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Abstract: This review covers the chemistry of allobetulin analogs, including their 
formation by rearrangement from betulin derivatives, their further derivatisation, their 
fusion with heterocyclic rings, and any further rearrangements of allobetulin compounds 
including ring opening, ring contraction and ring expansion reactions. In the last part, the 
most important biological activities of allobetulin derivatives are listed. One hundred and 
fifteen references are cited and the relevant literature is covered, starting in 1922 up to the 
end of 2010. 
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1. Introduction  

Triterpenes and triterpenoids are numerous and widely distributed in Nature. Biosynthetically, they 
are derived from squalene. Earlier studies have focused on the isolation and structural elucidation of 
the compounds, and there is still a lot of ongoing research in this area that has been regularly reviewed 
by Connolly and Hill [1]. During recent years, several interesting biological properties were found for 
this class of compounds, which in combination with their low toxicities lead to an increased research 
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effort [2,3]. More particularly, the oleanane group displays a number of significant pharmacological 
activities. Allobetulin (2) and its derivatives, obtained from the readily available lupane betulin (1), 
form a part of the oleanane group. 

In this review, we summarize the chemistry of allobetulin analogs including: (1) their formation by 
rearrangement from betulin derivatives, (2) their further derivatisation, (3) their fusion with 
heterocyclic rings, and (4) the further rearrangements of allobetulin including ring opening, ring 
contraction and ring expansion reactions. In the final part (5), the most important biological activities 
of the allobetulin derivatives mentioned in sections 1–4 are listed.  

There are also a number of allobetulin derivatives that are isolated from plant extracts. For a recent 
example see [4]. These will not be treated in this review. We also did not cover the chemistry of the 
ring contracted or seco-derivatives of allobetulin, other than their formation from allobetulin 
derivatives. 

2. Betulin-Allobetulin Rearrangement 

In 1922, Schulze and Pieroh reported that when betulin (1) was heated in formic acid, an 
unexpected formate ester product resulted, that gave an isomeric product after saponification that was 
named allobetulin (2) (Scheme 1) [5]. At that time, very little was known about the structure of (allo)-
betulin due to the lack of adequate characterisation techniques, but the authors were able to conclude 
that the obtained product was a monoalcohol, containing an ether function and an otherwise strongly 
rearranged structure as compared to the dialcohol betulin (1). Dischendorfer et al. determined the 
correct molecular bruto formula of 2 not much later [6]. In the following years several authors carried 
out similar rearrangements and prepared derivatives of allobetulin (2), but breakthroughs regarding its 
structure came only after the work of Davy [7] who oxidized the acetate of allobetulin to the 
corresponding 28-oxo derivative, and then saponified it to the alcohol and oxidized this compound to 
oxyallobetulone (3). The latter was identical to a product (“ketone-lactone-A”) derived by 
rearrangement of betulonic acid. Only recently was an X-ray structure of allobetulin (2) reported [8]. 

Scheme 1. Rearrangement of betulin (1) to allobetulin (2). 
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Various acidic conditions have been applied for this transformation, which is now known to belong 

to the class of Wagner-Meerwein rearrangements. Hydrobromic acid in chloroform [9], sulfuric acid in 
acetic acid [10], concentrated hydrochloric acid in ethanol [11,12] and even the highly toxic dimethyl 
sulfate [13] have been used for the transformation of 1 to 2 in moderate to good yields. The yield can 
be substantially improved by using acid reagents adsorbed on solid supports. Li et al. used “solid 
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acids” such as sulfuric acid or tosic acid on silica, Montmorillonite K10 and KSF, bleaching clays and 
kaolinite to obtain allobetulin and its derivatives in close to quantitative yield [14]. Pichette et al. have 
used ferric nitrate or ferric chloride absorbed on silica gel or alumina to convert betulin (1) into 
allobetulin (2) in excellent yield. Longer reaction times lead to the formation of allobetulone (4) or A-
ring contracted products, respectively [15]. Ferric chloride hydrate itself (not supported) was also used 
for a larger scale reaction (approx. 5 g, 92% yield) [16]. Trifluoroacetic acid [17] or bismuth triflate 
(via triflic acid liberated by hydrolysis) [18] also give excellent results for this transformation. Russian 
researchers, including patent literature, mention the use of diluted sulfuric acid [19] and 
orthophosphoric acid [20] to combine the process of extraction of 1 from birch bark and rearrangement 
to 2. This rearrangement can in fact be seen as an interesting undergraduate laboratory experiment [21]. 

Simple derivatives of betulin, such as betulone, 3-acetylbetulin, and betulinic acid have been 
transformed by the above methods to the corresponding allobetulin analogs allobetulone (4), 3-
acetoxyallobetulin (5), and 28-oxoallobetulin (6). Betulinic acid is slower to rearrange in comparison 
to other betulin analogs and may give substantial amounts of side products. 28-Oxoallobetulin (6) may 
be prepared more effectively in two steps by rearrangement of the 3-acetylated betulinic acid, followed 
by hydrolysis [22]. As mentioned earlier, rearrangement of betulonic acid or its methyl ester [23] 
affords triterpene 3, which can be reduced back to 6 (Figure 1) [24]. 

Figure 1. Structures of triterpenes 3-6. 

 allobetulone (4)28-oxyallobetulone (3)

 5  28-oxoallobetulin (6)  
 

Another example is the preparation of 3-amino-28-oxoallobetulin (7) after attempted trifluoroacetic 
acid deprotection of the corresponding Boc-protected betulinic acid derivative [25]. Treatment of 
betulin (1) with bromine was reported to give a good yield of the dibromoallobetulin (8) [26]. The 
structure of rearrangement product 8 was proven by X-ray crystallography. However, this good yield is 
difficult to reproduce so an efficient procedure towards this interesting product is still lacking. Pradhan 
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et al. likewise reported on the formation of the 3-acetylated 28-oxo analogs of 8 after treatment of the 
corresponding betulin derivative with N-bromosuccinimide in DMSO (Figure 2) [27-29].  

Figure 2. Structures 7 and 8. 
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Davy et al. prepared an interesting enol ether analog 10 of allobetulin via rearrangement (20% 
sulfuric acid in acetic acid) of the acetyl derivative of betulone (9). Ozonolysis of compound 10 
afforded 28-oxoallobetulone (3), proving the enol ether structure (Scheme 2) [30]. 

Scheme 2. Rearrangement of ketone 9 to enol ether 10. 
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In the recent work of Czuk et al., allobetulin homologues 12 were prepared in almost quantitative 

yields by trifluoroacetic acid induced rearrangement of secondary alcohols 11 that were prepared from 
3-acetylated betulinic aldehyde by aldol condensation reactions (Scheme 3) [31]. 

Scheme 3. Rearrangement of alcohols 11 to allobetulin homologues 12. 
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The naturally occurring 23-hydroxybetulin (13, obtained from the bark of Sorbus aucuparia L.) was 
transformed to the diformate 14a (R = CHO) by an adaptation of the Schulze-Pieroh procedure [11]. 
Removal of the formate lead to 23-hydroxyallobetulin (14b, R = H). Oxidation of the latter with Jones 
reagent lead to formation of the norketone 15, after decarboxylation of the intermediate ketoacid. The 
latter compound was used as a means to functionalize the B-ring, and 19β,28-epoxy-18α-olean-5-ene 
derivatives such as the interesting unsaturated allobetulone analog 16 were obtained after a 
bromination, dehydrobromination and methylation sequence (Figure 3) [32].  

Figure 3. Structures of compounds 13-16. 
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3. Simple Functionalisation Reactions of Allobetulin Analogs 

Allobetulin (2) can be simply oxidized to the synthetically valuable allobetulone (4) by 
chromium(VI) reagents [2,33,34], Swern reaction [35] or sodium hypochlorite [36]. As mentioned 
previously, 4 can also be prepared in a one-pot procedure from betulin (1) [15].  

Figure 4. Structures of compounds 17-19. 
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Allobetulone (4) was used to prepare the usual ketone analogues, such as the oxime 17a,b  

(X = NOH, Y = H2 or O) [5,37], and the phenylhydrazone 18 (X = N-NHPh) [5]. Epimeric spiro 
compounds 19a,b were obtained (as a 1:2 mixture) from 4 by hetero-Diels-Alder cycloaddition 
reaction with benzoyl ketene generated in situ from 5-phenyl-2,3-dihydrofuran-2,3-dione (Figure 4). 
The two isomers 19a,b were isolated and characterized by X-ray crystallography [38]. The effect of 
the substituents on the cumulene and aryl fragments on the stereoselectivity was studied [39]. 

3-Acetoxyallobetulin (5) was oxidized to the lactone 6 with CrO3 in acetic acid [5,40], similarly 3 
was prepared starting from allobetulone (4) [6]. Zhang et al. succeeded to oxidize allobetulin (2) 
directly to 28-oxoallobetulone (3, 87% yield), using sodium periodate/ruthenium trichloride as the 
reagent [41]. The selective reduction of lactone 3 to 28-oxoallobetulin (6) is another viable alternative 
to prepare this compound [24].  

Base catalyzed oxidation of allobetulone (4) with oxygen as the reagent affords the 2-hydroxy 
enone derivative of allobetulin (20) [34,40,42,43]. Similarly, the oximes 21a,b (X = H2, O) are 
prepared from 4 or 3 via condensation with isoamyl nitrite reagent [32]. Forster reaction of 21a gave 
the corresponding 2-diazoallobetulone (21c, Scheme 4) [42]. 

Scheme 4. Oxidation and oximation of ketones 3,4. 
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Ethylenedithioketal 22a (X = S, Y = H2) was prepared from allobetulone (4) and reduced to allo-

betulane (23) with Raney nickel [44]. The 28-oxyallobetulone ketal 22b (X = Y = O) was prepared in 
86% yield from triterpene 3 and ethylene glycol [41]. Other ketals were also prepared from 
allobetulone (4) [45]. Allobetulenes 24a,b that are of importance as biomarkers were prepared from 
allobetulin (2, X = H2) or 28-oxoallobetulin (6, X = O) via tosylation in pyridine and elimination of 
toluenesulfonic acid [14]. The alkene 24a is known from older work by the name of γ-allobetulin 
[46,47]. This alkene 24a was subjected to the Prins reaction, leading to the alcohol 24c (R = CH2OH) 
[48]. Interestingly, allobetulone (4) was isomerized to the 2-keto triterpene 25 in the presence of sulfur 
and morpholine (Figure 5) [49]. 
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Figure 5. Structures of compounds 22-25. 
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Aldol condensation reactions of allobetulone (4) with benzaldehydes and heterocyclic aldehydes 
lead to the α,β-unsaturated ketones 26 [6,50]. Similarly, Claisen condensations of 4 with formate and 
oxalic esters have been used to prepare the synthetically useful 1,3-diketones 27 or their enol 
tautomers (Figure 6) [16,51-53]. The formyl derivative 27 (R = H) was converted into the 2-fluoro-
methylidene derivative by treatment with DAST [54]. 

Figure 6. Structures of triterpenes 26 and 27. 
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Both the 2-monobrominated (mixture of the 2α- and 2β-epimers) 28a,b (X = Br) and the 2,2-
dibrominated derivative 29 can be prepared by controlled reaction of allobetulone (4) with different 
brominating reagents [55-60]. The corresponding chlorinated derivatives 28a,b (X = Cl) are also 
known [61]. The conformations of these brominated triterpene derivatives were studied in detail [58] 
and an X-ray structure of isolated 2β-bromoallobetulone (28b) was reported. [62] Dehydrobromination 
of 28 or 29 gave unsaturated ketones 30a,b [55,59]. Ketone 30a (R = H) was also prepared directly via 
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phenylselenic anhydride oxidation of allobetulone 4 [39] and was used as a Michael acceptor for 
cyanide anion (Figure 7) [41]. 

Figure 7. Structures of triterpenes 28-30. 
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Addition of acetylide to allobetulone (4) affords a monoacetylene 31 [63]. Trimethylsilylcyanide 

addition to 4 followed by reduction yields aminoalcohol 32 [35]. A dimeric bis(allobetulenyl) sulfide 
33 (X = S) is isolated after treatment of allobetulone (4) with Lawesson’s reagent [64] the 
corresponding diselenide 33 (X = Se2) was isolated after attempted dehydrogenation of 4 with 
selenium dioxide [59]. Enol acetates and ethers 34 were also prepared starting from allobetulone (4) 
(Figure 8) [65,66]. 

Figure 8. Structures of triterpenes 31-34. 
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A remarkable photolytic transformation (Barton reaction) of 2-nitrite 35, derived from the ketone 25 
after reduction and esterification with nitrosyl chloride, lead to the formation of two regioisomeric 
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aldoximes 36 (40%) and 37 (40%) [67-69]. The remotely functionalized (C-25 and C-26) oximes 36a 
and 37a were further converted into nitriles 36b and 37b (Scheme 5). 

Scheme 5. Photolysis of nitrite 35. 
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Simple ester derivatives 38 of allobetulin (2) or its 28-oxo analog 6 may be prepared via acylation 
of the 3-βOH function [5,70,71]. Acylation with cyclic anhydrides leads to monoacidic ester 
derivatives with improved water solubilities [71]. Alternatively, R groups containing ionic 
functionalities (ammonium, sulfonate) or polyethylene glycol solubilizers are attached [72]. Next to 
acylation, sulfonylation and phosphorylation reactions were also described [71]. The oximes 17a,b 
may also be used to prepare O-acylated derivatives 39 [37,73]. 

Enamines 40 are prepared from the enol acetate 34 (R = Ac) by epoxidation and condensation with 
primary or secondary amines. The reaction involves an oxidation, probably effected by adventitious 
oxygen [67]. 2-Alkylaminomethylene derivatives 41 of allobetulone (4) were prepared from the 
Claisen ester condensation product 27 (R = H) and primary amines (Figure 9) [53]. 

Figure 9. Structures of triterpenes 38-41. 
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Glycosides and saponins with allobetulin (2) or its 28-oxo derivative 6 as aglycones were prepared 
by reacting the 3β-hydroxy function with sugar derivatives, such as glycals [74-78] or a large 
collection of trichloroacetimidates [22,79-81]. This modification, see for instance glycoside 42 [78], 
saponin 43 [79] and the glycoside derivative of 20a [40], greatly enhances water solubility and hence 
influences the biological properties (Figure 10). 

Figure 10. Structures of triterpene saponins 42 and 43. 
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4. Ring Fusion to the A-Ring of Allobetulin 

2,3-Epoxides may be formed by ring closure of the corresponding bromohydrins, available from 
reduction of 2-bromoallobetulones 28 (X = Br), by epoxidation of alkene 24a [59,82] or by oxidation 
reactions of enol acetate 34 (R = Ac) as mentioned above [66]. The main feature of these epoxides is 
their propensity for ring opening reactions with nucleophiles [52,61]. Interestingly, 2α,3α-epoxide 44 
on treatment with a methyl Grignard reagent underwent rearrangement (see also next part 3) before 
addition of the organometal, affording nor-A alcohol derivative 45. The 2β,3β-isomeric epoxide 
underwent a similar rearrangement/addition sequence (Scheme 6) [83]. 

Scheme 6. Ring opening of epoxide 44 with Grignard reagent to afford 45. 
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Allobetulone (4) and its substituted derivatives are the starting point for the annelation of allobetulin 
with heterocyclic rings. For instance, Fischer indole synthesis starting from arylhydrazine and ketone 4 
gave the fused indole 46 [84,85]. 2-Hydroxyenone 20a was condensed with diamines such as 1,2-
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diaminobenzene and 1,2-ethylenediamine to give the corresponding (benzo)pyrazine derivatives 47 
(Figure 11) [43,45,49,86]. 

Figure 11. Structures of fused triterpenes 46 and 47. 
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Hantzsch type synthesis starting from the α-bromoallobetulone (28a, R = Br) and thiourea gave an 
aminothiazolo fused triterpene 48 [87]. Condensation of the 1,3-dicarbonyl derivatives 27, prepared by 
Claisen ester condensation of 4, with hydrazine or hydroxylamine gave pyrazoles 49 or isoxazoles 50, 
respectively [51]. In the case of alkylhydrazines two isomeric pyrazoles with [b] and [c] fusion are 
formed (Figure 12) [88]. 

Figure 12. Structures of fused triterpenes 48-50. 
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5. Further Rearrangements of Allobetulin, Including Ring Contractions and Ring Expansions 

Often, the rearrangement of betulin (1) to allobetulin (2) is accompanied with the formation of the 
dehydrated, isomeric “apoallobetulins”. The latter have a variety of structures and can also be obtained 
from isolated allobetulin (2) by treatment with different acidic reagents. The structure of the δ-
allobetulin 51 obtained by treatment of allobetulin (2) with PCl5 or phosphorous pentoxide at 0 °C 
[5,6,15] was shown later by ozonolysis to have an exocyclic double bond [89]. The so-called α-
apoallobetulin 52 has an endocyclic double bond and is formed on treatment of betulin (1) with 
Fuller’s earth [6,89]. More recently, different solid acids such as Montmorrilonite K10 have 
successfully transformed 1, 2 or even the δ–isomer 51 to mixtures of 52 and the “rearranged α-
apoallobetulin” [47] 53. In general, the amount of 53 in the mixture increases at higher temperatures. 
28-Oxo derivatives of 52 and 53 are formed accordingly from betulinic acid or 28-oxoallobetulin (6) 
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[15]. Silica- or alumina supported FeCl3 hydrate gave a similar mixture (55:45 ratio) of 52 and 53 on 
extended reaction of betulin (1), via allobetulin (2) [16]. The reaction of allobetulin (2) with PCl5 has 
been reinvestigated and was shown to lead directly to 52 at slightly higher temperatures (5–10 °C). At 
−10–0 °C, the expected 51 was formed [47]. The highest yields and selectivities of apoallobetulin 
isomers were obtained on treatment of betulin (1) with bismuth triflate. The relative amount of catalyst 
is important. Thus, heating 1 with 20 mol% catalyst for 40 h at reflux in dichloromethane gave 98% 
yield of 52. On the other hand, heating of 1 or 52 for 8–15 h in the same solvent with 50 mol% 
bismuth triflate gave the isomer 53 almost quantitatively (96–98% yield) (Figure 13) [19]. 

Figure 13. Structures of apoallobetulins 51-53. 
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Treatment of allobetulin (2) with acid chlorides in high boiling solvents leads to rearranged and ring 
opened diacylated products 54a, that can be saponified to the so-called “heterobetulin” 54b, which has 
an ursane framework [9,47,90,91]. “Alloheterobetulin” 55 is a ring closed isomer of the latter which 
can be obtained after treatment of 54b with toluenesulfonic acid [92]. A remarkable 
rearrangement/O,C-diacylation was recently reported to occur (55% yield of 56) when allobetulin (2) 
was treated with acetic anhydride and a few drops of perchloric acid (Figure 14) [93]. 

Figure 14. Structures of ring opened allobetulin derivatives 54-56. 
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The Baeyer-Villiger oxidation of allobetulone (4) was investigated by different groups under 

different circumstances [40,94,95]. With MCPBA in dichloromethane, the main product (83%) is the 
ring-expanded lactone 57a. Other peracids (performic, peracetic) give similar results. However, 
reaction of 4 with MCPBA in the presence of acid (acetic + sulfuric) leads to the formation of a nor-
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lactone 57b. The 3,4-seco derivatives 58a,b were obtained in good yield either from 57a by alkaline 
hydrolysis or directly from 4, carrying out the oxidation in methanol with a trace amount of sulfuric 
acid [95]. Larger amounts of acid (0.15%) lead to the formation of the 2α-hydroxyallobetulone 28c in 
good yield (86%) (Figure 15) [65]. 

Figure 15. Structures of A-seco derivatives 57 and 58. 
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The Beckmann rearrangement of allobetulin oxime 17a, induced by TsCl/pyridine or phosphoryl 
chloride, gave rise to the formation of a lactam 59a (major product) and a 3,4-seco-triterpene nitrile 60 
(minor product). The lactam 59a could be transformed into the nitrile 60 on extended heating [96,97]. 
Upon Schmidt reaction of methyl betulonate or Beckmann rearrangement (POCl3) of its oxime, the  
28-oxo derivatives 59b and 60b were formed after two consecutive rearrangements [98]. Other 2,3-
seco-derivatives were prepared via Beckmann fragmentation of allobetulin derivatives (Figure 16) 
[33,45,99,100].  

Figure 16. Structures of ring expanded and ring opened triterpenes 59 and 60. 
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The dibromoallobetulin 29 underwent a quasi-Favorskii rearrangement on treatment with base, 
leading to the ring contracted product 61a. Oxidative decarboxylation of the latter with lead 
tetraacetate gave the norketone 62 [45,56,96,101]. The latter is an interesting starting material that was 
used in many follow-up reactions that will not be discussed here. Benzilic acid rearrangement of 
diketone 20a gives the same hydroxyacid 61a. The photochemical Wolff rearrangement of diazo 
compound 21c gave the ring contracted carboxylic acid 61b (Figure 17) [45]. 
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Figure 17. Structures of A-ring contracted triterpenes 61 and 62. 
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Dischendorfer reported oxidation of the A-ring of 28-oxoallobetulone 3 to “allobetulinic acid” 
which formed a cyclic anhydride 63 [102,103]. This seco-derivative 63 was recently used to prepare 
spirocyclic derivatives 64 after treatment with benzylamines and oxalyl chloride [104]. Recently, the 
diacid analog of 63 was prepared by ozonolysis of the Claisen ester condensation product of 3 (i.e. the 
3-oxo analog of 27) [105]. This procedure has some similarity with earlier work by Ruzicka, who used 
chromic acid to prepare the diacid from hydroxymethyleneallobetulone (27, R = H) or directly from 
allobetulin (2) (Scheme 7) [106].  

Scheme 7. Spirocyclic triterpenes 64. 
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The nearly insoluble lactone 65 was formed in low yield (24%) on oxidation of allobetulone (4) 
with chromic acid. Treatment of 65 with diazomethane gave the 1,2-seco derivative 66 in good yield 
(Figure 18) [107]. 

Figure 18. Structures of oxidized triterpenes 65 and 66. 
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Another obvious position for ring cleavage is the lactone bridge of 28-oxoallobetulin derivatives. 
This bridge is quite stable towards saponification, but LiAlH4 reduction of the 3β-acetoxy derivative of 
5 [108] or 28-oxoallobetulone (3) [25,30,109] gives a germanicanetriol derivative 67 which was 
further transformed to different germanicanes by selective acylation, oxidation and dehydration 
reactions [108,109]. The lactone ring of the protected 28-oxoallobetulone 22b was reductive cleaved 
with LiAlH4 and after deprotection, 28-acetylation, dehydration with POCl3, saponification, and 
stepwise oxidation, moronic acid (68) and the reduced morolic acid 69 were obtained (Figure 19) [41]. 
In general, allobetulin and its derivatives are important starting materials for the synthesis of rare 
germanicanes and olean-18(19)-ene triterpenoids. 

Figure 19. Structures of triterpenes 67-69. 

H
OH

H
HO

HO

H
OH

H
X

O

67 68   X = O
69   X = H, β-OH  

 
Treatment of allobetulin (2) with sodium iodide/acetyl chloride at reflux in acetonitrile lead to the 

formation of iodinated diacetate 70 [110]. Treatment of allobetulin (2) or its 3-acetate with POCl3 in 
refluxing pyridine similarly gave dialkene 71 or the corresponding acetate 72 (Figure 20) [16]. 

Figure 20. Structures of triterpenes 70-72. 
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6. Biological Properties of Allobetulin Analogs 

The biological properties of betulin, betulinic acid and its derivatives are well known [2] and often 
activity studies of allobetulin derivatives are found back in the literature together with or in 
comparison to their betulin isomers. A wide spectrum of biological properties have been reported, 
including antiviral, antifeedant, immunotropic, antibacterial, antifungal, and anti-inflammatory 
activities, cytotoxicity and inhibition of glycogen phosphorylase activities. 
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6.1. Antiviral properties  

In 1995, it was found that allobetulin (2) itself showed moderate inhibitory activity against the 
influenza B virus [111]. It was claimed in the patent literature that different derivatives of allobetulin, 
including 2 and its 3-O-acylated and phosphorylated derivatives, 4, 30a, 32, exhibited significant 
antiviral activity and could be used to treat herpes virus (HSV-herpes simplex virus) infection [35]. 
Also in 2002, compound 3 was shown in cell culture to inhibit influenza A growth while being inactive 
against HSV and the enterovirus ECHO-6 [112]. Somewhat later, allobetulin derivatives 3, 6, and 
different O-acylated oximes 39 were tested against several viruses such as HSV, influenza and ECHO-
6 [24,37]. In fact, the non-acetylated oxime 17a had the largest effect against influenza virus A, while 
being only moderately active against enterovirus ECHO-6 and inactive with respect to HSV. The N-
acetylated oximes 39 had a moderate activity towards HSV, but were inactive against the other viruses 
[37]. It was confirmed that 28-oxoallobetulone (3) strongly inhibited the influenza virus, but did not 
influence HSV reproduction [24]. Rearranged product 56 showed only moderate inhibition of the 
Papilloma virus [93]. 

6.2. Antifeedant properties 

In 1990, Lugemwa et al. reported high antifeedant activity against the bollworm larvae, Heliothis 
zea, for the glycoside derivative of 30a. Simple allobetulin derivatives such as 2, 20a and 30a itself 
were not active. The antifeedant property was selective and the glycoside did not display high activity 
against either the Colorado potato beetle (Leptinotarsa decemlineata) or the fall armyworm 
(Spodoptera frugiperda) [40]. 

6.3. Immunotropic activities 

Different 2-substituted allobetulone derivatives, including the formyl analog 27 (R = H) and 
different condensation products with amines 41 were screened [53]. In fact, compounds 27 and 41  
(R = iPr) had the most promising activity combined with low toxicity. In later work it was shown that 
these compounds had high biological activity on chronic administration and that their 
immunosuppressive activity was the result of toxic effect on the lymphocytes [113]. 

6.4. Antibacterial and antifungal activities 

Compounds 2 and 3 were taken into a screening of 32 betulin derivatives against Chlamydia 
pneumoniae. Allobetulin (2) was equal to betulin (1) in antichlamydial activity (48%), but 28-
oxoallobetulone (3) was inactive [114]. 

6.5. Anti-inflammatory and anti-ulcer properties 

Biological tests on mice with the carrageenan and formalin edema models showed that acylated 
derivatives of allobetulin (2) possessed anti-inflammatory activity comparable to ortophen (diclofenac) 
[71,115]. Moderate antiulcer activity of 3 and 3-O-acylated allobetulin derivatives were observed in 
mice [112,115]. 
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6.6. Cytotoxicity  

The cytotoxicity of pyrazine and quinoxaline derivatives of allobetulin (47) was tested against a T-
lymphoblastic leukemia cell line and found to be lower than the fused triterpene analogs based on 
unrearranged betulin or betulinic acid [86]. Pichette et al. did a study on the cytotocitity of betulin- and 
allobetulin-derived 3β-O-monodesmosidic saponins (such as 42) with higher hydrosolubility and better 
pharmacokinetics. In vitro anticancer activity of saponins derived from 2 and 6 showed that the 
bioactivity for these glycosides was only moderate (IC50 30–40 μM/L), as compared to the 
corresponding betulinic acid derivatives (IC50 7.3–10.1 μM/L) [23]. The in vitro toxicity of 67 (human 
lung carcinoma or human colorectal adenocarcinoma assay) was comparable to that of betulinic acid or 
5-fluorouracil [108]. Chacotrioside saponins such as 43 were fourfold superior to betulinic acid against 
human breast (MCF7) and prostate (PC-3) adenocarcimas cell lines. Moreover, chacotriosides bearing 
non-polar functions at the C-28 position had a haemolytic activity against red blood cells [80]. 
Allobetulin derivatives 12 with 28-functionality were reported by Czuk et al. to have moderate 
cytotoxicity [31]. 

6.7. Inhibition of glycogen phosphorylase  

Morolic acid (69) (IC50 70.3 μM/L), its 3-epimer (IC50 34.5 μM/L) and 3-O-acetylated derivative 
(IC50 32.7 μM/L) were shown to cause moderate inhibitory activity against rabbit muscle glycogen 
phosphorylase [41]. 

7. Conclusions  

Allobetulin and its analogues are easily accessible starting from the corresponding betulin 
derivatives. Although a large structural variety of allobetulin analogs is already available by 
functionalisation, ring fusion to the A ring, further rearrangements, ring contractions, ring expansions, 
and ring cleavages, there is still much chemical space unexplored. Further investigations are certainly 
worthwile because of the interesting bioactivities. 
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