic
and neuroprotective activities [37]; 3,4-dihydroxyphenylacetic acid (DOPAC) is one of the
active phenolic acids derived from quercetin glycosides’ intestinal microbiota catabolism
for which several activities have been demonstrated—including free radical scavenging
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and anti-inflammatory, antioxidant and anticancer properties [37]. Along with the potential
beneficial effects of 2S-hesperidin, and its catabolites produced by colonic microbiota, in a
parallel, randomized placebo-controlled trial with forty amateur cyclists, the consumption
of 500 mg/day of CARDIOSE hesperidin extract for eight weeks increased the functional
threshold power and maximum power [43] and also decreased fat mass and increased
muscle mass [44] compared to the placebo group.

The results of the study show that the bioavailability of hesperidin—considering
mainly the hesperidin metabolites—from the MHEM supplement was clearly higher than
the hesperidin bioavailability from the HEM supplement. Considering that urinary data
are indicative of the minimum absorbed fraction [45], the increase in absorption was 40%
between both hesperidin supplements. The only difference between these two hesperidin
supplements was the particle size of hesperidin, which is smaller in the MHEM supplement
due to the application of the micronization process to the hesperidin extract. Several
factors limit the bioavailability of hesperidin after oral intake, one of them being its poor
water solubility [25,46], and micronization is a process that has been used to increase the
bioavailability of hesperidin [21] and other polyphenols [45,47] by increasing its dissolution
rate and therefore to improve the overall absorption through the reduction in particle
size [45]. Therefore, our study reinforces the utilization of the micronization process to
increase hesperidin bioavailability in hesperidin-derived products to enhance the biological
effects of this flavonoid.

5. Conclusions

In conclusion, the results of this study demonstrate that the bioavailability of the
2S-hesperidin extract was higher compared to the standard mixture of 2S-/2R-hesperidin
extract in healthy individuals due to a greater formation of hesperidin catabolites. Fur-
thermore, the results obtained reinforce the use of micronization to increase hesperidin
bioavailability. Considering the large differences in hesperidin metabolites and catabolites
formed after M2SH, MHEM and HEM supplement ingestion, further studies are needed to
evaluate potential differences in biological effects between hesperidin supplements with
different proportions of 2S-/2R-diastereoisomers.
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