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Phase separation plays a central role in the emergence of unusual functionalities of
correlated electron materials. The structure of the mixed-phase states depends strongly
on the nonequilibrium phase-separation dynamics, which have so far yet to be system-
atically investigated, especially on the theoretical side. With the aid of modern machine-
learning methods, we demonstrate large-scale kinetic Monte Carlo simulations of the
phase-ordering process for the Falicov–Kimball model, which is one of the canonical
strongly correlated electron systems. We uncover unusual relaxation dynamics with
domain growth occurring simultaneously at two different length scales. At a smaller
scale, the phase-separation instability leads to the growth of insulating checkerboard
clusters in a metallic background. Interestingly, a hidden dynamical breaking of the
sublattice symmetry gives rise to the emergence and coarsening of superclusters, which
are aggregates of the checkerboard clusters whose f electrons reside on the same
sublattice, at a larger scale. Arrested growth of the checkerboard patterns and of the
superclusters is shown to result from a correlation-induced self-trapping mechanism.
Glassy behaviors similar to the one reported in this work could be generic for other
correlated electron systems.
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Complex mesoscopic textures are ubiquitous in strongly correlated electron materials
(1–9). Notable examples include stripe and checkerboard patterns in high-Tc super-
conductors and nanoscale mixture of metallic and insulating domains in manganites.
Not only are these mesoscopic textures of fundamental importance in correlated electron
physics; they are also central to the emergence of unusual functionalities in these materials.
The nanoscale patterns in correlated electron materials often result from phase-separation
instability driven by the electron correlation effects. Indeed, a generic feature of lightly
doped Mott insulators is the strong tendency toward phase separation in which the
doped holes are expelled from the locally insulating antiferromagnetic domains (10–15).
Although considerable efforts have been devoted to understanding the phase separation
mechanisms and properties of the mixed-phase states in strongly correlated electron
materials, the nonequilibrium pattern-formation dynamics in such systems are poorly
understood.

On the other hand, intermediate states with complex structures have been observed
in discontinuous phase transitions of many classical systems (16, 17), ranging from
binary alloys and glasses to polymer blends and active matters. The kinetics of first-
order transition are a mature subject with a long history (18–20). In such studies,
one is concerned with the evolution of a system from an unstable or metastable state
toward its preferred equilibrium phase, a process that is often characterized by the
appearance of complex spatial–temporal patterns. Several numerical techniques, including
kinetic Monte Carlo, molecular dynamics simulations, and phase-field modeling, have
been developed for large-scale simulations of phase-separation phenomena (21–23). Of
particular interest in such studies is the dynamical universality class and the associated
universal growth law (24, 25). The phase-ordering process is usually modeled by dynamical
equations for the order-parameter fields that describe the structure of the symmetry-
breaking state. However, most of the works in this field are based on empirical energy
models that often cannot capture the complex and nonlocal interaction of the order-
parameter fields, especially for correlated electron systems.

A comprehensive modeling of correlation-driven phase separation thus needs to take
into account the microscopic electronic processes and the mesoscopic pattern formation
dynamics simultaneously. For example, one could obtain the driving forces on the
order-parameter fields by integrating out the electrons on the fly, which means the
electronic structure problem is to be solved at every timestep of the macroscopic dynamics
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simulation. However, the repeated solution of the electronic
problem, obtained using techniques ranging from exact
diagonalization to more sophisticated many-body methods,
can be prohibitively expensive for large-scale simulations. Such
computational obstacles for multiscale simulations are partly the
reason for the lack of progress in our understanding of the phase-
ordering dynamics in correlated electron materials.

In this paper we make an important step toward the goal of
multiscale dynamical modeling of strongly correlated electron sys-
tems by utilizing the machine-learning techniques to develop an
efficient yet accurate energy model. We demonstrate a large-scale
simulation of phase separation phenomena in the Falicov–Kimball
(FK) model (26), which is one of the canonical correlated electron
systems. Originally put forward as a limiting case of the Hubbard
model (27), the FK model was later independently proposed
to describe semiconductor–metal transitions in rare-earth and
transition-metal compounds (26). The FK model describes con-
ducting c electrons interacting with localized f electrons through
an on-site repulsive interaction. Its relative simplicity allows for
numerically exact solutions, which serve as important benchmarks
for sophisticated many-body methods (28). The FK model itself
has rich phase diagrams and is one of the best-studied correlated
electron systems that exhibit complex pattern formation and phase
separation (29–38). In particular, the FK model offers the proof of
principle that stripe and checkerboard orders, which play a promi-
nent role in the high-Tc superconductivity phenomenology, can
arise from a pure electronic correlation effect (30–33), such as the
Kivelson–Emery scenario of phase separation.

We consider the spinless FK Hamiltonian on a square lattice
(28, 33) in this work:

H=−tnn
∑
〈ij 〉

c†i cj + U
∑
i

c†i ci n
f
i . [1]

Here c†i (ci ) is the creation (annihilation) operator for a c electron
at site i; 〈ij 〉 denotes nearest-neighbor pairs on the lattice; nf

i
is the occupation number of the f electron; tnn is the nearest-
neighbor hopping constant, which also serves as the energy unit;
and U > 0 is the strength of on-site repulsive interaction. Due
to the quadratic nature of the c-electron Hamiltonian, equilib-
rium phases of the FK model can in principle be exactly solved
numerically by combining the classical Monte Carlo method for
f electrons with exact diagonalization (ED) for c electrons (36–
38). Moreover, within the framework of the dynamical mean-field
theory, the quantum impurity problem associated with the FK
model can also be exactly solved (28, 35).

The equilibrium phases of the square-lattice FK model have
been extensively studied over the years. Exactly at half-filling for
both c and f electrons, the ground state exhibits a charge density
wave (CDW) order with the f electrons forming a checkerboard
pattern (37, 38). Away from half-filling, the model shows various
stripe and incommensurate phases (32, 33). With slight electron
or hole doping, a phase-separated regime is stabilized (33, 35, 36),
a scenario similar to that of the Hubbard model. Despite being
one of the prominent models for electronic phase separation,
the phase-ordering dynamics in FK systems have never been
studied. Important questions, such as whether the system exhibits
dynamical scaling and what is the domain-growth law, remain
open.

To address these issues, we formulate a kinetic Monte Carlo
(kMC) method (23, 39) to simulate the phase-ordering process
of the FK model subject to a temperature quench. While the
c electrons have well-defined dynamics in the FK Hamiltonian,
the f electrons in the FK model, with nf

i = 0 or 1, are static

discrete variables, similar to classical Ising spins. To endow the
f electron with dynamics, a random-walk algorithm is used to
model their diffusive motion. At every timestep, an attempt
is made to move a randomly chosen f electron to one of its
empty neighbors. Whether the update is accepted is determined
by the standard Metropolis criterion (23). We further assume
that the equilibration of c electrons is much faster compared
with the random walks of f electrons, analogous to the Born–
Oppenheimer approximation in quantum molecular dynamics
(40). Consequently, the motion of the heavier f electrons depends
on the free energy of the quasi-equilibrium c electrons before and
after the update. The acceptance probability of such a nearest-
neighbor move is

pi→j =
1

4
min

(
1, e−ΔEi→j /kBT

)
, [2]

where ΔEi→j is the free-energy difference of c electrons due to
the hopping of the f electron from site i to j. The probability
that the f electron stays put is pi→i = 1−

∑
j pi→j . We note in

passing that lattice gas systems combined with kMC simulations
are widely used to describe phase separation phenomena in con-
ventional alloys (41, 42). However, most works are based on em-
pirical energy models, often formulated as effective classical Ising
Hamiltonians. As we demonstrate below, deep neural networks,
trained from exact solutions, can be used to obtain an accurate
and efficient energy model for the f electrons of the FK system.

The c-electron free energy can be computed using either ED or
more efficient techniques such as the kernel polynomial method
(43). However, the quantum kMC simulation described above is
very time consuming for large systems, since one needs to solve the
electron tight-binding problem multiple times to update just one
f electron. To overcome this computational bottleneck, we apply
the machine-learning (ML) methods that have been exploited to
improve the efficiency of quantum molecular dynamics simula-
tions (44–48). Similar approaches have also been used to enable
large-scale quantum spin dynamics in double-exchange systems
(49, 50). The central idea of our approach, summarized in Fig. 1A,
is based on the principle of locality (51, 52) or what Walter
Kohn termed the nearsightedness of electronic matter. In our case,
the locality principle indicates that the energy change ΔEi→j

depends only on f -electron configuration in the neighborhood
of the local update. Specifically, the energy change ΔEi→j of a
local update is assumed to depend on neighborhood configuration
through universal functions

ΔEi→j = ε(n̂ij , Ci), [3]

where n̂ij =±x̂,±ŷ denotes the orientation of the i → j bond,
and Ci =

{
nf
k

∣∣ |rk − ri | ≤ rc
}

describes the neighborhood
f -electron configuration up to a cutoff radius rc . The complex
dependence of the energy function ε(·) on the local environment
is then encoded in a neural network to be trained by exact
solutions from small systems.

Importantly, the effective energy function ε(·) is required to
preserve the site symmetry of the lattice. This can be achieved
by a proper representation, also known as a descriptor, of the
neighborhood configuration Ci . To this end, we first note that the
distribution {nf

j } of f electrons in the neighborhood corresponds
to a reducible representation of the point group associated with
site i. By decomposing it into the irreducible representations (IRs),
the neighborhood configuration Ci is translated into the ampli-
tudes of the IRs. Effective coordinates {G�} that are invariant
under the symmetry operations of the on-site point group are
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Fig. 1. (A) Schematic diagram of NN energy model for kMC dynamics simulation of the FK system. A descriptor is used to construct effective coordinates {G�}
from neighborhood f -electron configuration {n f

j } up to a cutoff rc = 10. These feature variables {G�} are input to the NN that predicts the energy differences
ΔE at the output. (B) ML-predicted ΔE versus exact values. The circles and squares denote training and test datasets, respectively. (C) Comparison of f -electron
correlation function Cij = 〈n f

i n f
j 〉 obtained from ED- and ML-kMC simulations on a 30 × 30 lattice after 5,000 steps from the same initial condition.

obtained from the bispectrum coefficients of the IRs (53). Details
of this construction can be found in SI Appendix, section S1.

The generalized coordinates {G�}, also known as feature vari-
ables, are then fed into a neural network (NN). Due to the discrete
binary nature of f -electron occupation number, a convolutional
NN is used to enhance recognition of the major features in the
input. The output from the convolutional layers then propagates
to a fully connected feedforward NN, which in turn produces
the predicted energy differences ΔEi→j . We have built an eight-
layer NN model trained by dataset obtained from ED-kMC
simulations on a 30 ×30 lattice; see SI Appendix for details
of the neural network structure, dataset selection, and training
process. As shown in Fig. 1B, the ML-predicted energy difference
ΔEi→j agrees well with the exact values. We further show that the
f -electron correlation function Cij = 〈nf

i n
f
j 〉 obtained from

kMC simulations based on the NN model also agrees well with
that of exact kMC simulations (Fig. 1C ).

With the properly benchmarked NN energy model, we per-
form large-scale ML-kMC simulations on the FK model with
up to 105 lattice sites. Our goal is to study the growth dy-
namics of checkerboard clusters after a temperature quench. To
this end, we consider slightly doped c electrons with a filling
fraction ρc = 0.55 and a low f -electron density of ρf = 0.187.
The repulsive interaction is set at U = 2 tnn. The low-temperature
phase corresponding to these parameters is a phase-separated mix-
ture of insulating CDW clusters, corresponding to checkerboard
ordering of f electrons and metallic domains in the absence of
f electrons (35). Some stripe orders have also been observed.
In our simulations, the system is initially prepared in a state
with random distribution of f electrons, and the temperature
is suddenly reduced to T = 0.05 tnn at time t = 0. Fig. 2 A–C

shows snapshots of the f -electron configuration at different simu-
lation times after the quench. The green shades highlight individ-
ual CDW clusters. A close-up view of the phase-separated phase,
shown in Fig. 2D, clearly displays several checkerboard clusters
and some diagonal stripes of the f electrons.

Fig. 2E shows the probability distribution functions P(s) of
the CDW clusters at different times after quench. Here the cluster
size s is defined as the number of f electrons in a CDW cluster, and
s = 1 corresponds to an isolated f electron. The distribution func-
tions seem to be well approximated by an exponential tail P(s)∼
exp(−const × s) at large s, similar to the subcritical regime of a
percolation transition. Although the overall probability of finding
large-size CDW clusters increases with time, it remains exponen-
tially small for very large CDW clusters. To further characterize
the mixed-phase states, Fig. 2F shows the histogram of the on-
site c-electron occupation number 〈c†i ci〉 obtained by ED on a
smaller 30× 30 lattice. The sharp peak at nc ∼ 0.2 corresponds
to lattice sites occupied by an f electron nf

i = 1, while the broad
peak at nc ∼ 0.65 comes from sites without an f electron. The
average c-electron density in the metallic region, which consists
entirely of the empty sites, is nc

metal ≈ 0.626. On the other hand,
both peaks in Fig. 2F contribute to the c electron in the CDW
clusters, with an average density nc

CDW ≈ 0.472.
Fig. 2G shows the increase of average checkerboard cluster size

〈s〉 with time, indicating the aggregation of f electrons to form
CDW order during the phase separation. Since the number of
f electrons is conserved, the growth of checkerboard domains is
similar to the phase separation of a conserved order parameter that
is expected to follow the t1/3 power-law growth predicted by the
Lifshitz–Slyozov–Wagner (LSW) theory (54, 55) or the model-
B dynamics (24, 56). As shown in Fig. 2 G, Inset, the typical
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Fig. 2. Summary of the ML-kMC simulations of the CDW-metal phase-separation dynamics. (A–C) Snapshots of the f -electron configuration {n f
i } and the

associated CDW clusters highlighted by green shade obtained from the ML-kMC simulations on a 150 × 150 square-lattice FK model. (D) A close-up view of the
f -electron configuration corresponding to the red square in C. Here time t is measured in terms of 100 MC steps. (E) The probability distribution function P(s) of
the CDW cluster size at different simulation times during the phase separation. Here the size s is defined as the total number of f electrons in a CDW cluster. The
straight lines in the semilog plot are exponential fits of the distribution function at large s. (F) Averaged histogram of the on-site c-electron occupation number
〈c†i ci〉 at different times obtained from ED-kMC on a smaller 30 × 30 lattice. (G) Average size 〈s〉 of checkerboard cluster as a function of time obtained from
ML-kMC on a 150 × 150 lattice. Inset shows the time dependence of the characteristic length scale �(t) = �0 + Δ�, where � = 〈s〉1/2. The dashed line indicates
a power-law growth with exponent α ≈ 0.35.

length scale of checkerboard clusters indeed increases according to
a power-law Δ�∼ tα, even early in the phase-separation process,
although the exponent α≈ 0.35 is slightly higher than the LSW
prediction. The discrepancy here can be attributed to the fact that
the LSW scaling occurs only for coarsening of very large domains
at late times (57).

However, this power-law regime lasts only a short duration and
the growth slows down significantly at late stage. This stagnation
of domain growth cannot be attributed to the finite-size effect
since the average cluster size is still significantly smaller than the
system sizes at late times. Instead, the freezing of the checkerboard
clusters, which is discussed in more detail below, is related to
a sublattice symmetry breaking hidden in the phase separation
process. To illustrate this effect, we use different colors to label
the f electrons at the two sublattices of the square lattice. As
shown in Fig. 3 A–C, Top, while the sizes of checkerboard clusters
remain small, f electrons residing on the same sublattice tend to
stick together, thus forming superclusters of the checkerboards.
Crucially, the formation of such superstructures breaks the Z2

sublattice symmetry.
To describe the larger-scale Z2 symmetry breaking associated

with the formation and coarsening of superclusters, we introduce
an Ising variable σi at every lattice site such that σi =+1 (−1)
if the f electron closest to site i belongs to the A (B) sublattice.
Based on this definition, Fig. 3 A–C, Bottom shows the three Ising
configurations {σi} that correspond to the respective f -electron
distribution {nf

i } shown in Fig. 3 A–C, Top. In terms of the
Ising spin language, the clustering of checkerboards into super-
clusters thus corresponds to the growth of Ising ferromagnetic
domains.

It is worth noting that there are two simultaneous phase-
ordering processes during the temperature quench: the

conventional CDW-metal phase separation at smaller scales
(Fig. 2) and the coarsening of superclusters or effective Ising
domains at larger scales (Fig. 3). Importantly, the conventional
picture of phase-separated states with CDW order does not
necessarily imply the emergence of superclusters observed here.
As the f electrons in a CDW cluster can reside on either A or B
sublattice, a CDW cluster can be characterized by a Z2 variable
P =±1, which is called polarity for convenience. Naively, one
expects the coexistence of CDW clusters of opposite polarities
in a phase-separated state. Our simulation results thus indicate
that the energy of the mixed-phase states can be further reduced
through the “alignment” of CDW clusters, namely the formation
of superclusters consisting of CDWs of the same polarity. As is
discussed below, this alignment results from a nonlocal interaction
mediated by the c electrons.

To characterize the growth of Ising domains associated with the
superclusters, we compute the structure factor of the Ising spins:
S (k, t) =

∣∣ 1
N

∑
i σi(t) exp(ik · ri)

∣∣2. The ferromagnetic order-
ing implies that S (k, t) exhibits a growing peak at k= 0. The
inverse of the width of this peak can be used as a measure of the
characteristic length scale of the superclusters: L−1(t)∼Δk =∑

k S (k, t)|k|/
∑

k S (k, t). Using this characteristic length as
a scale factor, Fig. 3D shows the scaled time-dependent structure
factor versus the dimensionless momentum |k|L(t). As can be
seen from Fig. 3D, the data points at different times collapse
roughly on the same curve, indicating that the coarsening of
the Ising domains exhibits a dynamical scaling; i.e., S (k, t) =
L2(t)G[|k|L(t)], where G(x ) is a universal scaling function.
The 1/k3 power-law tail at large momenta, consistent with the
two-dimensional (2D) Porod’s law (20), results from the sharp
interfaces between the two different types of Ising domains or
superclusters with opposite polarities.
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E

Fig. 3. Summary of the same ML-kMC simulations shown in Fig. 2 with emphasis on the coarsening of superclusters due to a hidden broken sublattice
symmetry. (A–C) Snapshots of the f -electron configuration {n f

i } with blue and red dots indicating f electrons on the A and the B sublattice, respectively. The
white regions (free of red/blue squares) are the same as those in Fig. 2 A–C; both represent the metallic phase. The corresponding Ising configurations {σi}
that characterize the Z2 symmetry-breaking domains associated with superclusters are shown in A–C, Bottom. (D) Scaling plot of the time-dependent structure
factor S(k, t) obtained from Fourier transform of the Z2 order parameter. The dashed line shows the k−3 Porod’s law in 2D. (E) Characteristic length L(t) of the
superclusters as a function of time for three different lattice sizes. The dashed line indicates the linear growth L(t) − L0 = ΔL(t) ∼ t. The bending of the L(t)
curves at late times in this log-log plot indicates a logarithmic-like growth that is slower than the power law.

The order parameter φ describing this Z2 symmetry breaking
is then given by the magnetization density of Ising spins; i.e.,
φ= 〈σi〉. It is worth noting that φ is not conserved in the kMC
dynamics of the f electron. Phenomenologically, such a noncon-
served field is governed by the time-dependent Ginzburg–Landau
equation (TDGL) or model-A dynamics (24). The resultant do-
main coarsening is characterized by the L∼ t1/2 Allen–Cahn
power law (18, 19). However, as we show next, the coarsening
of superclusters in our case does not follow the expected power
law due to an unusual self-confinement of the f electrons.

The characteristic length L(t) extracted from the structure
factor is shown in Fig. 3E as a function of time for three different
lattice sizes. Interestingly, except for a short initial period (up
to t ∼ 10), the growth of this length scale does not follow the
expected power law, especially at late times. Moreover, even the
initial seemingly power-law growth is not consistent with the
α= 1/2 Allen–Cahn law. Instead, L seems to increase linearly
with time in this initial regime. To understand this anomalous
behavior, we note that the TDGL equation or the Allen–Cahn
theory describes an interface-controlled domain growth where the
interfacial velocity is proportional to the curvature of the domain
interface (58). On the other hand, since the Z2 order parameter in
our case is defined by whether the aggregating f electrons are on
the A or B sublattice, the resultant domain growth needs not rely
on the expansion of an existing boundary. Instead, a supercluster
can quickly increase its size as f electrons in its neighborhood
move from one sublattice to another via only a nearest-neighbor
hopping. Due to such collective movement of f electrons, the
growth of the superclusters exhibits an avalanche-like behavior
similar to the Barkhausen effect in magnetic domain growth. A
faster linear growth of the superclusters thus arises from such
avalanche dynamics at the early stage. As is discussed below, such

collective behavior is induced by an effective nonlocal interaction
between f electrons.

Although the repulsion U between the two types of electrons
is local in the FK model, the heavier f electrons experience
an effective long-range interaction mediated by the itinerant c
electrons. In particular, due to this nonlocal interaction, the
presence of a checkerboard cluster creates a staggered potential
in its neighborhood that takes alternating values on neighboring
sites of the bipartite lattice. This effective potential is illustrated
in Fig. 4A where a test f electron is placed in the neighborhood
of a checkerboard cluster at the center. Exact MC simulation was
used to obtain the frequency νi that the test particle stays at site
i, from which the potential is computed: Vi =−kBT log νi . As
shown in Fig. 4A, the effective potential field V (ri) exhibits the
same staggered pattern whose polarity is determined by that of
the center checkerboard cluster. Consequently, f electrons in the
neighborhood of this checkerboard cluster tend to be trapped
in the same sublattice. Also importantly, this staggered potential
causes existing checkerboards in the neighborhood to change its
polarity, thus leading to the formation of a supercluster and its
subsequent growth that is not captured by the interface-controlled
mechanism.

At a late stage of the phase separation, a much slower
logarithmic-like growth sets in for superclusters, as shown in
Fig. 3E. Interestingly, exactly the same staggered potential dis-
cussed above is also responsible for the stalled growth of the Ising
domains and, in fact, of the smaller checkerboard clusters as well.
To understand this unusual freezing behavior, we note that while
the strength of the staggered potential increases with the size of
CDW cluster from which it originates, the energy barrier ΔVAB

between the two sublattices is also enhanced as more and more
checkerboards merge to form a larger supercluster. To demonstrate
this effect, we consider different geometrical arrangements of
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Fig. 4. (A) Density plot of effective potential V(ri) = −kBT log νi for f electrons created by a checkerboard cluster at the center. The potential field V(r) exhibits
the same staggering patten as that of the checkerboard cluster at the center. f electrons in the neighborhood thus tend to reside on the same sublattice, leading
to the growth of the supercluster. (B and C) The depth of the staggering potential, given by the averaged potential difference between the two sublattices ΔVAB
versus (B) the characteristic length L of superclusters and (C) the Ising order parameter φ.

a finite number of checkerboard clusters on a 30× 30 lattice,
giving rise to different shapes and sizes of superclusters or Ising
domains. MC simulation with exact diagonalization is then
used to compute the resultant effect potential V (ri) for the
f electrons; details can be found in SI Appendix, section S3.
The average potential difference between the A/B sublattices
ΔVAB = 〈 1

N/2

∣∣∑
i∈A Vi −

∑
i∈B Vi

∣∣〉 is shown in Fig. 4B
as a function of the numerically obtained characteristic length
L of the Ising domains. The staggered potential ΔVAB indeed
increases with the size of the superclusters. Moreover, we observe
an intriguing linear dependence of the potential barrier ΔVAB

on the effective Ising order parameter φ, as shown in Fig. 4C.
Importantly, the fact that the energy barrier ΔVAB increases

with the size of the Ising domains also explains the freezing
behaviors observed in our ML-kMC simulations. As the size
L of superclusters increases with time, the potential difference
between the two sublattices becomes so strong that individual
f electrons are deeply trapped at one sublattice and cannot hop
to the neighboring sites. For example, consider a checkerboard
cluster on sublattice A in Fig. 4A and a test particle sitting at a
site that belongs to the lower-energy sublattice A. Although the
checkerboard at the center has a strong affinity to the new particle,
as evidenced by the rather low potential energy at the edge of
the cluster, the large energy barrier at the B sublattice prevents
the f electron from joining the cluster. The reduced mobility of

the f electron thus results in an arrested coarsening of both the
superclusters and the smaller-sized checkerboard clusters.

To summarize, by utilizing modern machine-learning tech-
niques, we have successfully developed a neural network energy
model that allows us to perform a large-scale kinetic Monte Carlo
simulation on the well-studied FK model. We discover an unusual
phase-ordering phenomenon where domain coarsening occurs
simultaneously at two different scales: the growth of checkerboard
clusters and the expansion of Ising domains associated with a
hidden broken sublattice symmetry. The competition of these
two processes leads to an anomalously slow phase separation.
Several interesting dynamical phenomena, such as the early-stage
avalanche domain growth and the decelerated coarsening of su-
perclusters, require further investigation and will be left for future
work.

Unusual domain coarsening has been reported in classical sys-
tems, which is often related to frustrated interactions or quenched
disorder (59–63). In this work we describe a freezing mechanism
that arises from the interaction of itinerant c electrons and classical
f electrons. Similar glassy dynamics could be generic for phase
ordering in other correlated electron systems. A characteristic
feature of correlated electron materials is the coexistence of fast
electron quasiparticles and slow bosonic or collective degrees
of freedom. The nontrivial interplay between these two sets of
variables could lead to dynamical phenomena that are unique to
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correlated electrons. Given the complexity of such systems, we
envision ML techniques as an indispensable tool for multiscale
modeling of nonequilibrium dynamics driven by the electron
correlation effect.

Data Availability. The relevant C and Python codes, the trained neural-network
model, and sample training datasets can be found in the GitHub repository,

https://github.com/cherngroupUVA/Falicov Kimball ML data. All study data are
included in this article and/or SI Appendix.
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37. M. M. Maśka, K. Czajka, Thermodynamics of the two-dimensional Falicov-Kimball model: A classical
Monte Carlo study. Phys. Rev. B Condens. Matter Mater. Phys. 74, 035109 (2006).

38. A. E. Antipov, Y. Javanmard, P. Ribeiro, S. Kirchner, Interaction-tuned Anderson versus Mott
localization. Phys. Rev. Lett. 117, 146601 (2016).

39. G. T. Barkema, “Monte Carlo simulations of domain growth” in Kinetics of Phase Transitions, S. Puri,
V. Wadhawan, Eds. (CRC Press, Taylor & Francis Group, London, UK, 2009), chap. 3, pp. 101–120.

40. D. Marx, J. Hutter, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods (Cambridge
University Press, Cambridge, UK, 2009).

41. P. Fratzl, R. Weinkamer, “Phase separation in binary alloys – Modelling approaches” in Moving
Interfaces in Crystalline Solids, F. D. Fischer, Ed. (Springer, New York, NY, 2004), pp. 57–116.

42. A. B. Bortz, M. H. Kalos, J. L. Lebowitz, M. A. Zendejas, Time evolution of a quenched binary alloy:
Computer simulation of a two-dimensional model system. Phys. Rev. B 10, 535–541 (1974).

43. A. Weisse, G. Wellein, A. Alvermann, H. Fehske, The kernel polynomial method. Rev. Mod. Phys. 78,
275–306 (2006).

44. J. Behler, M. Parrinello, Generalized neural-network representation of high-dimensional
potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).
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