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Abstract: Haplotype 46/1 (GGCC) consists of a set of genetic variations distributed along chro-
mosome 9p.24.1, which extend from the Janus Kinase 2 gene to Insulin like 4. Marked by four
jointly inherited variants (rs3780367, rs10974944, rs12343867, and rs1159782), this haplotype has
a strong association with the development of BCR-ABL1-negative myeloproliferative neoplasms
(MPNs) because it precedes the acquisition of the JAK2V617F variant, a common genetic alteration
in individuals with these hematological malignancies. It is also described as one of the factors that
increases the risk of familial MPNs by more than five times, 46/1 is associated with events related
to inflammatory dysregulation, splenomegaly, splanchnic vein thrombosis, Budd–Chiari syndrome,
increases in RBC count, platelets, leukocytes, hematocrit, and hemoglobin, which are characteristic
of MPNs, as well as other findings that are still being elucidated and which are of great interest for
the etiopathological understanding of these hematological neoplasms. Considering these factors, the
present review aims to describe the main findings and discussions involving the 46/1 haplotype, and
highlights the molecular and immunological aspects and their relevance as a tool for clinical practice
and investigation of familial cases.

Keywords: JAK2 germline haplotype; myeloid neoplasms; haplotype; molecular pathogenesis; single
nucleotide polymorphisms

1. Introduction

Myeloproliferative neoplasms (MPNs) consist of a set of hematological cancers that
are characterized by hyperplasia of one or more elements of the myeloid series (leukocytes,
platelets, and red blood cells) with effective maturation, proliferation [1–3] and the pos-
sibility of progression to medullary fibrosis or leukemic transformation [4]. The global
incidence is six cases per 100,000 individuals [5], affecting mostly individuals between 60
and 70 years old, and is more prevalent in white males [3,5].

For MPNs, the WHO Classification of Tumors of Hematopoietic and Lymphoid
Tissues—5th edition, 2022, classifies the following hematological malignancies: chronic
myeloid leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET), pri-
mary myelofibrosis (PMF), chronic neutrophilic leukemia (CNL), chronic eosinophilic
leukemia (CEL), juvenile myelomonocytic leukemia (JMML), and myeloproliferative neo-
plasm, not otherwise specified (MPN-NOS) [6,7]. The MPN BCR-ABL1—negative [5].
The PV, ET, and PMF are the most frequent (Table 1), and share genetic variations that
constitutively activate the physiological signal transduction pathways responsible for
hematopoiesis, which leads to an increase in myeloid proliferation, though without impair-
ing maturation and cell differentiation [3,5,8,9].
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Table 1. Features of BCR-ABL1-negative myeloproliferative neoplasms. MPNs: myeloprolifera-
tive neoplasms.

MPN Clinical Description Epidemiology

Polycythemia
vera (PV)

Unregulated proliferation of erythroid series
elements and increased granulocyte and
thrombocyte counts (panmyelosis) [4,5,7]

Incidence of 0.5–4.0 cases per 100,000 Australian
individuals [10], Europeans [11,12], Koreans [13,14],
New Zealanders [15], and North Americans [11] aged
between 60 and 70 years [5,14–18]

Essential
thrombocythemia (ET)

Elevated number of platelets in peripheral
blood (>450 × 109/L), caused by
megakaryocytic hyperplasia in the bone
marrow, with alteration of other medullary
sectors (erythrocytic or granulocytic) in a
qualitative or quantitative way [4,5,19]

Affects individuals between the fifth and sixth decade
of life with an incidence between 0.9–2.4 cases per
100,000 in North Americans [20], Koreans [13,14], and
New Zealanders [14,15,20].

Primary
myelofibrosis (PMF)

MPN with a worse prognosis, characterized by
the proliferation of predominantly abnormal
megakaryocytes and granulocytes in the bone
marrow, deposition of reticulin fibers, and
extramedullary hematopoiesis [4,5,21]

Affects individuals between the sixth and seventh
decade of life [5] and has an incidence of 0.33 cases per
100,000 individuals per year in North America [15];
0.4 cases per 100,000 in the Republic of Korea [14]; and
0.88 cases per 100,000 individuals in New
Zealand [15].

In MPNs, the JAK-STAT pathway plays an important role in the signaling of cytokines
and growth factors, which act in the regulation of cell proliferation, differentiation, sur-
vival, immune response, and oncogenesis [22–24]. Previous studies have linked prolonged
activation of JAK-STAT signaling with aberrant hematopoietic stem cell development and
hematologic malignancies [25–28]. These alterations are associated with the presence of
gain-of-function genetic variants in the JAK2 gene, which encodes the protein of the same
name. These variants cause constitutive activation of the pathway, resulting in myeloprolif-
eration and cytokine production, which is the definitive phenotype of MPNs [26,27,29].

2. Janus Kinase Gene (JAK2)

The Janus kinase 2 gene (HGNC ID: 6192) is located on chromosome 9p24.1 [30],
and has 142,939 base pairs (bp) in which the promoter region, 25 exons, 25 introns, and
the terminator region are located. The coding DNA sequence (CDS) is composed of
3399 nucleotides distributed between exon 3 and 25, as established by its reference sequence
(RefSeq.: NG_009904.1; NM_001322194.2), which is made available by the National Center
for Biotechnology Information (NCBI). This gene presents alternative splicing, giving rise
to seven transcripts of sizes that vary from 6900 to 7000 bp, and encodes three isoforms (A,
B and C) of the Janus kinase 2 (JAK2) protein [30–32].

The JAK proteins consist of a family of nonreceptor cytoplasmic kinases that encom-
pass four mammalian protein types: JAK2, which is part of the signaling of homodimeric
receptors, such as the erythropoietin receptor (EPOR), the thrombopoietin receptor (MPL),
and the granulocyte colony stimulating factor (G-CSFR), which are also used by some
heterodimeric receptors; and JAK1, JAK3, and tyrosine kinase 2 (TYK2), which are useful
in signaling heterodimeric receptors [21,27,29]. These proteins are relatively large and have
approximately 1150 amino acids and a molecular weight ranging from 116 to 140 kDa [33].
JAK2 deserves attention due to its role in the hematopoietic proliferation mechanism,
especially in relation to MPNs.
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JAK2 consists of four domains: two kinase domains, JH1 (tyrosine kinase, catalytically
active, and located in the C-terminal portion) and JH2 (pseudokinase and catalytically
inactive), which is responsible for inhibiting the JH1 domain and promoting cytokine-
dependent activation; a FERM-like domain (4.1/ezrin/radixin/moesin) constituted by
the homologous domains JH5, JH6, and JH7, located in the N-terminal portion, which is
responsible for the noncovalent binding of JAKs to the cytokine receptor; and an SH2-like
domain (Src Homology 2), which contains the JH4 and JH3 homologous domains [21,34].
Experimental studies reveal that the homozygous germline deletion of JAK2 alleles results
in embryonic lethality due to ineffective erythropoiesis, since JAK2-deficient hematopoietic
progenitors do not respond to erythropoietin stimulation [27,29]. This highlights the
importance of genetic aspects involving the JAK2 gene, its locus, and the events that affect
this region, such as acquired uniparental disomy of chromosome 9p.

2.1. Acquired Uniparental Dysomy

Oncological diseases are characterized by instability and the gradual accumulation
of genetic alterations over time [35], which are caused by genetic events intrinsic to the
cell or by exposure to external mutagens [36]. Uniparental disomy (UPD) is one of these
alterations, and is recognized as a hallmark of cancer genomes [35].

UPD was described in 1980 [37] and is defined as the occurrence of the inheritance
of two homologous chromosomes from the same parental origin [38], and is caused by
segregation errors in meiosis I or meiosis II [35]. The latter gives rise to isodysomy [39],
in which the affected region is genetically identical, thus, resulting in the development
of several genetic disorders through the gain or loss of chromosomal regions, or by the
presence of two identical copies of abnormal genes or nucleotide sequences [38]. This event
also occurs in somatic cells, and receives the nomenclature of acquired uniparental disomy
(aUPD). In it, adventitious genetic variants are amplified, and lead to a growth advantage
through the conversion of a heterozygous cell into a homozygous cell, with no change in
the number of DNA copies [35,40–46]. Two possible mechanisms can lead to the occurrence
of aUPD: (1) nondisjunction of chromatids (cells with the same originally duplicated
chromosome are generated); or loss of chromosomes due to delay in mitotic anaphase [39]
and, in an attempt to balance the loss of a chromosomal molecule, a duplication of the
remaining chromosome as a template is made, resulting in two identical chromosomes.
Another possibility is (2) reciprocal exchange of chromosomal material during mitosis
(mitotic recombination), such as chromatids, thus generating several possible results [35,39]
(Figure 1).

Also known as copy number neutral loss of heterozygosity (CNN-LOH) [47,48], aUPD
was first identified by Kralovics [41] in patients with PV, and describes a mitotic recom-
bination associated with neutral loss of heterozygosity of chromosome 9p [24]. Over the
years, this abnormality has been identified in several loci in a variety of neoplasms. Its
impact is the conversion of genetic variations to the homozygous state in essential genes,
such as JAK2 and CDKN2A at 9p, FLT3 in 13q, TP53 in 17p, and others, including WT1,
CBL, RUNX1, and TET, which are related to the initial process or progression of these
diseases [43]. In the context of MPNs, more specifically in PV, this alteration proved to
be a common finding, as in other hematological malignancies [35,39,43], and defines the
molecular scenario of MPNs [49], with the JAK2V617F variant being reported as present in
most patients with MPN [48,50].
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Figure 1. Mechanisms related to acquired uniparental disomy in hematopoietic pluripotent stem 
cells. This process can occur due to (1) (A) nondisjunction of sister chromatids or (B) delay in an-
aphase causing trisomy and monosomy of one of the chromosomes of the set, where in the cell with 
monosomy there is duplication of the remaining chromosome in the attempt to balance the loss of a 
chromosome, which results in two identical chromosomes in the same cell; or by (2) reciprocal ex-
change of chromosomal material during mitosis (mitotic recombination), such as chromatids, 
which generates several possible outcomes. In this example, applied to chromosome 9, the presence 
of the 46/1 haplotype and the JAK2V617F variant is illustrated, and is conditioned to the state of 
homozygosity. 
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Figure 1. Mechanisms related to acquired uniparental disomy in hematopoietic pluripotent stem
cells. This process can occur due to (1) (A) nondisjunction of sister chromatids or (B) delay in
anaphase causing trisomy and monosomy of one of the chromosomes of the set, where in the cell
with monosomy there is duplication of the remaining chromosome in the attempt to balance the loss
of a chromosome, which results in two identical chromosomes in the same cell; or by (2) reciprocal
exchange of chromosomal material during mitosis (mitotic recombination), such as chromatids,
which generates several possible outcomes. In this example, applied to chromosome 9, the presence
of the 46/1 haplotype and the JAK2V617F variant is illustrated, and is conditioned to the state
of homozygosity.
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2.2. JAK2V617F Variant

Discovered in 2005 by Kralovics [48], the JAK2V617F variant (dbSNP ID: rs77375493)
revolutionized the genetic knowledge and diagnosis of MPNs [51]. JAK2V617F, an ac-
quired somatic variant with gain of function with exchange of a guanine (G) for thymine
(T) at nucleotide 1849 (c.1849G>T) of exon 14 of JAK2, results in the substitution between
valine (V) and phenylalanine (F) at position 617 of the polypeptide chain, which affects
the JH2 domain of the protein [27,31]. The variant affects JH2 auto-inhibitory activ-
ity, with constitutive activation of JH1 as a result and, consequently, of the JAK-STAT
pathway, which interferes with intracellular signaling [14]. JAK2V617F causes the trans-
formation of hematopoietic cells into cytokine-independent growth, thus, promoting
tumorigenesis, tumor progression, and inflammation caused by continuous stimulation
within the hematopoietic cell [17,26,52–54].

JAK2V617F is the most common genetic event in BCR-ABL1-negative myeloprolifer-
ative neoplasms. It is present in >95% of patients with PV and 50–60% of patients with
PMF and ET [3,14,55,56], and is considered as a criterion for diagnosis by the WHO [5,7].
Patients with JAK2V617F negative PMF and ET may have other genetic alterations in
exons 10 and 9 of the MPL and calreticulin (CARL) genes, respectively [57–59]. Leucine
to lysine substitutions at codon 539, glutamic acid deletions at codon 543 and insertions
leading to the substitution of phenylalanine at codon 547 have already been identified
in exon 12 of the JAK2 gene of patients with PV [51,60–64], which demonstrates the
complexity of the genetic scenario involved in MPNs.

Different studies have highlighted the origin of JAK2V617F in a multipotent hematopoi-
etic stem cell [29,50,65], which provides a selective advantage over the normal multipo-
tent hematopoietic cell, and results in myeloid differentiation and a myeloproliferative
phenotype [24,50]. As a result, the abnormal myeloid clone proliferates and interrupts
the medullary microenvironment, which promotes a malignant niche that favors stem
cells with genetic alterations in relation to normal ones, and leads to an eventual mobi-
lization of mature cells to the peripheral blood. This explains the presence of the variant
in leukocytes in genetic analysis [50,54,65,66]. Furthermore, activation of the JAK-STAT
pathway is more evident in patients with a high load of the variant JAK2V617F allele,
thus, demonstrating that there are differences in signaling based on the presence of
heterozygous or homozygous JAK2V617F [24,55].

Approximately one third of JAK2V617F positive PV and PMF cases are homozygous
with variant allele loads greater than 50%, whereas in ET it is lower (approximately
25%) and close to 100% in post-PV or post-ET patients [14]. In PV, patients that are
homozygous have a longer disease duration and a risk of progression to myelofibro-
sis [67]. JAK2V617F homozygosity is a consequence of aUPD, which accompanies the
variant and reduces it (and any allele that is in linkage disequilibrium) to a homozygous
state, leading to duplication of the mutated allele and consequent loss of the unmutated
allele [38,45,47,67–70]. This relationship between the two events (homozygosity and
aUPD) raises the question of how distinct genetic mechanisms can gradually correlate in
order to increase the allelic dosage of a known gain-of-function genetic variant in MPNs,
with the potential to lead to oncogenic transformation of an aggressive premalignant
clonal cancer, such as a leukemic transformation [45].
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As described, JAK2V617F leads to clonal proliferation in MPNs; however, it is not
clear which factors influence the development, severity and phenotype of the disease [66].
The latter is possibly related to individual characteristics (sex, associated inflammatory
disease), and genetic abnormalities (driver genes, pathogenic genetic variants and other
chromosomal aberrations) [71]. Different signaling pathways, epigenetic modulation,
immune system, lifestyle, JAK2V617F variant allele load, and exceptional germline alleles
found in population-wide and hereditary cases are other possible factors involved in the
development of JAK2V617F73-associated MPNs [71,72]. The discovery of this genetic
alteration has brought benefits for the therapy and diagnosis of MPNs; however, some
questions remain unclear, such as the events that precede its acquisition, since it is not a
germline genetic variant [29]. New speculations have arisen with the discovery of the 46/1
haplotype, whose studies aim to clarify most of these questions.

3. 46/1 Haplotype

Humans are diploid organisms with two copies of each chromosome, similar to each
other and differ only in a small fraction of information (0.1%) [73]. These differences
are contained in sites of single-base genetic alterations called single nucleotide variants
(SNVs), which contribute to interindividual and inheritable differences in complex pheno-
types [74,75]. A group of genetic variations present on the same chromosome, which are
not easily separable by recombination and therefore tend to be inherited together, is called
a haplotype [76].

Most of these variants make up a haplotype and are in linkage disequilibrium (LD), a
nonrandom association of alleles at two or more loci that exists because of shared ancestry
of contemporary chromosomes [77]. This is related to the timing of variant events and
genetic distance, and can provide valuable information on the location of disease variants
from genetic markers [77–80]. SNVs within a haplotype block originally arose from a
single historical event of genetic variation and, therefore, are associated with closely
related variants that were present on the ancestral chromosome in which these changes
occurred [81]. For this reason, and other reasons, strong statistical associations between
genetic variants are described, and the presence of a particular variant at one site can
predict or “mark” the presence of a specific variant at another locus (carrying too much
genetic information) [75].

Haplotypes have become useful tools in genetic investigation thanks to the efforts
established by HapMap International [77,80–82] and the 1000 Genomes Project Consor-
tium [73,83,84]. The data obtained from these initiatives can be used for studying human
migration, evolutionary selection, population structure, imputation of intronic regions, and
understanding of the genetic association between pathological variants [85].

Between 2008 and 2009, lines of investigation involving haplotypes and MPNs were
reported by different research groups [86,87]. Haplotype 46/1 was the first set of germline
risk variants described in MPN and one of the first signs of hereditary predisposition, also
associated with cases of splenomegaly, splanchnic venous thrombosis (SVT), increased
hematocrit and Budd–Chiari syndrome in patients positive for JAK2V617F [88–91], inflam-
matory bowel disease [92], ulcerative colitis [93] and Crohn’s disease in patients without
MPNs [93–95].

The nomenclature of this haplotype was first described by Jones et al. [24], who ob-
served 109 cases of identical haplotypes of the JAK2 gene in 142 alleles when the JAK2V617F
variant was present. As residual wild-type alleles, the haplotype was identified in only 12%
of cases. These propositions demonstrated that the loss of JAK2V617F heterozygosity is not
random, and happens in a specific JAK2 haplotype. In order to expand the understanding
of these data, Jones et al. [24] selected 14 SNVs, which resulted in 92 possible haplotypes. Of
these, two (numbers 46 and 1, collectively referred to as 46/1) were identical and frequent
in JAK2V617F positive patients compared to controls.
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Consisting of hundreds of variants, this haplotype extends over a linkage disequilib-
rium block with a length between 250–280 Kb of chromosome 9p.24.1, which encompasses
three genes: JAK2, Insulin like 6 (INSL6—RefSeq.: NG_046969.1; HGNC ID: 6089) and Insulin
like 4 (INSL4—RefSeq.: NC_000009.12; HGNC ID: 6087); the latter two are not expressed in
the hematopoietic system [47,66,71,88,96] (Figure 2).
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Figure 2. Schematic representation of the 46/1 haplotype based on the JAK2 gene reference sequence
(NG_009904). The haplotype extends over a block with approximately 250–280 kb on chromosome
9p, and encompasses three genes (JAK2, INSL6, and INSL4) and regions with a high rate of genetic
variants in JAK2, such as exon 12 (with alterations such as insertions, deletions, and substitutions) and
exon 14 (location of JAK2V617F). Four variants (rs3780367, rs10974944, rs12343867, and rs1159782)
mark the haplotype and establish another nomenclature based on the variant alleles, GGCC, as also
mentioned in the literature [97].

Different SNVs were mapped, with the vast majority being identified in Table 2 and
Figure 3. Some are used to identify the 46/1 haplotype. The genetic alterations work only
as markers, and the true causal variants still remain poorly known or totally hidden in the
LD [47] block. The following four SNVs in LD are considered the most studied markers of
the haplotype: rs3780367 (NG_009904.1:g.83511T>G), rs10974944 (NG_009904.1:g.85587C>G),
rs12343867 (NG_009904.1:g.88945T>C), and rs1159782 (NG_009904.1:g.92873T>C), which are
located at introns 10, 12, 14, and 15, respectively. The minor allele frequency (MAF) [83]
is shown in Figure 4. rs10974944 was the first to be associated with the emergence of
MPNs [98]. Studies carried out in Europe, Japan, China, North America, and Brazil have
shown that the variant allele of rs10974944 (G) is more frequent in all MPN patients
(especially those positive for JAK2V617F) than in the control population [68,76,89,98–100].
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Table 2. Single nucleotide variants (SNVs) identified in studies on the 46/1 haplotype and their
respective information described in the literature.

SNV References Conclusions

rs10974944 [68,76,89,97–102]

Studies carried out in populations of Brazilian, Japanese, and Chinese
origin; this variant has a strong association with JAK2V617F positive MPN
patients when compared to controls; rs10974944 (G) is a risk
allele for MPNs.

rs12686652
[89] Significantly associated with patients with PV in this case-control study,

but no association with MPNs in the Japanese population.rs12335546

rs12343867 [71,89,90,99–102]

Associated with positive JAK2V617F in the populations of Japan, China,
and Taiwan, especially in individuals with PV; this is used as a haplotype
marker. Association with splenomegaly has been reported and is in LD
with other SNVs of haplotype 46/1.

rs4495487 [89]
More frequent in PV patients in a case-control study in Japan. It has not
been reported in Caucasian populations and may contribute to the MPN
phenotype in the Japanese population.

rs691857

[101] No significant association.
rs17803986
rs7848509
rs10758677

rs3780367 [103,104] In linkage disequilibrium with other markers of the haplotype and has
significant association with MPNs, but no population data.

rs12340895 [100] Associated with JAK2V617F positive MPNs in Chinese patients.

rs12342421 [100]
Associated with the predisposition to develop JAK2V617F positive MPNs
(OR = 3.55) in carriers for the minor C allele (in Chinese populations) with
a 250% increased risk for disease, regardless of haplotype 46/1.

rs1159782 [99,104] It is in linkage disequilibrium with markers of the 46/1 haplotype.
rs10119004

[100] Associated with positive JAK2V617F and reported for the first time in the
same study

rs12343065
rs10815162
rs7857730
rs7847294
rs3780378
rs2149556
rs2149555
rs1887428 [103] Able to alter the expression rate of JAK2.

The rs10119004 variant (NG_009904.1:g.:85805G>A; MAF of G: 38%), located close to
rs10974944, was cited in studies involving MPNs, and was associated with MPNs in the
Chinese population [100].
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There is a wide academic-scientific discussion regarding the variants present in the
haplotype, and these genetic alterations cannot be considered as the only cause of clonal
proliferation, since, for the development of an MPN, there is a need to acquire additional
somatic variants, such as the JAK2V617F variant [47]. Therefore, 46/1 is described as one
of the possible “pre-JAK2V617F” events, which is a predisposition factor that is strongly
linked to three to four times higher chances of development of MPNs and responsible for
half of the risk of MPNs attributable to inherited factors [69,109–111].

4. Association between the 46/1 Haplotype and the JAK2V617F Variant

The acquisition of somatic variants is a pathogenic mechanism of great importance
in the development of MPNs, and genetic antecedent factors also play an important role
in their development [89]. In the context of these hematological malignancies, a possible
association between the 46/1 haplotype and the JAK2V617F variant has been described,
for example, in the study carried out by Kilpivaara [98], which identified (1) the rs10974944
variant (C/G) in the JAK2 gene, which predisposes the development of JAK2V617F positive
MPNs, (2) three MPN modifier loci unknown at the time of the study, and reported that
(3) JAK2V617F acquisition is preferentially acquired in cis with the predisposing allele, and
that (4) rs10974944 and JAK2V617F are located in a common haplotype block that does not
span the JAK2 5′ promoter (they are not in LD [101]), thus, the rs10974944 (G) allele may
predispose the JAK2V617F somatic variant on the same strand [98].

Likewise, the germline findings identified support the hypothesis that 46/1 contributes
to the predisposition of MPNs. These findings are in agreement with the reports by
Olcaydu [101], in which the haplotype rs3780367G/rs10974944G/rs12343867C/rs1159782C
was strongly associated with JAK2V617F [101].

Haplotype 46/1 Agreement with JAK2V617F in Different Populations

Previous studies have reported the association of 46/1 haplotype variants with
JAK2V617F in ethnically distinct populations. In one study performed in China, a signifi-
cant association was described between the JAK2V617F variant and the rs10974944 (G) of
haplotype 46/1, with a higher frequency being observed in patients after comparing them
with controls [68]. Similar results were observed in Japan by Ohyashiki [89], who evaluated
138 patients and 107 healthy subjects aged 30–87 years, and highlighted the JAK2V617F
status in the patients (68.8% JAK2V617F positive) and 107 control subjects. Thus, the combi-
nation allele G at rs10974944, allele C at rs4495487, and allele C at rs12343867 was strongly
associated with MPN positive JAK2V617F (OR: 3.07; 95% CI: 1.73–5.46) and discretely
associated with MPN JAK2V617F negative (OR: 2.26, 95% CI: 1.01–4.7) when compared to
controls. This demonstrates that carriers of 46/1 have a 200–300% increased risk (2–3 times
more likely) of acquiring JAK2V617F when compared to noncarriers. These findings are in
agreement with those of Tefferi [69], Triffa [112], Jones [24], Kilpivaara [98], Olcaydu [101],
Pardanani [87], and Wang [45] who carried out studies with Caucasian populations from
the United States of America and several European countries.

Another study carried out in China evaluated an SNV in LD (rs12340895) with haplo-
type 46/1 in 225 patients and 226 controls, as it was identified as a risk factor for MPNs, as
well as homozygosity at the rs12340895 locus as a factor of susceptibility to JAK2V617F [113].
Similar results were found in the population of Taiwan with SNV marker rs1234387 [90].
The different reports in different populations around the world highlight that the mecha-
nism underlying the acquisition of JAK2V617F is not limited to Caucasians only; therefore,
it must have a relatively ancient evolutionary basis [47].

There are two hypotheses that could explain the association between the 46/1 haplo-
type and the JAK2V617F variant: hypermutability and fertile soil hypothesis [24,45,114].
The hypermutability hypothesis considers 46/1 as more genetically unstable [68], with the
possibility of leading to DNA damage and replication errors [88] as it predisposes one to the
acquisition of JAK2V617F more frequently when compared to other haplotypes [96]. Sup-
port for this hypothesis comes from the observation that JAK2V617F apparently appeared
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at least twice in some individuals, and possibly because exon 12 variants are associated
with 46/1, albeit at a lower risk [47,115]. On the other hand, the fertile soil hypothesis
assumes that hematopoietic stem cells carrying 46/1 have a selective advantage when
oncogenic variants occur [96,99]. Even with different propositions, one hypothesis does not
cancel out the other and both can coexist in the genetic scenario of these neoplasms [76].

5. Contribution of 46/1 to Inflammatory Dysregulation in MPNs

Hematopoietic stem cells require a set of tightly regulated and conserved cooperative
interactions with their stromal cells in order to carry out the normal processes of dormancy,
self-renewal, proliferation, locomotion, and differentiation. These depend on the expression
of hematopoietic genes, interaction between cells, production, and release of a variety of
cytokines and chemokines [116] related to the inflammatory mechanisms involved in MPNs.
In our previous review, we identified that the JAK2V617F variant plays a relevant role in
this complex process by interfering with the regulation of several pathways involved in the
production of cytokines, tumorigenesis, and inflammation mediators [56].

Studies suggest that the haplotype is related to an elevated expression of JAK2, INSL6,
and INSL4, which causes DNA recombination, emergence of genetic variations, or abnormal
methylation of the promoter region [97,117]. Hermouet [97] suggests that 46/1 may include
unidentified intronic repeating DNA sequences that facilitate DNA recombination and
overexpression of the JAK2 gene located on the recombined allele. In this context, JAK2
transmits the proliferation signals of all cytokines critical to myelopoiesis, and the 46/1
haplotype would predispose carriers to chronically excessive stimulation of myelopoiesis.
This exposes myeloid progenitors to an exacerbated mitotic process, and increases the
risk of error and alteration in myelopoiesis-directed genes, such as JAK2 and MPL, TET2,
ASXL1, LNK, CBL, and EZH2 [97]. One study showed that MPN positive patients present
a high expression of mRNA of JAK2, which would be related to a greater probability of
myeloid cells dividing in response to the protein activating cytokines, thus, making them
prone to replication errors [97]. In addition, the haplotype may, in theory, contribute to
a preponderant downstream signaling of constitutively activated JAK2V617F through
increased cytokine production by bone marrow stromal cells, possibly mediated by INSL4
and INSL6 [71,97,117]. The latter has already been reported to be expressed in rat medullary
stromal cells [118].

The haplotype can also influence the acquisition of somatic variants in JAK2, as well
as facilitate the expression of INSL6 and INSL4 in medullary stromal cells, which leads
to abnormal signaling of cytokines with proinflammatory and promyeloid action, and
generates a favorable environment for the mutated clone (Figure 5). It is not known for sure
which cytokines would be related; however, several clinical studies with MPN patients
have already demonstrated increased plasma levels of IL-1, IL-2, IL-6, IL-8, IL-12, TNF-α,
and IFN-γ and growth factors, including granulocyte-macrophage colony-stimulating
factor (GM-CSF), platelet-derived growth factor (PDGF), and vascular endothelial growth
factor (VEGF) [119,120]. In PMF, cellular and extracellular levels of several cytokines
with angiogenic and fibrinogenic action, such as transforming growth factor beta (TGF-ß),
platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF), and vascular
endothelial growth factor (VEGF), are increased, among others that condition the medullary
stroma to create a favorable pathological microenvironment that nourishes and protects
malignant cells via histological alterations of bone marrow [121,122]. It can be hypothesized
that the haplotype acts as a possible factor in the genetic susceptibility of the host to an
inadequate myeloid response to cytokines, thus leading to an intensified inflammatory
state and increased risk of myeloid neoplasms, which is accelerated by the acquisition of
somatic genetic variants [9,117].
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Figure 5. Possible association of the 46/1 haplotype and MPNs. (1) Medullary stromal cells positive
for 46/1 may show dysregulation in genes, such as INSL4 and INSL6, which may be involved in the
(2) excessive production of proinflammatory and promyeloid mediators. These cytokines (3) interact
with normal and haplotype-positive and JAK2V617F multipotent stem cells, promoting (4) exac-
erbated proliferation (proliferative advantage) of the mutated cells, which, in turn, continue their
process of (5) differentiation and cell maturation, and trigger the (6) clonal myeloproliferative disorder.

6. Clinical and Laboratory Characteristics of MPNs Related to the 46/1 Haplotype

The relationship between JAK2V617F and the 46/1 haplotype is clear and has been
pointed out by most studies, especially with patients with PV. This issue was confirmed
by Ohyashiki [89], who identified a greater presence of haplotype variants, significantly
elevated hemoglobin levels in patients with JAK2V617F and the GCC genotype compared
to those with the GCC genotype, but without JAK2V617F. It is also interesting to note
that some studies associate the haplotype with certain clinical findings (splenomegaly,
splanchnic vein thrombosis, and Budd–Chiari syndrome) and laboratory findings (in-
creased platelet, leukocyte, hematocrit, and hemoglobin counts) that are characteristic of
MPNs [86,90,91,99,123,124]; however, this correlation is not a consensus [96,125]. Even so,
it cannot be ignored that hemoglobin and hematocrit can be altered to levels above normal
in cases of homozygosity and the high load of variant allele for JAK2V617F [125]; and the
latter has already been shown to be related to 46/1 in several studies [86,125].

As discussed earlier in this review, homozygosity for the somatic variant is related to aUPD
which, in turn, can be caused by 46/1 due to the combination of large portions of the two parental re-
gions of chromosome 9p [96], i.e., these three elements (aUPD + HAPLOTYPE 46/1 + JAK2V617F),
in theory, work together to establish the myeloproliferative and hereditary phenotype of
MPNs. In the case of the latter, more specifically on the heritability of variants, it is believed
that a marker allele situated on the same haplotype as a causative allele (JAK2V617F) will
likely be inherited together, which would not be possible if the alleles are in different
haplotypes [126].
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7. Inheritance of MPNs and the Relationship with the 46/1 Haplotype

The development of a hematological neoplasm is dependent on several factors, such as
age, environment, and host genetics [46]. Inherited genetic factors alter risk at each stage of
development, i.e., from cancer acquisition to its progression [46,127]. The hereditary forms
of MPNs can be divided into the following two main categories: (1) hereditary syndromes
that affect a single lineage with Mendelian inheritance, high penetrance, and polyclonal
hematopoiesis; and (2) hereditary predisposition to true MPNs, which are characterized by
low penetrance, clonal hematopoiesis, presence of somatic variants (e.g., JAK2V617F), and
risk of progression to acute myeloid leukemia (AML) [46,128].

In hereditary predisposition, there is a possibility of occurrence in two or more mem-
bers of the same family and, in this context, the term “familial” is used to describe an
unknown alteration of the germline that predisposes the acquisition of an MPN [46]. A fam-
ily study of more than 11,000 patients with MPNs and their nearly 25,000 first-degree
relatives found a 5–7-fold increased risk of developing MPNs among first-degree relatives
of patients with MPNs [70]. Another survey, carried out with 72 families, characterized
50% of the individuals included in the study with an inheritance pattern consistent with
autosomal dominance with incomplete penetrance [54].

There is growing evidence to suggest that hereditary factors are responsible for a
broader effect on susceptibility to the development of MPNs [47,129]. Somatic variants
seen in familial MPNs are responsible for the proliferative advantage and subsequent
cellular clonality, while the inherited component predisposes one to the acquisition of
somatic gene variations [46,130]. However, there are studies that do not agree with this
direct relationship, and point out that other factors, in addition to the haplotype, would
explain the inheritance of MPNs [44,46,109,115], such as, for example, the interaction with
the rs2736100 (C) allele of the TERT, which is significantly found in familial MPNs when
compared to sporadic MPNs [131]. Even if this portion disagrees with the propositions
made, evaluating the variants that are part of the 46/1 germline haplotype in familial cases
becomes relevant in order to understand its behavior within the heredity scenario and its
possible relationship with the familial MPNs.

8. Conclusions and Perspectives

It is notable that the genetic scenario of MPNs is complex and still under elucidation.
The 46/1 haplotype is an important finding in this discovery process, mainly due to
its relationship with the JAK2V617F variant, and insertions and deletions of exon 12 of
JAK2 [88]. There is also a possible association with exon 10 variants of the MPL gene [132],
and this is still under discussion [133,134], as well as the CALR gene [135,136]. Considering
the haplotype as the object of analysis, the complexity of studying the region in which
it is located cannot be excluded because, in addition to being considerably extensive, it
has hundreds of SNVs in LD that are located in the intron regions, and which have been
still scarcely studied. However, it would be naive to infer that within this region only one
variant would be germline and responsible for the positivity of JAK2V617F or heredity
of MPNs.

Interestingly, some of the associations with 46/1 described so far involve patholo-
gies that are accentuated or characterized by inflammatory dysregulation: MPNs, AML,
Chron’s disease, inflammatory bowel disease, and ulcerative colitis. These relationships
are probably not random and further support the hypothesis that the 46/1 haplotype may
be associated with JAK2V617F and/or other functional variants of the JAK2 gene that have
not yet been described and that play a role in inflammatory dysregulation [117].

The 46/1 haplotype may even establish itself as a viable alternative for monitoring
individuals with MPNs and other myeloid neoplasms. Such an indication is considered
for its association with shortened survival in patients with PMF due to reduced defense
against infections and increased risk of a more severe inflammatory response, which, in
turn, contribute to tissue remodeling in the bone marrow, thus, leading to a myelofibrotic
transformation [24,56,58,97,137]; with the high variant allele load related to a more severe
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MPN phenotype; increased risk of myelofibrotic transformation in patients with PV [69];
and for being a possible factor related to AML with normal karyotype associated with pre-
disposition to an acute myelomonocytic form, which makes it an unfavorable independent
risk factor [117].

Another reported association would be with acute graft versus host disease (aGvHD)
grades II-IV in AML patients undergoing allogeneic hematopoietic stem cell transplantation
(allo-HSCT) [138]. Both this and the other studies cited must have their data confirmed
by other studies with larger and more heterogeneous populations in order to verify the
relationship between these germline variants and MPNs and other myeloid neoplasms. It
is through these confirmations that such variants may become useful in clinical practice in
order to achieve satisfactory results in therapy, as is already the case of haplotypes related
to human leukocyte antigen (HLA) [139].

The use of 46/1 in screening or predictive tests in cases of familial MPNs may be an
alternative to be considered. Even if there is no consensus on the impact of the haplotype
in familial cases, its existence and relationship cannot be disregarded. The investigation of
these variants becomes relevant due to the findings described so far and the association
between early age at diagnosis in familial MPNs [140] and cases of childhood ET already
reported in the literature [141]. The findings from these analyses can be useful for veri-
fying the individual’s probability of carrying an inherited trait, which may or may not
be pathogenic [142], in order to trace the molecular profile of childhood cases (genetic
composition in childhood ET can be more complex than in adults) [141]. In addition, it
makes it possible to predict disease susceptibility, favoring early diagnosis for preventive
strategies and personalized therapies [143,144]. The analysis of haplotype variants in triple
negative patients (who do not have driver variants in the MPL, JAK2, and CARL genes)
can also be useful in this investigative context of MPNs. As established by the WHO,
these patients should be tested for other variants in additional genes, such as ASXL1,
DNMT3A, TET2, EZH2, IDH1/2, and SRSF2, in order to verify the nature of the clonal
myeloproliferative disorder [52]. The inclusion of the haplotype in this screening analysis
would help to provide a better understanding of the genetic scenario of these patients
in order to verify whether the germline variants are involved in these mechanisms and
interact with other genetic variants not yet known, in addition to proving or disproving
their action within the context of dysregulation of inflammation in these cases. The use
of next-generation sequencing (NGS) would be a valuable alternative in this process, and
could help to confirm this diagnosis [145]. It would also allow the simultaneous assessment
of the molecular complexity of the disease with greater coverage and sensitivity, as well as
lower costs [52].

Diagnostics and prognostics based on DNA analysis applied to the clinical dynamics
of cancer patients are constantly expanding and help us to understand the complexity of
cancer genomes [85,88,146,147]. Although, currently, we have limited knowledge about the
haplotype-phenotype interactions of genes involved in MPNs. The continuity of research
on this topic, in different populations around the world and with different clinical and
laboratory associations, will aid in a better understanding of the real impact of 46/1 on
myeloproliferative dynamics. The results from these studies can produce useful tools in
the diagnosis, personalized follow-up, genetic counseling, and training of the physician
for decision-making about the planning and choice of treatment for the patient, thus,
improving not only survival, but also the quality of life of the patient.
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