
1Scientific RePorTS |  (2018) 8:12980  | DOI:10.1038/s41598-018-31365-x

www.nature.com/scientificreports

Toward Fast Neural Computing 
using All-Photonic Phase Change 
Spiking Neurons
Indranil Chakraborty   , Gobinda Saha, Abhronil Sengupta & Kaushik Roy

The rapid growth of brain-inspired computing coupled with the inefficiencies in the CMOS 
implementations of neuromrphic systems has led to intense exploration of efficient hardware 
implementations of the functional units of the brain, namely, neurons and synapses. However, efforts 
have largely been invested in implementations in the electrical domain with potential limitations of 
switching speed, packing density of large integrated systems and interconnect losses. As an alternative, 
neuromorphic engineering in the photonic domain has recently gained attention. In this work, we 
propose a purely photonic operation of an Integrate-and-Fire Spiking neuron, based on the phase 
change dynamics of Ge2Sb2Te5 (GST) embedded on top of a microring resonator, which alleviates the 
energy constraints of PCMs in electrical domain. We also show that such a neuron can be potentially 
integrated with on-chip synapses into an all-Photonic Spiking Neural network inferencing framework 
which promises to be ultrafast and can potentially offer a large operating bandwidth.

The recent advances in the field of neuromorphic computing largely rest on our understanding of the human 
brain as researchers strive to comprehend the intricacies of its complex functionalities and emulate its unparal-
leled energy efficiency. Despite the obvious elusivenss of the brain, neuroscientific experiments have unravelled 
various underlying mechanisms behind our behavorial patterns. To that effect, various studies have been per-
formed exploring phenomena concerning the basic functional units, namely neurons and synapses, that knit the 
neural network in the human brain. The need to incorporate these neuroscientific findings in computing models 
and consequently in building bio-plausible hardware has led to extensive investigations in recent years.

Most of the available computing models that encode the information processing in a neural network are based 
on mathematical optimization techniques. More recently, with growing evidence of spike-based processing in the 
biological neural network, its event-driven nature has led researchers to explore bio-plausible hardware imple-
mentations in an effort to achieve higher energy efficiency. Spiking neural networks (SNN) comprise the third 
generation of neural networks and the basic principle relies on how the membrane potential of a spiking neuron 
rises and eventually cause the neuron to spike under the action of incident spikes. Hardware implementations of 
various spiking neuron models such as Hodgkin-Huxley1 and Leaky-Integrate-Fire (LIF)2 on CMOS platforms 
not only fail to match the energy efficiency of the human brain but is also area-inefficient.

To address these shortcomings, novel material systems and technologies3,4 have been proposed to mimic the 
behavior of a spiking neuron thus providing direct mapping between a single device behaving as a functional 
neural element. However, each technology suffers from different drawbacks, such as energy-efficiency, speed, 
cross-talk, fabrication difficulties, etc. Phase change materials (PCM), in particular, have been demonstrated5 
to have significant energy restrictions due to their high ‘write’ times in the electrical domain. It has been shown 
that either the exciting current or ‘write’ pulse duration has to be reduced by 10× for PCM to perform better 
than CMOS. However, recently PCMs, e.g. GST, have been demonstrated6 to achieve sub-ns ‘write’ speeds when 
excited by photonic laser pulses. Due to highly contrasting optical and electrical properties in their amorphous 
(a-GST) and crystalline (c-GST) states, PCMs have thus offered avenues to implement all-photonic memories7,8, 
switches6 and have been even used for mixed-mode electro-optical operations9. The promise of fast informa-
tion processing with PCMs in the photonic domain has thus encouraged the possibilities of PCMs as a viable 
material for photonic neuromorphic systems. Recently, device10 based on GST deposited on waveguides was 
proposed to emulate the synaptic weight update mechanism in synapses in SNN framework. Previous works on 
such based spike-based neuromorphic processing in the photonic domain have been dependent on electro-optic 
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conversions11,12 where lasers have been used to emulate the behavior of spiking neurons. In this paper, we propose 
an all-photonic operation of an Integrate-and-Fire spiking neuron. We show that the proposed neuron mimics 
the behavior of the biological neuron and can be seamlessly integrated in an all-photonic SNN framework. Other 
works in the photonic neuromorphic domain includes applications such as deep neural networks13 and recurrent 
neural networks14 which are complementary to the processing framework discussed in this paper.

GST embedded Ring Resonator as a Integrate-Fire Neuron
The basic working principle of a ring resonator is necessary to be illustrated at first. A ring resonator is a struc-
ture with two rectangular waveguides and a ring waveguide (as shown in Fig. 1(a)). Wave entering through the 
‘INPUT’ port gets partially coupled to the ring waveguide and interferes constructively inside the ring when the 
following condition, called resonant condition, is met:

π λ=Rn m2 (1)eff wg m,

Eq. 1 provides the resonant condition (at wavelengths λm) for the ring resonator of radius R where the effective 
refractive index of the waveguide-substrate material system is neff,wg. By controlling the coupling and attenuation 
parameters, t1, t2 and k1, k2, as shown in Fig. 1(b), light can be conditionally guided through the ‘THROUGH’ and 
‘DROP’ ports.

Introducing a GST element (shown in red in Fig. 1(a)) on top of the ring waveguide in the ring resonator 
described above allows us to control light propagation through the ports by merely changing the state of the 
GST. Light passing through the waveguide get evanescently coupled to the GST element and gets differentially 
absorbed by the GST in its low-loss amorphous state and high-absortion crystalline state7. The difference in atten-
uation arises due to the contrasting imaginary refractive index (κGST) of GST in its two states. Theoretically, the 
transmission of the ‘THROUGH’ and ‘DROP’ ports can be expressed as:
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where α is the attenuation factor, θ is the phase factor, t1 and t2 are coupling parameters. α and θ can be expressed 
as:
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Figure 1.  (a) A perspective view of an add-drop microring resonator with a small patch of GST on top 
showing its ports and materials. (b) A two-dimensional top view of the ring resonator illustrating the input, 
output, coupling and transmission parameters. Theoretically calculated transmission at various wavelengths 
for different degrees of amorphization of GST ranging from 0% (crystalline) to 100% (amorphous) showing 
that the transmission at the (c) ‘THROUGH’ ((d) ‘DROP’) port decreases (increases) with increasing degree of 
amorphization.



www.nature.com/scientificreports/

3Scientific RePorTS |  (2018) 8:12980  | DOI:10.1038/s41598-018-31365-x

n R L n L2 (2 )
(4)eff wg GST eff GST GST, ,θ π

λ
π= 

 − + 
.

Here κeff,GST (κeff,wg) and neff,GST(neff,wg) are effective imaginary and real parts of the refractive index of the wave-
guide material with (without) GST. R is the radius of the ring waveguide and LGST is the length of the GST element. 
The refractive indices of partially crystallized GST are estimated from effective permitivities approximated by an 
effective-medium theory15,16:
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where εc and εa are the permittivities in the crystalline and amorphous states respectively calculated from the 
refractive indices of GST7 by ε λ κ= +n i( ) . p is the degree of crystallization. The effective refractive indices of 
the Si waveguide- SiO2 substrate system with and without GST was calculated using COMSOL Multiphysics 
simulations, shown in the inset of Fig. 1(c). These equations depict the theoretical backdrop of a ring resonator 
system with GST. As the GST element crystallizes (amorphizes), κeff,GST and hence its absorption increases 
(decreases) and as a result the transmission at the ‘THROUGH’ (‘DROP’) port increases. Figure 1(c,d) shows that 
the theoretically calculated transmission at the THROUGH and ‘DROP’ ports in a ring resonator increases with 
p. We propose an integrate-fire spiking neuron leveraging these characteristics of the GST-ring resonator 
system.

Information processing in neural networks usually involve multiplication of inputs with the significance met-
ric of the synapses, namely ‘weight’ and feeding the corresponding output to a neuron. For most neural network 
applications, weights can assume negative values. It is thus necessary to realize a bipolar neuron which can receive 
inputs of both polarity for all practical purposes. Let us now consider a GST embedded ring resonator described 
above. The GST initially is in crystalline state, denoting the highest (lowest) transmission level through 
‘THROUGH’ (‘DROP’) port. During the ‘write’ phase, an off-resonance pulse is input which writes into the GST 
element, thereby reducing (increasing) its degree of crystallization p (amorphization (1 − p)). During the ‘read’ 
phase, as p reduces, ‘THROUGH’ port transmission Tt decreases and ‘DROP’ port transmission (Td) increases. 
Thus, with incoming pulses, the transmission through the ‘DROP’ and ‘THROUGH’ ports get positively and 
negatively integrated respectively. We combine these properties of the device to propose a bipolar integrate and 
fire neuron. The integration unit of the neuron body consists of two ring resonators as shown in Fig. 2(a) and 
pulses of amplitudes proportional to the positive (Oj

+) and negative (Oj
−) weighted sums, received from the syn-

apses, are fed to the positive and negative ring resonators respectively. The details of entire network framework is 
discussed later. Note, the resultant amplitude of the incident pulse to the neuron is the difference of the positive 
and negative inputs fed to the two devices: = −+ −O O Oj j j . Thus, the two ring resonators integrate in opposite 
direction to emulate the resultant integration which should ideally be proportional to Oj. The output from the 
‘DROP’ and ‘THROUGH’ ports of the positive and negative devices respectively are passed to an interferometer. 
We place a phase modulator (φ) in the path of the positive ring resonator and the interferometer to tune the out-
put of the interferometer to produce the sum of the two incoming pulses. As the two ports integrate in the oppo-
site direction, the output of the interferometer is the resultant integration based on both the positive and negative 
inputs to the neuron body and can be treated as membrane potential of the integrate and fire neuron. Thus at 
every time-step, the membrane potential of the jth neuron can be represented by:

V t V t O t[ ] [ 1] [ ] (6)j j j= − +

Figure 2(b) shows the operation of the proposed neuron such that the membrane potential integration is pro-
portional to the amplitude of the resultant incident spike to the neuron. Once the GST reaches full amorphization, 
the membrane potential crosses its threshold (Pthresh). The ‘firing’ action of the neuron involves the generation of 
a spike which is implemented by an additional photonic circuit as shown in Fig. 2(a). This circuit consists of an 
photonic amplifier, a circulator and a rectangular waveguide with a GST element on top initially in crystalline 
state. For a rectangular waveuguide with GST, the transmission is low (high) in crystalline (amorphous) state. The 
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Figure 2.  (a) Schematic of a bipolar integrate and fire neuron based on GST-Embedded Ring resonator devices 
showing the integration and firing unit. (b) Timing diagram showing the integration of membrane potential for 
various incident pulses demonstrating the operation of the proposed neuron.
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‘read’ and ‘write’ phases for the ‘integration unit’ and the ‘firing unit’ alternate in successive cycles. This essentially 
means that during the ‘write’ cycle of the integration unit of the neuron, a read pulse is passed through the firing 
unit. On the other hand, during the ‘read’ cycle of the integration unit, the ‘read’ pulse is passed through the ring 
resonators and based on the output of inteferometer and subsequent amplification, the resulting pulse attempts 
to write into the GST of the rectangular waveguide in the firing unit. A circulator C directs the incoming and 
outgoing pulses into the rectangular waveguide. When the GST elements in the integration unit are initially in 
crystalline state, the output of the amplifier A (Pamp) is not sufficient to amorphize the GST on rectangular wave-
guide and hence, a spike is not transmitted through the rectangular waveguide. However, when the membrane 
potential integrates, on incidence of several ‘write’ pulse, enough to the cross the threshold, Pamp is ensured to be 
high enough to amorphize the GST on the rectangular waveguide and a spike is transmitted. Once the neuron 
fires, a ‘RESET’ pulse is passed to reset the states of the devices to their initial states and the membrane potential 
drops to the resting potential (Prest) as shown in Fig. 2(b). Thus, the operation of a bipolar integrate and fire neu-
ron can be achieved using the setup described in Fig. 2.

The dynamics of the spiking neuron is primarily governed by the phase-change dynamics of GST. GST par-
tially absorbs the wave passing through the ring waveguide and its low thermal conductivity17causes a considera-
ble increase in temperature. The growth of the amorphization region in the material occurs when the concerned 
region is above the melting temperature, which is around 877 K18. For a particular incident pulse, the amorphous 
region heats up less than the crystalline region. Thus the change in amorphous thickness will decrease as the 
amorphous thickness increases. Thus, change in amorphization thickness is a function of the current state of the 
GST and the amplitude of the incident pulse.

Results
The ‘write’ operation of the spiking neuron is investigated using the modal profiles of the incident EM waves and 
the resulting temperature profiles in the GST-Si-SiO2 stack. The ‘read’ operation, on the other hand, is explored 
from the point of view of the entire GST-ring resonator system. The modal profile of input EM wave and subse-
quent heat dissipation framework was implemented in COMSOL19. The temperature profiles were used to simu-
late the phase change characteristics of GST in MATLAB. The optical response of a ring resonator was obtained 
using a commercial-grade simulator Lumerical FDTD Solutions based on the finite-difference time-domain 
(FDTD) method20. Table 1 lists the parameters used for each simulation.

Phase change dynamics of GST.  The electromagnetic power absorption and subsequent temperature rise 
in GST is analyzed in detail using Finite Element Method (FEM) simulations in COMSOL Multiphysics. Firstly, 
to validate our simulation framework we simulated a GST embedded Si3N4-SiO2 ridge-waveguide system and 
compared its transient response of temperature in GST with experimental data8 under same excitation condi-
tions. Figure 3(a) shows good agreement between the results from our simulation and corresponding experimen-
tal data, thus validating our simulation setup. Next, we built a 3D model of a section of the ring resonator with 
GST as shown in Fig. 3(b) and studied the electromagnetic characteristics and subsequent temperature profiles 
using the validated simulation setup. The dimensions of the waveguide were fixed to ensure single fundamental 
mode propagation for a input optical wave of 1550 nm length. The electric field distribution at the surface of the 
waveguide embedded with c-GST and a-GST are shown in Fig. 3(c,d) respectively. We observe optical attenuation 
of −3.71 dB in the waveguide for c-GST of 0.3 μm length and 20 nm thickness while similar dimensions of a-GST 
give us negligible (−0.26 dB) attenuation. This implies strong optical absorption in c-GST and also validates the 
fact that it is an order of magnitude higher than that of amorphous state8. This property allows us to progressively 
amorphize our device while keeping the state of the already amorphized volume undisturbed for our chosen 
range of input optical power.

Next, we analyze the thermal response of the GST upon optical excitation using finite element simulation. 
We incorporate optical heating by modeling GST as local heat source. An optical pulse of amplitude 26 mW and 
duration 200 ps is injected from the front facet of the waveguide. The GST is initially considered to be in crystal-
line state and absorbed energy in GST is taken as the heat energy for that local heat source. However, as heat is not 

Dimensions Material Parameters

Parameters Values Parameters Values

Ring Resonator Radius (R) 6 μm Si Refractive Index (nSi)29 3.5

Si Waveguide Cross-section 0.4 × 0.18 μm SiO2 Refractive Index (nSiO2)30 1.4

Upper Coupling Gap (Lupper) 0.1 μm c-GST Refractive Index (nc−GST + iκc−GST)31 7.2 + 1.9i

Lower Coupling Gap (Llower) 0.1 μm a-GST Refractive Index (na−GST + iκa−GST)31 4.6 + 0.18i

GST Length (LGST) 0.3 μm c-GST Specific Heat, (Cc−GST) 217 J/kg.K

GST Width (WGST) 0.3 μm a-GST Specific Heat, (Ca−GST) 217 J/kg.K

GST Thickness (tGST) 20 nm c-GST Thermal Conductivity, (kc−GST)
8 0.59 W/m.K

a-GST Thermal Conductivity, (ka−GST)32 0.19 W/m.K

c-GST Density, (ρc−GST)33 6270 kg/m3

a-GST Density, (ρa−GST)33 5870 kg/m3

Table 1.  Dimensions and Material parameters.
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generated uniformly within the GST volume, we designed the heat source to decrease exponentially8 with a factor, 
A = exp(−|αx|·x·ln(10)/10) along the length of the GST (0 ≤ x ≤ LGST) where αx is the optical attenuation per unit 
length of GST. Resulting temperature distribution at the end of the pulse is shown in Fig. 3(e). From inspection of 
this profile, an exponential temperature distribution along the GST length becomes evident. We also observe that 
there exists a significant portion of GST whose temperature is above the melting temperature (877 K) and hence 
will become amorphized (e.g. 57% amorphization for given conditions) after removal of optical pulse. This simu-
lation was performed multiple times keeping the pulse width same but varying the pulse power (amplitude) and 
initial level of amorphization and results are plotted in Fig. 3(f). We find that below 12 mW (200 ps) input pulse, 
irrespective of initial amorphization state, no further amorphization happens. Thus, we choose a input power 
range (26 mW to 12 mW) for the operation of the proposed all-photonic spiking neuron.

Optical response of ring resonator.  The ‘read’ operation of the spiking neuron concerns with the optical 
response of the ring resonator or more precisely, the transmission characteristics at the ‘THROUGH’ and ‘DROP’ 
ports of the device. FDTD simulations were performed in Lumerical. Inc on a ring resonator with Si waveguides 
and SiO2 substrate with a patch of GST on top of the ring waveguide as illustrated in Fig. 1(a). Figure 4(a,b) 
shows the normalized transmission at the ‘THROUGH’ and ‘DROP’ ports for different amorphization levels of 
GST. The insets of Fig. 4(a,b) show the variation of transmission at a resonant wavelength λread = 1529 nm with 
increasing degree of amorphization for the two ports respectively and results show consistency with our theoreti-
cal discussions above. The variation in transmission results from the decreasing absorption co-efficient (α) as the 
GST amorphizes. We observe a FWHM of 1.68 (2.23) nm for a-GST and 2.97 (2.97) nm for c-GST and an extinc-
tion ratio contrast of 7.5 (6.03) dB between the fully amorphous and fully crystalline states in the ‘THROUGH’ 
(‘DROP’) port. Figure 4(c,d) shows the visible contrast in electric field absorption by the GST element in the ring 
resonator for the amorphous and crystalline states of GST for an on-resonance incident wave. The slight shift in 
the resonance peaks can be attributed to the minor variations in the real part of the effective refractive indices of 
the GST at different states, which can be expressed as6:
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These characteristics show that the outputs at the ‘THROUGH’ and ‘DROP’ ports decrease and increase 
respectively with increasing degree of amorphization which is a desirable characteristic for integration in both the 
positive and negative direction. We leverage this characteristic by connecting the outputs from the ‘THROUGH’ 
and ‘DROP’ ports of two devices to an interferometer, as shown in Fig. 2(a) to obtain the resultant integration of 
the membrane potential as described earlier. Thus, the progressive optical responses of the ring resonator for var-
ious percentage amorphization are in agreement with the desired characteristics for the neuronal system to show 
integrating action. Finally, the contrast between transmission of a-GST and c-GST for a rectangular waveguide 
is shown in Fig. 4(e).

Spiking Neural network inferencing framework.  A neural network is comprised of multiple layers 
of neurons connected through synapses. The operation of any layer in a neural network involves computing 

   

f)

e)a)

b)

c)

d)

Figure 3.  (a) Experimental benchmarking on a Si3N4-SiO2 ridge-waveguide system, validating our simulation 
framework. (b) Simulated volume of the GST section in the ring resonator described in Fig. 1(a) delineating 
the different materials used. Surface electric field propagation of (c) c-GST and (d) a-GST shows significant 
contrast. (e) Temperature distribution along the length of cGST. (f) Plot of final percentage amorphization as a 
function of initial percentage amorphization and input power.
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the dot-product of the inputs and weights of the synapses, which gets transferred through the neuron to the 
next layer. To that effect, the synaptic network can be represented as a dot-product engine that multiplies the 
inputs with the corresponding synaptic weights and computes a weighted sum which is received by the neuron. 
Such a dot-product framework can be potentially implemented by GST-based photonic synapses. Such a syn-
apse can draw its inspiration from a GST-based on-chip photonic synapse10 recently proposed. The proposed 
integrate-and-fire spiking neuron can be integrated with these photonic synapses in an all-photonic implemen-
tation of a spiking neural network. To analyze the performance of such an all-photonic neural network, we built 
a device to algorithm framework by mapping the device characteristics to implement the proposed neuron in 
an algorithm level neural network inferencing setup. Such a system-level simulation is quintessential to validate 
the operation of the proposed integrate-and-fire neuron. For the current analysis, we assume ideal operation of 
the dot-product engine. We consider a fully connected network consisting of 3 layers, the input layer, the hidden 
layer and the output layer as shown in Fig. 5(a). In such a network, each neuron receives inputs from all the neu-
rons of the previous layer. We study the performance of the aforementioned fully connected neural network in a 
standard handwritten digit recognition task based on the MNIST dataset21. The MNIST dataset consists of 60000 
training images and 10000 testing images. The weights of the synapses are trained using the Backpropagation 
algorithm22 as in case of traditional Artificial Neural networks (ANN). During inferencing, we use a conversion 
mechanism23 from ANN to SNN where the neurons with ‘ReLU’24 activation functions in the ANN are replaced 
by the proposed integrate-and-fire neurons. The dependence of final state of the device on the input and initial 
state of the device as shown in Fig. 3(f) was used to determine the state of each neuron after each time-step. Then, 
the transmission characteristics of the ports of the ring resonators in the proposed neuron as shown in Fig. 4(a,b) 
was used to determine the final membrane potential of each neuron. Each pixel of a 28 × 28 input image is divided 
into a stream of spikes whose frequency is proportional to the pixel intensity. The proposed integrate-and-fire 
neurons receive the dot product of the input spikes in a certain time-step t and the corresponding weights of syn-
apses connecting the neuron and the inputs as shown in Fig. 5(b). Upon receiving the dot product stimulus, the 
neurons integrate its membrane potential at that time-step. Mathematically, for jth neuron, this can be represented 
similar to Eqn. 6:

V t V t I t w[ ] [ 1] [ ]
(8)j j

i
i ij∑= − +

where Vj[t] is the internal state or the membrane potential of the jth neuron at time t, Ii[t] is the ith input at 
time t, wij is the weight of the synapse connecting the ith input to the jth neuron. The details of the synaptic net-
work implementation in the photonic domian will be a future course of study, however, similar concepts have 
been well-explored in the electrical domain4. Any synaptic network is essentially a dot-product engine perform-
ing element-wise multiplication of the inputs and the synaptic weights. Such a dot-product engine receives an 
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Figure 4.  Normalized Transmission at the (a) ‘THROUGH’ and (b) ‘DROP’ ports with increasing degree of 
amorphization for a particular range of frequencies including a resonance peak at λread = 1529.1 nm. As the 
degree of amorphization increases, transmission at ‘THROUGH’ (‘DROP’) port decreases (increases) thus 
realizing negative (positive) integration action of the neuron. (c) and (d) Shows the top-view E-field distribution 
of a GST-embedded ring resonator for c-GST and a-GST showing higher field absorption for the former when 
the wave passes the GST region. (e) High contrast between c-GST and a-GST for the rectangular waveguide in 
the firing unit of the neuron.
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N-dimensional input vector and provides an M-dimensional output vector which can be mathematically repre-
sented as:
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where [wij] is a N × M weight matrix.
To account for weights of either polarity, we represent the weights in two different dot-product engines as 

shown in Fig. 5(b). We can interpret the weight wij to possess a positive and negative component:

= −+ −w w w (10)ij ij ij

= | | = <− +w w w w, 0, when 0 (11)ij ij ij ij

= = >+ −w w w w, 0, when 0 (12)ij ij ij ij

Figure 5.  (a) Fully connected ANN topology showing 3 interconnected layers, namely, the input layer, the 
hidden layer and the output layer26, (b) Schematic of potential integration of an integrate-and-fire neuron 
in a spiking neural network framework consisting of bipolar weights. The positive and negative weighted 
sums are computed using two separate dot-product engines and input to two different ring-resonators. The 
bidirectional integrating action of the two ports of the ring resonator is leveraged to calculate the effective 
membrane potential under the action of the bipolar weighted sums. Output spikes are generated when the 
effective membrane potential of the neuron crosses a threshold by the spike generation mechanism described. 
(c) The behavior of the proposed integrate-and-fire neuron in the simulated SNN showing the variation of the 
membrane potential under the action of incident pulses thus showing integrate and firing action.
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This gives us two matrices W w[ ]ij=+ +  and W w[ ]ij=− − . These matrices are represented in the dot-product 
engines such that they return the corresponding dot products:

O I w
(13)j

i
i ij∑=+ +

O I w
(14)j

i
i ij∑=− −

The positive and negative integrating ring resonators in the proposed neuron take these inputs separately and 
integrate in opposite direction such that the resulting integration mimics the desired integration that a biological 
neuron performs, given by Eqn. 7 because ∑ = ∑ − ∑+ −I w I w I wi i ij i i ij i i ij . The resulting membrane potential is fed 
to a Firing Unit as described in Fig. 2(a). A behavorial model of the SNN inferencing framework described above 
was simulated using the MATLAB Deep Learning Toolbox25 using a well-explored network topology23. 
Figure 5(c) shows the progression of the membrane potential of the proposed integrate-and-fire neuron in the 
hidden layer of the simulated SNN under the action of weighted incident spikes with time. The magnitude of the 
weighted incident spikes is essentially equal to I t w[ ]i i ij∑  for the jth neuron at time-step t. It can be observed that 
once the membrane potential of the neuron reaches its threshold, it goes back to its rest potential. In the process, 
it generates a spike that gets fed to the next layer. The same integration process happens in case of the output layer 
neurons as well and the spike activities of all the neurons are monitored. The 10 output layer neurons correspond 
to the 10 classes of image being classified. The neuron with the highest spiking activity over a number of 
time-steps is compared with the test image label and if it matches with the neuron number, the image is classified 
correctly. This device to system level analysis helps us validate the operation of the proposed integrate-and-fire 
neuron. The accuracy of recognition was calculated to be 98.06% after 25 time-steps on the testing set. The accu-
racy suffers a 0.24% degradation with respect to the testing accuracy (98.3%) of a SNN based on an ideal 
integrate-and-fire neurons. This can be attributed to the non-linear transmission characteristics shown in Fig. 4 
and the dependence of the final state on the initial state of the device. Such device inaccuracies can be accounted 
for by modifying the training algorithm26.

The important metrics for performance evaluation on a neuromorphic hardware system are energy efficiency 
and speed. To that effect, the energy and delay performance of the proposed neuron merits discussion. Each 
‘write’ cycle is considered to be 1.5 ns and each ‘read’ cycle for the proposed neuron was considered to be 500 ps. 
The durations of the ‘read’ and ‘write’ pulses were 200 ps. The additional times in the ‘write’ and ‘read’ cycles is to 
ensure that the GST temperature settles to its initial value after the excitation. The ‘write’ times are constrained 
by the transient response of GST to an amorphization pulse, which is shown to achieve times as low as 200 ps, 
experimentally6 when excited with 1 ps pulses. The average energy of a ‘write’ step considered for the simulation 
of the neural network was 4 pJ per neuron per time-step whereas the average ‘read’ energy was 1 pJ per neuron 
per time-step. The energy consumption in the ‘write’ cycles of the neuron can be further reduced by optimizing 
the feature size of the GST element. PCM devices of similar feature sizes27,28 in the electrical domain can consume 
upto 14–19 pJ of ‘write’ energy while operating at speeds of 40–100 ns. Writing into the GST through evanscent 
coupling with photonic waveguides thus achieves a higher energy efficiency and speed, thus promising to rekindle 
the viability of PCMs for fast neuromorphic processing.

Discussion
Neuromorphic engineering has evolved heavily from its dawn as researchers have explored various kinds of 
technologies to mimic the functionality of the brain on an energy-efficient hardware platform. In the electrical 
domain, such technologies have been demonstrated to possess limitations such as speed, energy, process inte-
gration etc. Phase change materials, in particular, have hit the scaling bottleneck where further improvements in 
energy-efficiency would require reducing ‘write’ speeds significantly. To beat CMOS in terms of energy-efficiency 
a 10× reduction5 in current pulse amplitude or increase in pulse duration is necessary. As a solution, we propose 
an all-photonic integrate-and-fire neuron based on the phase change dynamics of GST which promises to achieve 
‘write’ speeds of sub-ns orders. To the best of our knowledge, this is the first demonstration of a biologically 
plausible spiking neuron in the photonic domain involving phase change materials. We also showed that the pro-
posed neuron can be potentially integrated with synapses in an all-photonic spiking neural network inferencing 
framework without any significant drop in classification performance. The proposed design opens up a host of 
possibilities for future implementations of all-photonic SNNs. By modulating the resonant wavelength by varying 
dimensions offers us the opportunity of wavelength multiplexing in an all-photonic spiking neural network. This 
offers substantial benefits such as elimination of cross-talk between neighboring neural elements thus allowing 
the provision of a denser network and in addition, could possibly allow us to implement larger networks on the 
same chip. With the recent advances in Photonic Neuromorphic, the proposed integrate-and-fire neuron fills 
the void of an all-photonic neuron that can be interfaced with photonic synapses10 to build a truly integrated 
all-photonic neuromorphic system that leverages the aforementioned advantages of photonic devices to perform 
ultrafast neuromorphic computation.
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