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This study aimed at investigating antimicrobial resistance (AMR) profile of Vibrio parahaemolyticus (V. parahaemolyticus). 
The bacteria were isolated from wild-caught and farmed Japanese horse mackerel (Trachurus japonicus), and examined for 
the antimicrobial drug resistance. Furthermore, the serotype, and the genes of thermostable direct hemolysin (tdh) and chol-
era toxin transcriptional activator (toxR) of the isolates were investigated by using a serotype testing kit and PCR method. 
Eighty-eight and 126 V. parahaemolyticus strains were isolated from wild-caught and farmed Japanese horse mackerel, 
respectively. Ten and 18 distinct serotypes were detected from wild-caught and farmed Japanese horse mackerel. All strains 
were negative for tdh genes but positive for toxR genes. Resistances to ampicillin (ABP) and to both ABP and fosfomycin 
(FOM) were observed in 54 and 23 strains from the wild-caught fish, while those resistant strains from farm fish were 
112 and 7 strains. Multidrug-resistance to three or four drugs including ABP was observed in one or two strains from the 
wild-caught fish.
These results strongly suggest that the environmental exposure of antimicrobial drugs results in the spread of resistant 
genes in Japanese horse mackerel. This study highlights the need for monitoring the spread of resistance genes to the human 
intestinal flora as well as to other bacteria in the environment.
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1. Introduction

Methicillin-resistant Staphylococcus aureus, vancomycin-

resistant Enterococcus and multidrug-resistant Pseudo-
monas aeruginosa have become serious health problems 
as causative agents of medical-related infections in Japan. 
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Problems of drug resistance such as the increased preva-
lence of multidrug-resistant and super multidrug-resistant 
tuberculosis are spreading throughout the world. Japanese 
government established the “National Action Plan on 
Antimicrobial Resistance (AMR)” in 2016 to continuously 
monitor the consumption of antimicrobial agents and drug-
resistance development and to precisely identify various 
indicators of drug resistance in order to monitor emerging 
trends1). Food Safety Commission of Japan (FSCJ) also es-
tablished its action plan to implement until 2020 to promote 
and improve furthermore food safety risk assessment in rela-
tion to drug resistant bacteria. A systematic surveillance and 
monitoring system of drug resistant bacteria, specifically 
for the influence of drug resistant bacteria on human health 
through intake of seafoods, has not been established in the 
fisheries field1). Several reports have been published about 
AMR profile of Vibrio parahaemolyticus (V. parahaemo-
lyticus) isolated from fish, shellfish and seafoods in various 
countries2–12). The accumulation of scientific knowledge and 
information are thus necessary for such assessments.

In the present study, we focus on the drug resistance of 
V. parahaemolyticus as a causative agent of food poisoning 
that has been linked to seafoods. In addition to the drug 
resistance, serotypes and pathogenic gene profile of V. 
parahaemolyticus isolated from wild-caught and farmed 
(in Shizuoka, Japan) Japanese horse mackerel (Trachurus 
japonicus) were examined.

2. Materials and Methods

2.1 Japanese Horse Mackerel
Twenty-four wild-caught Japanese horse mackerel were 

purchased at a retail store in Shizuoka, Japan, and 40 
Japanese horse mackerel farmed in Shizuoka, Japan, were 
purchased from an aquaculture company (Shizuoka Fisher-
ies Cooperatives Numazu Office). They were obtained from 
July to September 2016.

2.2 Isolation and Identification of V. 
parahaemolyticus

V. parahaemolyticus was isolated from the muscle (edible 
parts), gill and viscera collected from individual Japanese 
horse mackerel with scissors aseptically. Bacteria were 
isolated by a qualitative test method recommended by the 
National Institute of Health Sciences (http://www.nihs.go.jp/
fhm/mmef/pdf/protocol/NIHSJ-06_ST4%20201607.pdf). 
The separation and identification processes are described 
briefly as follows. Each collected part was diluted 10-fold 
with alkaline peptone broth (Nissui Pharmaceutical, Co., 
Ltd., Tokyo Japan) and cultured at 35°C for 18 hours without 

shaking. A portion of the culture was then spread on CHRO-
Magar (BD Japan, Tokyo, Japan). Vibrio culture medium, 
and typical light purple colonies were picked up as suspected 
colonies. Characterization and identification of isolates were 
performed using 1% NaCl-added TSI culture medium (Nis-
sui Pharmaceutical, Co., Ltd.), 1% NaCl-added LIM culture 
medium (Nissui Pharmaceutical, Co., Ltd.), Nutrient Broth 
(BD Japan), 8% NaCl-added Nutrient Broth, 2% NaCl-added 
VP semi-solid medium (Eiken Chemical, Co., Ltd., Tokyo, 
Japan) and cytochrome oxidase test filter paper (Nissui 
Pharmaceutical, Co., Ltd.).

2.3 Serotyping
Serotypes O group and K were examined with V. parahae-

molyticus typing immune sera, “Seiken” (Denka Company, 
Ltd., Tokyo, Japan).

2.4 Pathogenic Gene Test
DNA was extracted by the hot extraction method, and 

thermostable direct hemolysin (tdh) genes were identified 
by PCR13). The primer set PVD-1 and PVD-2 (Takara Bio, 
Shiga, Japan) was used for tdh and the primer set constructed 
according to Kim et al14)  was for cholera toxin transcrip-
tional activator gene (toxR). The toxR gene produces ToxR 
protein, which controls tdh gene expression14,16).

2.5 Drug Resistance Test
Drug resistance tests were performed using the disc 

method (KB disc, Eiken Chemical, Co., Ltd.). Briefly, the 
test organism was grown at 37°C overnight in 1% NaCl-BHI 
broth (74 rpm). Cultured organism was diluted at turbidity 
of Mcfarland 0.5 by 1% NaCl-BHI, and 200 µl sample was 
cultured at 37°C overnight on Mueller Hinton II agar plate 
with discs. Discs of ampicillin (ABP) 10 µg/disc, fosfomycin 
(FOM) 50 µg/disc, tetracycline (TC) 30 µg/disc, and sulfa-
methoxazole/trimethoprim (ST) combination 23/75 µg/disc 
were used. Judgments were based on the criteria provided 
with the KB disc.

3. Results and Discussion

3.1 Isolation of V. parahaemolyticus
A total of 88 and 126 V. parahaemolyticus strains were 

isolated from the wild-caught and farmed Japanese horse 
mackerel, respectively (Table 1).

3.2 Serotyping
Ten serotypes were detected in the isolates from the wild-

caught mackerel. For the farmed mackerel, 18 serotypes 
were detected (Table 2).



77

doi: 10.14252/foodsafetyfscj.D-21-00001

O3:K6 strain, a pandemic strain of V. parahaemolyticus, 
was not isolated in this study, but serotype O1KUT and 
O2:K3, O3:K5, O3:KUT, O4:KUT, O5:K17, and OUT:KUT 
strains were isolated. Some researchers have reported that 
some isolates of these serotypes showed the same character-
istics with the pandemic clone. In addition to the serotypes 
that we detected, O11:KUT, O4K42, O4K9 have been also 
postulated as pandemic strains17–20).

3.3 Detection of Pathogenic Genes
None of the strains isolated were tdh gene-positive, while 

all strains were toxR gene-positive. The toxR gene has widely 
been used for identification of V. parahaemolyticus, and 
therefore, all the strains isolated in this study were judged to 
be V. parahaemolyticus4).

Gene transfer from tdh gene-positive strains enables other 
bacteria to produce the toxin, i.e. integrative, and conjuga-
tive elements are self-transmissible modular mobile genetic 
elements integrated into a host genome that are passively 
propagated during chromosomal replication and cell divi-
sion, and mediate the acquisition of complex new traits in 
bacteria21). Therefore, it is presumed that gene transfer plays 
a role in tdh gene-negative V. parahaemolyticus acquiring 
the capability of producing the TDH toxin15,16).

We were unable to isolate tdh-positive V. parahaemolyticus. 
Other studies have attempted to isolate tdh-positive strains 
from seafood and environmental samples. TDH-producing 
V. parahaemolyticus was previously isolated mainly from 
clams and oysters22,23). It is supposed that the contamination 
rate of TDH-producing V. parahaemolyticus in fish might 
not be high in Japan, even though food poisoning associated 

with consumption of fish is caused by TDH-producing one.

3.4 Antimicrobial Drug Resistance
The resistance to ABP and to both ABP and FOM were 

observed in 54 and 23 strains, respectively. Wild-caught and 
farmed fish, in this study,  had 112 and 7 strains, respectively. 
Multidrug resistance to three or four drugs including ABP 
was observed in one or two strains from the wild-caught fish 
(Table 3).

According to the statistics of sales amounts of antibiotics 
in 2019 reported by the Ministry of Agriculture, Forest and 
Fisheries24), the amounts for fish in seawater were 22,610.8 
kg of ABP, while TC of 9,598 kg and FOM of 319.1 kg  were 
also reported. ST was not used for fish, but was used for hu-
man25) and for livestock (pigs and chickens). The amounts 
of ST was not reported, but 44,389 kg of sulfamethoxazole 
and 10,183.2 kg of trimethoprim were used for livestock. 
Reasons of detection of antimicrobial resistance to ST are 
still unknown, but we supposed that the use of this drug in 
human and livestock might affect acquisition of resistance.

ABP resistance is most prevalent in our study, and other 
reports also showed ABP resistance is most prevalent in dif-
ferent places in the world including China and Korea2–9,26).

Most of the resistance except for ABP was characterized 
by multidrug-resistant strains in the present study. Detection 
of multidrug resistant V. parahaemolyticus has also been 
reported in isolates from fish, shellfish, and/or seawater in 
Korea2,3), Poland4), China6), and India9). Multidrug-resistant 
pattern is different among these isolates, but some of these 
isolates are ABP, TC and ST resistant as observed in the 
present study. Multidrug resistance is considered a serious 

Table 1.  Number of V. parahaemolyticus isolated from each part of wild-caught or farmed Japanese horse mackerel

Parts Total number of fish samples Number of fish samples contaminated with  
V. parahaemolyticus (%)

Number of isolates

Wild-caught

Muscle 24 8 (33.3) 40

Gill 24 6 (25.0) 44

Viscera 24 3 (12.5) 4

Total 88

Farmed

Muscle 40 0 (0.0) 0

Gill 40 15 (37.5) 78

Viscera 40 48 (17.5) 48

Total 126
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Table 2.  Serotypes of Vibrio parahaemolyticus isolated from wild-caught or farmed Japanese horse mackerel

Wild-caught Farmed

Serotype Number of strains (%) Serotype Number of strains (%)

O2:KUT1) 30 (34.1) O1:K32 35 (27.8)

O4:KUT 12 (13.6) O3:KUT 20 (15.9)

O2:K3 8 (9.1) O2:K28 17 (13.5)

O3:K45 7 (8.0) O5:K17 14 (11.1)

OUT2):KUT 7 (8.0) O11:KUT 7 (5.6)

O3:K5 6 (6.8) O4:K42 5 (4.0)

O3:KUT 6 (6.8) O4:K9 4 (3.2)

O10:KUT 5 (5.7) O10:K52 4 (3.2)

O2:K28 5 (5.7) O1:K5 3 (2.4)

O4:K34 2 (2.3) O1:KUT 3 (2.4)

O3:K33 3 (2.4)

O11:K36 3 (2.4)

O2:KUT 2 (1.6)

O4:KUT 2 (1.6)

O3:K5 1 (0.8)

O3:K57 1 (0.8)

O6:K46 1 (0.8)

O10:KUT 1 (0.8)

Total 88 (100.0) 126 (100.0)
1) KUT: K untypeable
2) OUT: O untypeable

Table 3.  Antimicrobial resistance profile of Vibrio parahaemolyticus isolated from wild-caught or farmed Japanese horse mackerel

Wild-caught Farmed

Antimicrobial drugs Number of strains (%) Number of strains (%)

ABP 54 (61.4) 112 (88.9)

FOM 1 (1.1) 0 (0.0)

ABP FOM 23 (26.1) 7 (5.6)

ABP TC ST 1 (1.1) 0 (0.0)

ABP FOM TC ST 2 (2.3) 0 (0.0)

Sensitive 7 (8.0) 7 (5.6)

Total 88 (100.0) 126 (100.0)
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public health issue. A greater number of multidrug-resistant 
V. parahaemolyticus strains were isolated from wild-
caught mackerel than farmed mackerel. It is supposed that 
wild-caught mackerel might be affected by environmental 
conditions of resistant-gene delivery to a greater extent than 
farmed fish.

Since resistance has been detected in various species of 
the genus Vibrio10–12,27), it is possible that resistance genes 
have been transmitted throughout the genus. As such, drug-
resistant V. parahaemolyticus may be involved in transmis-
sion of resistance genes to other bacteria in the environment 
or in the human intestinal flora, further emphasizing the 
importance of drug resistance to public health. Further study 
is necessary to clarify the origin of drug resistance genes to 
marine environment.
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