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Abstract

Peripheral blood mononuclear cells (PBMCs), including rare circulating stem and progenitor cells (CSPCs), have important
yet poorly understood roles in the maintenance and repair of blood vessels and perfused organs. Our hypothesis was that
the identities and functions of CSPCs in cardiovascular health could be ascertained by analyzing the patterns of their co-
expressed markers in unselected PBMC samples. Because gene microarrays had failed to detect many stem cell-associated
genes, we performed quantitative real-time PCR to measure the expression of 45 primitive and tissue differentiation markers
in PBMCs from healthy and hypertensive human subjects. We compared these expression levels to the subjects’
demographic and cardiovascular risk factors, including vascular stiffness. The tested marker genes were expressed in all of
samples and organized in hierarchical transcriptional network modules, constructed by a bottom-up approach. An index of
gene expression in one of these modules (metagene), defined as the average standardized relative copy numbers of 15
pluripotency and cardiovascular differentiation markers, was negatively correlated (all p,0.03) with age (R2 = 20.23),
vascular stiffness (R2 = 20.24), and central aortic pressure (R2 = 20.19) and positively correlated with body mass index
(R2 = 0.72, in women). The co-expression of three neovascular markers was validated at the single-cell level using mRNA in
situ hybridization and immunocytochemistry. The overall gene expression in this cardiovascular module was reduced by
72622% in the patients compared with controls. However, the compactness of both modules was increased in the patients’
samples, which was reflected in reduced dispersion of their nodes’ degrees of connectivity, suggesting a more primitive
character of the patients’ CSPCs. In conclusion, our results show that the relationship between CSPCs and vascular function
is encoded in modules of the PBMCs transcriptional network. Furthermore, the coordinated gene expression in these
modules can be linked to cardiovascular risk factors and subclinical cardiovascular disease; thus, this measure may be useful
for their diagnosis and prognosis.
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Introduction

Circulating stem/progenitor cells (CSPCs) contribute to the

maintenance of the normal functions of blood vessels and tissues

and their repair and regeneration [1]. These cells may also

promote tumor growth by facilitating neovascularization or the

development of tumor stroma [2]. CSPCs and other leukocytes

mediate these actions through the release of paracrine factors [3]

and occasionally by transdifferentiation [4]. The numbers and

functions of CSPCs are impaired by exposure to cardiovascular

risk factors, such as aging, diabetes, hyperlipidemia, or hyperten-

sion (for a review, see [5]). Moreover, the frequency of CSPCs was

inversely related to subclinical vascular diseases, including

endothelial dysfunction and arterial stiffness [6].

A major obstacle to progress in this field has been a lack of

consensus regarding the precise molecular markers that define

these regenerative pathways [7]. This problem is compounded by

the limited accuracy and reproducibility of the current methods

used to quantitate CSPCs, such as flow cytometry [8] and in vitro

colony formation assays for ‘early’ [9] or ‘late’ [10] progenitor

cells. Potential novel tools that may be used to address these issues

include the emerging network sciences as applied to biology and

medicine [11].
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Transcription progressively enables primitive cells to acquire a

differentiated phenotype [12], whereas the expression of primitive

genes is indicative of cell stemness in both bone marrow and blood

[13]. However, the reason for the presence of mRNA for tissue-

specific differentiation genes in circulating cells is less clear.

Because more than 80% of the genes expressed in human

peripheral blood are also expressed in other body tissues [14],

mRNA profiling of leukocytes has been proposed as an accessible

window to the multi-organ transcriptome [15]. Additionally, the

transcriptional landscape, including those of adult hematopoietic

stem cells and adult leukocytes, is organized as a modular network

of co-expressed genes [16]. Cardiovascular disease-associated

transcriptomic signatures are known to exist in peripheral blood

[17]; however, none has yet been found to specifically contain

CSPC markers or be directly relevant to vascular function in

healthy subjects.

Our hypothesis was that the origins of primitive and tissue-

specific mRNAs in peripheral blood mononuclear cell (PBMC)

samples would be primarily, although not exclusively, in CSPCs. If

supported by data, then the coordinated expression of CSPC-

derived mRNAs should be detectable in peripheral blood

transcriptional profiles and reflect the function of the correspond-

ing tissues, similar to the actual tissue-specific CSPCs. Here, we

developed and functionally validated such a method, which applies

network science to transcriptomic analyses.

Because the high-throughput charting of a transcriptome either

produces many irrelevant hits or is often too insensitive for specific

targets [18], predesigned gene panels are increasingly used for the

detection of gene expression signatures in tissues [19] and the

assessment of pluripotency [20] or differentiation hierarchy in

stem cells [21]. To detect rare transcripts, the most reliable

technique to date remains quantitative real-time PCR (qRT-

PCR), which is accurate, precise, more sensitive than microarrays,

and more specific for mature transcripts than RNA sequencing

[18]. qRT-PCR has been used to generate transcriptional

networks from as few as 18 transcription factors [22] to as many

as 280 of the ‘most-used’ hand-picked stem cell markers [21]. The

transcriptional signatures of individual CSPC-associated markers

have been previously detected using qRT-PCR in human and

animal peripheral blood at baseline and after major cardiovascular

and neurovascular events [23].

As reported here, microarrays (specifically, Affymetrix Gene-

Chips) were unable to detect many of the stem cell-related genes in

PBMCs samples, a finding that confirmed previous studies [21].

Thus, to create a sensitive and efficient assay, we designed a gene

panel that included the most-recognized stem/progenitor cell and

tissue differentiation markers (Table S1). These markers were

simultaneously measured in PBMCs using qRT-PCR and then

subjected to a network analysis and validated for vascular function.

Methods

Subjects
Institutional Review Board (IRB) approvals were obtained from

The Ohio State University and Emory University, and all subjects

signed written informed consent forms. We recruited 26 healthy

volunteers at Ohio State University and 20 hypertensive subjects

at Emory University (Table 1 and Table 2, respectively).

Blood pressure and pulse wave measurements
Brachial blood pressure (BP) and radial pulse wave values were

measured in the healthy subjects using a manual oscillometric

monitor with a standard adult cuff and the SphygmoCor device

(AtCor Medical, Sydney, Australia), respectively. The latter

provides a validated generalized transfer function to convert the

peripheral radial arterial pulse wave into the equivalent central

aortic arterial pulse wave, which was used to analyze the derived

aortic pressure waveform and extract the aortic pulse pressure

(AoPP) and the augmentation index (AIx) of the pulse, a surrogate

measure of vascular stiffness [24].

Magnetic resonance elastography (MRE)
MRE is a magnetic resonance imaging (MRI)-based method

that directly determines organ stiffness and has been validated in a

study of hypertensive patients [25]. In aortic MRE, vibrations are

Table 1. Characteristics of the control subjects.

Parameter Value Percent/range

Gender

Males 12 46.2%

Females 14 53.8%

Race

White 16 61.5%

African American 7 27.0%

Asian 3 11.5%

Age, years 40.6611.6 19–58

Height (cm) 171.2611.4 152–193

Weight (kg) 83.2621.2 60–136

BMI 28.768.1 19.2–53.13

Seated SBP (mm Hg) 113.7611.6 95–140

Seated DBP (mm Hg) 74.567.9 58–87

Heart rate (bmp) 68.7610.7 52–100

AIx 17.4612.4 (28)–43

AoPP 29.868.2 19–50

AoSP 104.8610.5 87–124

doi:10.1371/journal.pone.0095124.t001

Table 2. Characteristics of the hypertensive subjects.

Parameter Value Percent/range

Gender

Males 14 70%

Females 6 30%

Race

White 8 40%

African American 11 55%

Hispanic 1 5%

Age, years 65.7611.3 41–85

Height (cm) 171.468.4 155–188

Weight (kg) 84.7620.7 51–118

BMI 28.866.8 20–39

Seated SBP (mm Hg) 149.0621.9 116–194

Seated DBP (mm Hg) 80.0610.5 63–99

Heart rate (bpm) 73.3612.8 56–102

doi:10.1371/journal.pone.0095124.t002
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applied to the abdomen by an electro-mechanical driver, which

transmits mechanical waves to the aorta. A phase-contrast MRI

sequence synchronized to externally applied vibrations measures

the wave displacement field, which is mathematically converted to

stiffness [26].

Isolation of PBMCs
Blood was collected into a BD Vacutainer K2 EDTA (BD

Bioscience, Franklin Lakes, NJ), diluted 1:1 with Hanks balanced

salt solution (HBSS) (Invitrogen Life Technologies, Grand Island,

NY), layered onto one volume of Lymphocyte Separation Medium

(Cellgro Mediatech Inc., Manassas, VA), and centrifuged at

7006g for 30 min at room temperature. The mononuclear cells

were collected, diluted 1:1 with washing buffer (PBS supplemented

with 2 mM EDTA and 2% FBS) (Gemini Bio-Products, West

Sacramento, CA), and centrifuged at 3006g for 7 min. The pellet

was resuspended in 5 mL of 0.8% ammonium chloride solution

(STEMCELL Technologies Inc., Vancouver, Canada) for 5 min

to lyse any remaining erythrocytes. To remove as many platelets as

possible, the cells were washed two more times as described above

with two volumes of washing buffer.

RNA extraction and qRT-PCR
Total RNA was isolated using the RNeasy Mini Kit (Qiagen,

Valencia, CA) according to the manufacturer’s protocol, tested for

quality, and stored at 280uC until use. The VILO kit (Life

Technologies/Invitrogen, Grand Island, NY) was used to reverse

transcribe 150 ng of total RNA. Primers (Qiagen) were diluted

1:20 with molecular-grade water, and 5 mL/well were added to

384-well plates using a Biomek FX Laboratory Automation

Workstation (Beckman Coulter, Inc., Brea, CA). The plates were

left to dry overnight in a sterile hood and stored covered at 220uC
until use. qRT-PCR was performed using SYBR Green (Qiagen)

and a 7900HT Real-Time PCR System (Life Technologies/

Applied Biosystems, Foster City, CA) operated in standard mode.

All of the runs contained a dissociation step. The samples were

amplified in duplicate in a total volume of 5 mL. The results are

expressed as the relative copy number (RCN), defined as

RCN = 22DCq6100, where DCq is the difference Cq(target) –

Cq(reference) [27]. As a reference for normalization, we used the

median Cq values of three endogenous controls (beta-2 micro-

globulin, GAPDH and RPL13). Data were were uploaded to Gene

Expression Omnibus (GSE56327).

Fluorescence RNA in situ hybridization (ISH)
Cells (up to 16106) from eight volunteers were fixed in

suspension (4% formaldehyde in PBS for 1 h) and deposited onto

Superfrost Plus microscope slides (Fisher Scientific, Pittsburg, PA)

by cytospin centrifugation (1806g, 5 min) in a Cytospin 2

Shandon Centrifuge (Block Scientific, Inc., Bohemia, NY). The

slides were dried at 37uC for 1 h and stored in 100% ethanol at

280uC until use. ISH was performed using the QuantiGene

ViewRNA kit (Affymetrix/Panomics Solutions, Santa Clara, CA)

according to the manufacturer’s protocol with the following probe

sets: FSHR-FITC, NES-Cy3, and KDR-Cy5, and the nuclei were

counterstained with DAPI (Sigma-Aldrich, St. Louis, MO). In

preliminary tests, we found that a 1:1000 dilution of proteinase K

was optimal. The samples were analyzed with an Olympus

FB1000 confocal microscope (Olympus America Inc., Melville,

NY). The 40x objective and 3x zoom were used to acquire Z-

stacks from 5-8 fields per sample, for a total of 100–600 cells per

subject. The acquisition settings were adjusted based on the

negative control slides (no hybridization probe). The images were

analyzed with CellProfiler 2.0 software [28] (http://www.

cellprofiler.org/), as follows. (i) Using FluoView software (Olym-

pus), all of the images for each Z-stack per each channel were

exported as .tiff files. (ii) Using MetaMorph software (Molecular

Devices, Sunnyvale, CA), all of the images from the Z-stacks were

assembled into a separate .stk file for each channel. (iii) Using

CellProfiler, we built four pipelines, one for each channel (blue:

DAPI/nuclei, green: FSHR-FITC, red: NES-Cy3, and cyan:

KDR-Cy5), which uploaded the respective stacks and generated a

projection. Steps 1–3 were necessary because the CellProfiler

software could only recognize MetaMorph stacks. (iv) Next, we

built a pipeline for the analysis of these projections. An important

step was the setting of thresholds. To detect nuclei (‘primary

objects’), we entered a valid range of diameters (in pixels), and the

threshold was set such that .95% of nuclei (including clumped

nuclei) were detected accurately. Cell boundaries (‘secondary

objects’) were estimated by moving 10 pixels outward from the cell

nucleus (Distance-N method). For RNA quantification, the

thresholds for each channel were set individually based on

negative controls. We measured spot numbers, spot intensities,

and a variety of nuclear parameters (such as intensity, area, and

texture) offered by the software. (v) Finally, the data were exported

into Excel and pooled from all of the images/subjects. At this

point, we manually removed all nuclear objects that were

inaccurately detected such as clumps that could not be segmented

into individual nuclei and small fragments that clearly corre-

sponded to cellular debris based on size (the ‘nuclear area’

parameter). Finally, each cell (and its associated measurements)

was given a unique ID. All of the subsequent statistical analyses

and visualizations were performed using various statistical

packages (vide infra).

Immunocytochemistry (ICC)
For ICC, PBMCs from four subjects were fixed in 1%

formaldehyde in PBS for 1 h, cytospun as described, and used

immediately. The cells were permeabilized with Triton X-100

(Fisher Biotech, Pittsburgh, PA) for 10 min at room temperature

and blocked with 5% BSA + FcR Binding Inhibitor Purified

(eBioscience, Inc., San Diego, CA) for 30 min at room temper-

ature. The cells were incubated sequentially with the following

antibodies: (i) rabbit polyclonal anti-FSHR antibody; (ii) Alexa

Fluor-594 goat anti-rabbit antibody; and (iii) Alexa Fluor-488

monoclonal anti-human nestin antibody (Abcam, Cambridge,

MA), along with Alexa Fluor-647 mouse anti-human CD309 (BD

Pharmingen, San Jose, CA). DAPI was used as a nuclear stain, and

the cells were mounted in Fluoromount-G (SouthernBiotech,

Birmingham, Al). Alexa Fluor-488, Alexa Fluor-647 mouse IgG 1

isotype, and Alexa Fluor-594 goat anti-rabbit IgG (BD) were used

as controls. The preparations were imaged with an Olympus FV

1000 confocal microscope using the 40x objective and 2x zoom,

and negative controls were used for setting the lasers as described

for ISH. We acquired 5–6 random images per slide, for a total of

300–700 cells per subject. In each fraction of cells (including most

of those that were single- and double-positive for KDR and/or

FSHR), NES and FSHR were localized to a few, usually 1–4,

compact circular structures that were intimately associated with

the nucleus or nuclear grooves (possibly representing spurious

cross-reactions of our antibodies with either storage or degradation

compartments). Therefore, we excluded these features from

quantification. The images were analyzed with the CellProfiler

software using a different pipeline. To adjust the threshold

correction factors for each channel, we used the negative controls.

The data were exported into Excel and further processed as

described for ViewRNA, step 5. Both pipelines were uploaded on

A PBMC Transcriptional Module Related to Vascular Function
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the CellProfiler website as VR-3Plex-FNK.cp and ICC-NFK.cp,

respectively.

In silico gene expression analysis
Studies were selected from the National Center for Biotechnol-

ogy Information’s Gene Expression Omnibus (GEO) according to

the following criteria: (i) they employed Affymetrix Human

Genome U133 Plus 2.0 Arrays (platform GPL570); (ii) they used

isolated PBMCs; and (iii) they included healthy subjects as

controls. We chose eight studies (GSE: 8507, 10041, 11761,

14642, 19743, 21942, 27034, and 46480) and only included the

GSM files that corresponded to controls in the analysis (a total of

274 GeneChips), and a study on isolated bone marrow-derived

CD34+ cells (GSE 23025) [29]. All of the .cel files were imported

into Expression Console (Affymetrix), and we used the MAS5

algorithm for normalization and signal and presence call

detection. We then extracted the information pertaining to the

genes of interest. For genes represented by several probe sets on

the array, we calculated the median signal value for each probe set

over all the arrays and retained the sets that had the highest value.

Finally, the ‘Present’, ‘Marginal’, and ‘Absent’ calls were recorded

for each gene, and the ‘Presence Score’ was calculated as a

percentage of all 274 arrays. Because genes with ‘Marginal’ scores

were found only on a small number of arrays, all of these were

considered ‘Absent’.

Pattern analysis and network visualization
To mine patterns from the gene co-expression matrix data, we

followed the network mining and merging workflow described by

Xiang et al. [30]. First, we converted a gene co-expression dataset

into a unweighted graph by creating an edge between any two

genes with an absolute correlation value greater than 0.7. After the

graph was created, we applied the Bron-Kerbosch algorithm [31]

to generate all of the maximal cliques. We then applied the

Figure 1. qRT-PCR quantification of gene expression in PBMCs from a sample of a healthy human population. A. The average
expression levels (indicated as the relative copy number, RCN = 22DCq6100) of the tested genes ordered based on the strength of their covariation
(compare to Fig. 2A). The data are expressed as the means 6 SD. Inset. Cq values for housekeeping genes used as endogenous controls. Of note, the
large SD displayed by CXCR4 was due not to outliers but to the skewness of the data distribution. B. Actual RCN values of the 45 tested genes in 26
healthy subjects, indicating the coordinated expression of the majority of the genes (conventional color coding).
doi:10.1371/journal.pone.0095124.g001
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network merge approach [30] to these cliques under a density

threshold 0.8, which guaranteed that each resulting sub-network

induced a sub-matrix with an average correlation value greater

than 0.8 on the original gene co-expression matrix. Finally, we

visualized the discovered sub-networks using Gephi [32] (www.

gephi.org).

Data analysis
ANOVA, t-test, Mann-Whitney test, and various correlation

statistics (Pearson correlation, linear regression, principal compo-

nent analysis, hierarchical clustering, Cronbach’s alpha) were

performed using JMP 10.0.2 (SAS Institute, Inc., Cary, NC),

Partek Discovery Suite v. 6.4 (Partek Inc., St. Louis, MO), and

Microsoft Excel 2010 programs. In all of the statistical analyses,

p,0.05 was considered significant.

Figure 2. Regression analysis of genes co-expressed in PBMCs isolated from healthy human adults. A. Correlations between several
cardiovascular-specific genes. B. Correlations between selected vascular and primitive genes in the same population. C. Correlations between other
tissue-specific and primitive genes. D. Inverse correlation between the expression of vascular genes and a leukocyte gene (PTPRC/CD45). In all the
graphs, the number of subjects is n = 26, R2 is the linear regression coefficient, and p indicates significance; these coefficients were placed in mirror
positions across the diagonal with their corresponding graphs. The data represent RCNs.
doi:10.1371/journal.pone.0095124.g002
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Results

Limitations of the microarrays in detecting mRNAs with
low expression levels

We first attempted to determine the transcriptional signature of

CSPCs in blood using the Affymetrix GeneChips, as expression

levels of a panel of the most common stem/progenitor cell and

differentiation marker genes (Table S1, with annotations). We

analyzed a set of 274 microarrays compounded from public

databases, representing 7 studies of PBMCs and one study of

purified CD34+ stem cells, all from healthy human subjects. Gene

detection, determined as a ‘Present’ call by the MAS5 algorithm,

varied as follows. (i) Other than housekeeping genes (B2M,

GAPDH, and RPL13), only leukocyte genes (CD14, CD79A,

CD3E, ITGAM, PECAM1, NT5E/CD73, and PTPRC/CD45)

and a few others (ACTA2, ALDH1A1, BGLAP/osteocalcin,

CX3CR1, and CXCR4) had a ‘Present’ call on more than 90% of

the arrays. (ii) Several primitive (GATA4, NANOG, NES, NKX2-

5, POUF5F1/OCT4, and THY1) and differentiation (CAV3,

CDH5, CNN1, FSHR, KRT14, NOS3, and TEK/TIE2) genes

were completely undetected (i.e., 0% ‘Present’ call). (iii) The other

tested genes had a variable representation on the arrays (Table

S2). Surprisingly, even the mRNA for CD34, the marker for which

the cell suspension had been enriched using magnetic immuno-

Figure 3. Correlation and clustering analysis of data. A. A heat map of the bivariate correlation matrix of gene expression levels representing
Pearson’s correlation coefficient, r, in descending order, beginning with KDR/VEGFR2 (red: positive correlation; blue: negative correlation; gray: no
correlation). B. The corresponding probability values, p, after Bonferroni correction (red: p,0.05; gray: not significant). C. An unsupervised
hierarchical clustering analysis (complete linkage on standardized data) representing the associations between the genes as distances (Y-axis). In A
and C, the corresponding main gene groups are indicated by brackets.
doi:10.1371/journal.pone.0095124.g003
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selection, was detected on only 80% of the arrays. These findings

confirmed the low sensitivity and/or poor reliability of the

GeneChip microarrays for the detection of rare transcripts, as

previously noted [33].

Quantification by qRT-PCR and organization of a PBMC
transcriptional sub-system

In contrast, all of the tested mRNAs were detected in PBMCs

from all of the healthy adults using qRT-PCR (Fig. 1 and Table

Figure 4. Modular organization of a PBMC gene sub-network. A. Network representation of the genetic covariation. The thickness of each
connecting line is proportional to the absolute value of the respective Pearson’s correlation coefficient. Genes that were significantly correlated with
the age, AIx, AoPP and BMI of the subjects are encircled (cf. Table 3). Color coding identifies the participation of genes in separate underlying clusters
[30]. B. Scaling of nodes’ clustering coefficient C(k) with their connectivity degrees k, as a signature of hierarchical networks. Note that the data
spontaneously split into two subpopulations, suggesting distinctly organized modules (for clarity, the leukocyte genes were omitted). Members of
Module 1 (right), corresponding to the functionally filtered group in A (same color convention), had higher clustering values for similar k values than
those in Module 2 (left), indicating stronger transcriptional coupling. C. Genes connected to the KDR node. Note that these connections perfectly
overlap those of Module 1, while PROM1/CD133 serves as a link with Module 2, arguing that KDR is a hub node of Module 1. D. Connections of
another hub node, NES. The images in A, C and D are based on Pearson correlation coefficients r.|0.8| and were obtained using the software Gephi
0.8 beta (www.gephi.org). The data shown in B were also obtained using Gephi, based on the network analysis in A.
doi:10.1371/journal.pone.0095124.g004
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S1). Genes with the smallest relative copy numbers (RCNs)

represented the primitive and tissue-specific (including cardiovas-

cular) genes, whereas the leukocyte-associated genes had much

larger RCNs (Fig. 1A). We also observed a pattern suggestive of

covariation between many of the mRNA markers (Fig. 1B).

Regression analysis demonstrated that indeed the expression levels

of cardiovascular genes were highly correlated with each other and

with those of several primitive genes (Fig. 2A and 2B, respectively).

A strong covariation was demonstrated as well between several

tissue-associated genes and a different set of primitive markers

(Fig. 2C). In these comparisons, we also observed poor and/or

even negative correlations, e.g., between primitive or cardiovas-

cular genes and leukocyte markers, such as CD45 (Fig. 2D).

These results were centralized in a covariation matrix (heat-

map) using the hematopoietic/endothelial progenitor marker

KDR/VEGFR2 as a reference [1] (Fig. 3A). The associated

statistics matrix, after adjustment for multiple comparisons,

revealed that a large majority of the Pearson coefficients were

also statistically significant (Fig. 3B). The majority of primitive

genes co-segregated with KDR in a group that contained most of

the cardiovascular genes (Fig. 3A, B). This information was

retrieved using unsupervised hierarchical clustering, thus objec-

tively confirming that the majority of the primitive and cardio-

vascular genes aggregated together (Fig. 3C, solid bracket), while

the leukocyte genes were less organized, and the tissue differen-

tiation markers formed a separate cluster (Fig. 3C, dashed

bracket).

Network analysis of gene markers
Because the known CSPC types are characterized by multiple

combinations of molecular markers [7], which were not well

captured by dendrograms due to their linear character, we also

used a network representation [34]. In this analysis, genes are

considered nodes connected to other genes via links (or edges),

based on a preset level of probabilistic significance (in our case,

Pearson correlation coefficients larger than 0.8 at p,0.05). The

number of edges between a node and the other genes to which it is

connected is called its degree k, and the probability of its

connections with all the other genes in the network is measured by

a clustering coefficient C(k) [34]. This bottom-up analysis retrieved

the grouping of marker genes shown in Fig. 3A as tightly

interconnected gene communities [35] (Fig. 4A). To validate the

modular properties of these communities, we displayed each

node’s clustering coefficient C(k) as dependent on its degree k. A

negative relationship on a log-log scale between k and C(k) is

considered the signature of hierarchical modularity in a network

[34]. In this respect, our data objectively revealed the existence of

two distinctly organized modules (Fig. 4B), each composed of the

same assortment of primitive and differentiation markers as the

clusters described in Fig. 3. The genes in Module 1 had higher

Table 3. Module 1 gene correlations with physiologic parameters.

Gene Age AIx(1) AoPP(2) BMI (females)(3)

r(4) p-value r p-value r p-value r p-value

ABCG2(5) 20.463 0.0172 20.430 0.0284 20.447 0.0221 0.779 0.0006

ADIPOQ 20.469 0.0158 20.364 0.0674 20.306 0.1279 0.541 0.0371

ALPL 20.420 0.0327 20.462 0.0176 20.398 0.0442 0.889 0.0000

CAV3 20.452 0.0203 20.487 0.0116 20.405 0.0403 0.828 0.0001

CDH5 20.461 0.0177 20.340 0.0892 20.348 0.0819 0.830 0.0001

CNN1 20.475 0.0142 20.490 0.0110 20.469 0.0157 0.776 0.0007

FSHR 20.514 0.0073 20.507 0.0083 20.476 0.0139 0.772 0.0007

GATA4 20.446 0.0223 20.410 0.0355 20.286 0.1566 0.597 0.0187

KDR 20.398 0.0442 20.420 0.0324 20.399 0.0481 0.830 0.0001

KIT 20.451 0.0209 20.470 0.0155 20.414 0.0356 0.853 0.0001

KRT14 20.436 0.0258 20.425 0.0306 20.416 0.0348 0.129 0.5301

MAP2 20.512 0.0074 20.470 0.0155 20.341 0.0886 0.834 0.0001

MKI67 20.479 0.0132 20.375 0.0592 20.232 0.2548 0.773 0.0007

NANOG 20.468 0.0159 20.464 0.0169 20.451 0.0209 0.833 0.0001

NES 20.519 0.0065 20.507 0.0083 20.413 0.0359 0.832 0.0001

NKX2-5 20.462 0.0176 20.469 0.0155 20.410 0.0374 0.845 0.0001

NOS3 20.460 0.0180 20.527 0.0057 20.520 0.0065 0.764 0.0009

NOTCH4 20.457 0.0190 20.494 0.0103 20.458 0.0187 0.738 0.0017

OLR1 20.526 0.0058 20.479 0.0133 20.406 0.0396 0.823 0.0002

POU5F1 20.493 0.0104 20.478 0.0136 20.462 0.0175 0.824 0.0002

PROM1 20.489 0.0112 20.398 0.0438 20.259 0.2012 0.563 0.0288

TEK 20.480 0.0132 20.471 0.0152 20.412 0.0366 0.766 0.0009

(1)Augmentation index, a surrogate measure of vascular stiffness extracted from radial pulse wave measurements, as described in the Methods.
(2)Aortic pulse pressure.
(3)Significant correlations with BMI were found only in females.
(4)Pearson’s correlation coefficient.
(5)Genes that were significantly correlated with all four parameters are in bold.
doi:10.1371/journal.pone.0095124.t003
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values of clustering coefficients C(k) for any given value of their

degree k compared with those in Module 2 (Fig. 4B). Some genes

(e.g., CD34, ST3GAL2, and CDH5) had intermediate values of

connectivity, indicating their position in a transition interface

between the modules.

To further confirm the modular nature of this transcriptional

network, some nodes (called hubs) were directly connected with all

of the others in the corresponding module and with key nodes in

the neighboring communities [34]. Based on this criterion, two

nodes (KDR and NES, Fig. 4C, D) were connected with all of

their neighbors, and both extended to PROM1/CD133 as a

common contact node in Module 2, a property that prompted us

to further investigate these nodes at the single-cell level (see below).

Cardiovascular functional validation of genes from
Module 1

To determine the physiological significance of the genes

contributing to these co-expression patterns, we studied their

individual relationships with the following characteristics of the

blood donors: (i) age; (ii) the augmentation index (AIx) of their

pulse, a surrogate measure of vascular stiffness [36]; (iii) blood

pressure parameters (measured using applanation tonometry [37]);

and (iv) body mass index (BMI). Significant correlations (p,0.05)

were observed between these physiological variables and a group

of 15 genes (Table 3), all of which belonged to the same module

(Module 1, Fig. 3C, bracket; Fig. 4A, encircled; and Fig. 4B).

These 15 genes were the following (as annotated in Table S1): (i)

primitive: CD117/KIT, CD338/ABCG2, NANOG, NOTCH4,

and POU5F1/OCT4; (ii) primitive/endothelial: CD34, KDR/

VEGFR2, NES, NOS3/eNOS, OLR1/LOX-1, and TEK/

TIE2, as well as ALPL (alkaline phosphatase, also mesenchymal),

CNN1, and FSHR (neovascular); and (iii) primitive/cardiac: NKX2-

5 and CAV3. The relationship between the Module 1 genes and

BMI showed marked differences between the sexes; in females

only, these genes were positively correlated with BMI. Additional

Module 1 genes (and a few genes from Module 2) were significant

in only two or three of the four tests (Table 2) and/or exhibited

lower network connectivity at the interface of the two modules

(Fig. 4B) and were thus not included in the definition of Module 1.

Personalized representation of gene analysis
We sought to consolidate the individual gene expression

information into a parameter that would combine the contribu-

tions of all of the 15 Module 1 genes that exhibited significance in

the above correlations with the physiological variables (Table 2).

For each healthy subject, we calculated a modular index (MI) (also

known as a metagene) [17], the average of the standardized RCN

values of the module’s genes (Fig. 5). As expected from the

dependence of individual genes on the respective physiological

variables, the MI values of all the subjects exhibited negative

correlations with age (Fig. 5A), vascular stiffness (Fig. 5B), and

Figure 5. Modular index (MI) of Module 1 (metagene) associated with the age and cardiovascular parameters of blood donors. A.
Age-dependent variation in MI in the population. B. Regression analysis of MI on AIx. C, D. Correlations of MI with AoPP and BMI (in women). MI
represents the 15-gene average of the standardized (mean = 0, SD = 1) RCN of each gene within the tested population, +/2 SD. n = 26 for A–C and
n = 14 for D. Note the apparently bimodal distribution of MI with age in this population.
doi:10.1371/journal.pone.0095124.g005
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aortic pulse pressure (Fig. 5C), as well as a positive correlation with

BMI in females (Fig. 5D).

Additionally, we investigated whether these 15 genes were

sufficient for the ability of MI to correctly characterize the

correlation between the metagene and the respective physiological

variable (e.g., age, AIx, and blood pressure). Therefore, we

calculated the Cronbach’s alpha coefficient for internal consisten-

cy, defined as the correlation between different test items (in our

case, the genes), that determines whether these items collectively

represent the same general construct [38]. High Cronbach’s alpha

coefficients are generally desirable, but if too high (conventionally

.0.95), they may indicate item redundancy [38]. For the genes

contained in the metagene MI, the Cronbach’s coefficient was

indeed .0.95, indicating that this set of variables was not only

consistent but also saturated.

For a more detailed representation of gene-specific information,

we also generated radial diagrams that displayed the individual

values of analyzed genes as the percentages vs. the median levels in

Figure 6. Personalized representation of gene expression as radial graphs. A. The reference population level (RCN median, n = 26, 100%) is
shown in blue, and the corresponding individual percentage values for the specified genes are shown in red in the order used in Fig. 2A. Note the
pattern differences in Module 1 genes between females with normal BMIs (upper row) and those with higher BMIs (lower row). B. Association of
aortic stiffness (left-side images) with radial gene profiles (right-side graphs) of two subjects: left, female, 56 years, average stiffness of 5.25 kPa; right:
male, 52 years, average stiffness of 6.17 kPa. Aortic stiffness was measured by MRE, as described the Methods section; the local elasticity distribution
is color coded, as shown in the scale at right (in kPa).
doi:10.1371/journal.pone.0095124.g006
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the population. For example, we compared the personalized

diagrams of female blood donors with normal weights against

those with BMIs in the overweight range (Fig. 6A). We noted that

the sector of the diagram containing Module 1 genes was better

represented in the latter group (in agreement with the positive

correlation with BMI found for Module 1 genes in women,

Fig. 5D), while the relative amplitude of Module 2 members

decreased progressively.

The benefit of this representation was also illustrated by

comparing gene expression patterns in subjects with various

degrees of vascular stiffness, objectively determined by MRE. The

results showed a reduction of gene expression in both modules

with increasing aortic stiffness in these otherwise healthy subjects

(Fig. 6B).

Modifications of PBMC gene expression in hypertensive
patients

The genes from Module 1 had inverse correlations with several

cardiovascular risk factors (age, blood pressure, and aortic

stiffness), which suggested that even stronger alterations might be

found in patients with established vascular pathologies. To test this

hypothesis, we utilized a cohort of cardiovascular patients treated

for hypertension in an outpatient cardiovascular clinic (Table 3).

We found that the expression levels of the tested genes in PBMCs

from these patients closely paralleled those in healthy subjects

(Fig. 7A). However, with a few exceptions involving non-significant

differences (Fig. 7A), the RCNs were reduced compared with the

healthy population, an observation also captured using their

metagene MI (Fig. 7B). Covariation heat-maps revealed obvious

disruptions in the co-expression patterns of these genes in the

patients compared with the healthy controls (Fig. 8A, B; compare

with Fig. 3A, B). The hierarchical clustering was also sensitive to

these rearrangements (Fig. 8C). The network representation

showed that the connectivity of nodes within and between both

modules was largely increased (Fig. 8D), as they collapsed in a

common, highly coupled sub-network (Fig. 8E). Remarkably, the

range of connectivity degree k values of these module’s nodes in

patients was reduced (23–26, Fig. 8E) compared with that in the

healthy subjects (17–25, Fig. 4B), arguing for lower connection

variability among node genes.

The radial diagrams indicated that in addition to the

conspicuous reduction in expression levels in both modules

(Fig. 9A), the patients treated with the diuretic thiazide displayed

gene levels closer to normal than those taking other medications

(Fig. 9B). The patients with hypertension exhibited unchanged

levels of ALPL, a tissue-type alkaline phosphatase gene expressed

by many non-vascular cells (including osteoblasts [39]) but also by

vascular lineage CSPCs [40]. The following genes also exhibited

module-independent variations among patients: (i) ALDH1A1, a

marker of primitivity with numerous cardiovascular implications

[41]; (ii) CXCR4, the receptor for SDF-1, which is essential for

CSPC recruitment [42]; and (iii) ST3GAL2, a transcriptional

marker of SSEA-4 [43], which has been associated with adult bone

marrow-derived mesenchymal stem cells [44], and with the

controversial [45] very small embryonic-like stem cells [46].

Cellular origins of gene co-expression
To identify the origins of gene expression we analyzed mRNA

and protein expression at the single-cell level. We used cytospun

PBMCs probed for the Module 1 hub nodes KDR and NES. To

these, we added the follicle-stimulating hormone receptor (FSHR),

a marker of neovascular endothelium [47], which was strongly

correlated with the other two nodes (Fig. 2A and Table S1). For

mRNA detection, we performed in situ hybridization, followed by

an automated image analysis. In all of the tested samples, we found

multiple cells expressing these marker mRNAs in various

proportions (Fig. 10A, B). To determine whether the Module 1

covariation pattern was derived from the coordinated presence in

the circulation of cells separately expressing these genes, we

performed two-by-two comparisons of the frequencies of single-

positive cells in the same individuals, which did not show a

correlation (Fig. 10C–E, insets). Instead, in support of a genuine

within-cell co-expression mechanism, we found a high propor-

tionality of the signals from all three mRNAs only within triple-

positive cells (Fig. 10C–E).

Figure 7. Comparison of gene expression in healthy and hypertensive subjects. A. The median RCN in healthy controls (CT, blue) vs.
hypertensive patients (HT, red); all of the differences are significant (p,0.05), with the exception of those labeled by arrows. Inset. Cq values of
housekeeping genes in this patient population. B. Box plots of the aggregated MI (averages of normalized RCN values of Module 1 genes) in the
control subjects and patients. (Box plots show the median values, 1st and 3rd quartiles, and the interquartile range; symbols are as in A).
doi:10.1371/journal.pone.0095124.g007
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Given that nuclear morphology is sensitive to a cell’s

transcriptional activity [48], we examined whether nuclear

parameters obtained by image analysis could distinguish the cells

co-expressing the Module 1-related mRNAs form the other

PBMCs. Indeed, nuclear shape and texture analysis showed that

the nuclei of cells triple-positive for KDR/NES/FSHR exhibited a

distinct morphology (Fig. 10F).

Finally, we searched for the proteins encoded by the mRNAs of

interest by performing immunocytochemistry on parallel slides

and found cells expressing all possible combinations of these

antigens (Fig. 11A). The nuclear morphology of the triple-positive

cells revealed by immunocytochemistry was similar to that

detected by in situ hybridization, i.e., a larger apparent nuclear

area and less textured compared with the other cells (Fig. 11B),

thus confirming that the two methods detected the same cellular

populations. In support of this observation, the frequency

distributions of the antigen expression classes (i.e., single, double,

or triple expressers) were also similar to those detected using

mRNA in situ hybridization in blood samples from the same

individuals (Fig. 11C).

Discussion

Here, we report several novel observations derived from an

analysis of transcriptional activity in PBMCs: (i) unlike GeneChips,

which failed to reliably detect approximately half of the gene

targets, qRT-PCR detected all 45 members of a panel of primitive

and differentiation marker genes in all the tested human blood

samples; (ii) based on their strong covariation, the target genes

segregated into two major clusters, which exhibited the connec-

tivity properties of modules in a bottom-up reconstituted

hierarchical transcriptional network; (iii) one of modules contained

most of the primitive and cardiovascular differentiation markers;

(iv) this module also correlated with several cardiovascular risk

factors in the healthy blood donors, contributing to a cardiovas-

cular-specific metagene; (v) the origin of genetic covariation was

Figure 8. Changes in the modular organization of genes in hypertensive patients (n = 20; see Figs. 3 and 4 for details). A. A heat map
of intergenic covariation. B. The corresponding matrix of significance values following Bonferroni corrections. C. Dendrogram of hierarchical gene
clustering. D. The network structure of the patient genes, indicating the fusion of Modules 1 and 2 of the network found in the healthy subjects (red).
E. The relationship between the gene clustering coefficient C(k) and node degree (connectivity) k; the collapsed sub-network shows a very strong and
nearly uniform connection between nodes (inset), suggestive of transcriptional primitivity. The data analysis and representation were performed as in
Figs. 3 and 4.
doi:10.1371/journal.pone.0095124.g008

Figure 9. Radial representation of relative gene expression in hypertensive patients. A. Representative radial diagrams of patients with
hypertension. Note the overall reduction in expression, with the exception of a subgroup of genes (e.g., ALPL, ITGAM, and PTPRC/CD45; compare
with Fig. 7A). B. Radial diagrams of hypertensive patients treated with thiazide; in these cases, the gene patterns in the two modules were closer to
normal (i.e. closer to the blue reference line).
doi:10.1371/journal.pone.0095124.g009
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Figure 10. Origins of marker gene co-expression within individual cells: in situ hybridization (ISH). A. ISH analysis of the Module 1 hub
genes KDR and NES and the node gene FSHR, identified by their fluorescent signals in a given microscopic field (brown masks were added to positive
cells by the CellProfiler image analysis software; blue represents DAPI staining of nuclei). Arrow: a triple-positive cell. B. Four-color confocal images of
cells that are positive for (a) all three markers; (b) NES and FSHR only; or (c) KDR and NES only (white: KDR; red: NES; green: FSHR; blue: nuclei). Bars:
5 mm. C–E. Linear regression of the integrated pixel intensity of the mRNA of each marker gene (KDR, NES, and FSHR) detected using ISH in triple-
positive cells (n = 66 cells pooled from 8 individuals; r: Pearson’s correlation coefficient; r2: regression coefficient; log-log scale). Inset graphs show the
lack of correlation between mRNA expression (also measured as the integrated pixel intensity) in single-positive cells for each respective pair of
markers. F. Nuclear area and several texture features calculated using the CellProfiler analysis significantly separated the triple-positive cells from the
other cells (*, p,0.05 for single and double expressers vs. negatives; #, p,0.05 for single and double expressers vs. triple positives; ", p,0.05 for
triple expressers vs. negatives) (a total of 2094 cells from 8 subjects were analyzed). Abbreviations: Comp., compactness; Int. Int., integrated intensity;
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found within individual cells of a subpopulation with distinctive

nuclear properties; (vi) the levels of gene expression in both

modules were significantly reduced in hypertensive patients; and

(vii) the connectivity within the PBMC gene modules was largely

amplified in hypertensive patients, leading to the fusion of these

modules into a common sub-network.

The properties of these gene modules were consistent with what

would be expected if they derived from CSPCs; in particular,

Module 1 could be the signature of circulating endothelial

progenitor cells. The dependence of Module 1 genes on BMI (in

women) is in agreement with the finding that CSPCs are under the

influence of adipose tissue, both as a source of pro-angiogenic

chemokines (e.g., adiponectin, known to induce the release of

CSPCs from bone marrow [49]) and as a possible direct originator

of CSPCs [50]. However, these gene modules were not equated

with any known underlying cellular classes for the following

reasons: (i) the stochastic nature of gene expression [51,52]; (ii) cell

plasticity, manifested as a transcriptionally dependent propensity

for transdifferentiation [53]; and (iii) the possible horizontal

redistribution of mRNA among different cell classes, possibly via

extracellular vesicles acting as intercellular RNA carriers [54],

which are particularly active among bone marrow stem cells [55].

Instead, we consider that although the Module 1 markers are

primarily expressed by EPCs [7], they also receive contributions

from other leukocytes with roles in maintaining vascular function,

such as angiogenic (TEK/TIE2+) monocytes [56] or angiogenic T

cells [57]. Other circulating bone marrow-derived cells of less

certain nature also contribute to the maintenance of microvascular

tone and normal blood pressure [58].

Equally important, many T lymphocytes positive for CD31 and

CXCR4 were found at the core of the in vitro-formed colonies

known as ‘early’ EPCs [59], which are bordered by KDR/

VEGFR2+ monocytic cells [60]. Despite their obvious non-

endothelial nature, the numbers of these heterogeneous, blood-

derived cell aggregates were highly correlated with the vascular

function of the blood donors [61]. In a larger context, leukocytes

Mean Int., mean intensity; Med. Int., median intensity; TDV, texture difference variance; TC, texture contrast; TV, texture variance; TSA, texture sum
average. The data represent the means of standardized values 6 SEM.
doi:10.1371/journal.pone.0095124.g010

Figure 11. Detection of cells expressing representative Module 1 node proteins using immunocytochemistry (ICC). A. Cells expressing
various levels of KDR (white), NES (green), and/or FSHR (red). Nuclei are blue (DAPI). a, b: NES-FSHR double-positive cells; c: a triple-positive cell. Bars:
5 mm. B. A nuclear morphology analysis revealed alterations in the triple-positive cells detected using ICC that were comparable to those found using
ISH (see Fig. 10 for abbreviations). The data represent the means of standardized values 6 SEM; a total of 1655 cells were analyzed. C. Frequencies of
cells positive for the three marker genes, detected using ISH (gray bars) and ICC (black bars) (n = 2094 and 1655 cells, respectively; none of the inter-
method comparisons were significant, demonstrating that they detected the same cell populations). The data represent the means of individual
blood donors 6 SEM.
doi:10.1371/journal.pone.0095124.g011
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often express other tissue-specific genes, revealing a refined but

poorly understood transcriptional cross-talk between blood and

perfused tissues [15]. Thus, we consider that the gene expression

pattern detected using our method diverges from the simple notion

of circulating progenitor cells into a more complex underlying

biological reality that is highly meaningful for vascular function. In

addition, we assume that the Module 1 genes do not derive from

circulating adult endothelial cells detached from the vascular

intima, because the endothelial functional marker von Willebrand

factor was not present among these genes. The fact that a class of

cells with distinctive nuclear properties, suggestive of a transcrip-

tionally active euchromatin, coordinately express the neovascular

markers KDR, NES and FSHR, provides additional evidence that

Module 1 genes derive from primitive rather than differentiated

cells. However, we consider highly unlikely that all the 15

members of Module 1 to be simultaneously expressed by only one

cell category, and thus we maintain that the origin of Module 1 is

an emergent property of the CSPCs system.

Vascular stiffness determines an individual’s susceptibility to

atherosclerotic plaque formation by predisposing the intimal

endothelium to increased permeability to lipoproteins and the

accumulation of monocytes [62]. Therefore, the presence of

endothelial differentiation genes associated with primitive genes in

the structure of Module 1 and their inverse correlation with AIx

indicate a protective role of the respective blood cells in vessel

health. Of note, AIx did not exhibit a direct relationship with the

age of the blood donors in our limited population, arguing that the

dependence of AIx on Module 1 components is not indirectly

mediated through the effect of age on the expression of these

components. The decrease in the levels of gene expression in

PBMCs with an increase in the blood donor’s age may be due to

variations in the number of gene-expressing cells, changes in these

cells’ transcriptional activity (such as the known aging-sensitive

dependence of transcription on the methylation of CpG islands in

gene regulatory elements [63]), or both. Additionally, the inverse

association between Module 1-derived MI and central aortic pulse

pressure (AoPP), which was recently shown to predict the future

development of hypertension in healthy human populations [64],

suggests a potential role of Module 1 genes in protecting small

resistance vessels.

Decreased collective expression of the genes in both modules

was observed among the patients with established (and treated)

hypertension. This finding is consistent with the reduction of

CSPCs, including CD34-positive cells [65], in patients with

hypertension, possibly as a direct effect of angiotensin [66] or in

response to anti-hypertensive treatments [67]. Other novel

observations of this study are that in the hypertensive patients,

there is increased covariation of the genes in both modules and the

distinction between these two modules vanishes. The increased

network connectivity in the patients, despite the overall reduction

in expression levels, suggests an amplified transcriptional coordi-

nation. In terms of gene network organization, the observed

reduced informational heterogeneity is the signature of a less-

differentiated state of the marker’s originating cells, which is

consistent with the higher transcriptional network entropy of

primitive cells [68]. In support of this possibility, hematopoiesis is

amplified in cardiovascular patients, based on blood gene

expression signatures [17].

Among the limitations of this study is the relatively small

population sample size. Despite this limitation, the correlations

between genes were strong and significant, highlighting the power

of our bottom-up network reconstruction method to extract

meaningful information from small human populations. Admit-

tedly, the set of genes examined here could still be an incomplete

representation of the actual underlying module from where our

target markers were extracted. This topic is worthy of future

exploration, although we demonstrated that the number of

components was sufficient for the use of Module 1 in the current

form as an aggregate biomarker (or metagene) of vascular

function. Finally, the other module that surfaced from our analysis

(Module 2 in normal subjects) remains to be explored to determine

its significance for the repair capacity of blood, which may occur in

an organ- and/or disease-specific manner.

In conclusion, the results reported herein constitute the proof of

concept for a novel bottom-up approach that is more sensitive and

more accurate than the currently used high-throughput methods

for the generation of a peripheral blood transcriptional network

module useful for studying the collective contribution of circulat-

ing cells to vascular and tissue maintenance and repair.
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Table S1 Abbreviations: Angio: angiogenesis; EC: endothelial

cells; EPC: endothelial progenitor cells; FB: fibroblasts; MC:

monocytes; Mph: macrophages; MSC: mesenchymal stem cells;

SMC: smooth muscle cells; VSELC: very small embryonic-like

stem cells. For some genes, alternative frequently used names are

given in parentheses.

(DOCX)

Table S2 (1) In those instances when a gene was represented by

several probe sets on the array, we calculated the median signal

value for each probe set over all of the arrays and retained the sets

that had the highest value. (2) Presence Score was calculated as

percentage from all 274 arrays, using MAS5 algorithm (Affymetrix

Expression Console). The following GEO datasets were used to

generate these data: GSE8507, GSE10041, GSE11761,

GSE14642, GSE19743, GSE21942, GSE27034, and GSE46480
(3) Percentages in this column are calculated only from the arrays

used in this study [1]. Reference: 1 Li L, Li M, Sun C, Francisco L,

Chakraborty S, et al. (2011) Altered hematopoietic cell gene

expression precedes development of therapy-related myelodyspla-

sia/acute myeloid leukemia and identifies patients at risk. Cancer

Cell 20: 591–605. (GSE23025).
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